Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт как катализатор при реакции с паром

    Рассматривая свои данные, Н. В. Кулькова и М. И. Темкин [97] отмечают, что значения Со- К1 находятся в соответствии с характером активности катализаторов наибольшие величины Ро-[К1 характеризуют пластину и окись ванадия, являющиеся оптимальными катализаторами процессов окисления средние значения Qo-[к] относятся к окисям железа и кобальта, являющимся оптимальными катализаторами реакции окиси углерода с водяным паром наименьшие значения относятся к окисям меди и серебра, катализирующим наилучшим образом мягкое окисление органических соединений. Таким образом, это подтверждает, что каждой реакции соответствует свой оптимум величин энергий связей с поверхностью катализатора. [c.490]


    Железо, кобальт и никель — активные катализаторы орто-, пара-превращения водорода [224, 926, 1227—1232, 1234], рекомбинации атомов водорода [225—227], различных реакций изотопного обмена водорода с органическими и неорганическими соединениями [230—233, 238—241, 500, 680, 1238—1243, 1245—1250]. [c.727]

    Окисление бутана воздухом в жидкой фазе в присутствии кобальтовых или марганцевых солей в качестве катализатора производится в уксуснокислом растворе. Процесс проводят примерно в следующих условиях на 1300 частей уксусной кислоты, содержащей около 0,3% вес. уксуснокислого кобальта или уксуснокислого хрома, подают в минуту 3,5 части жидкого бутана и 16 вес. частей воздуха. Температура реакции 165—170°, давление 0 ат. Отходящие при понижении давления пары конденсируются и образуется два слоя. [c.157]

    Применяемый нами катализатор, полифталоцианин кобальта, представляет собой макрогетероциклическое соединение, полимер с объемной и линейной структурой, молекула которого состоит из простых мономерных единиц с атомами кобальта в центре каждой мономерной единицы. Как известно [107], при катализе реакции окисления тиолов фталоцианинами металлов, реакционным центром является атом металла, содержащий свободные с1-орбитали и способный образовывать донорно-акцепторную связь. В то же время ДЭГ содержит гетероатомы с неподеленными парами электронов и поэтому обладает способностью координироваться вблизи атомов переходных металлов, т.е. служить лигандами. [c.56]

    Другие примеры металлов, особенно эффективных в специфических реакциях медь для насыщения групп, соединенных с бензольным кольцом цинк для гидрирования альдегидных групп, сопряженных с олефиновыми связями кобальт для превращения двойных связей и серебро для окисления этилена в окись этилена. Медь как основа катализаторов 52-1 и 51-1 фирмы Ай-Си-Ай обеспечивает соответствующие высокие селективности для реакции окиси углерода с паром с образованием двуокиси углерода и водорода и для гидрирования окиси углерода в метанол. [c.24]

    Хорошо известно, что металлическое железо, кобальт и никель способны катализировать полное разложение углеводородов до кокса и водорода. Рассмотренные выше катализаторы содержат соединения железа и никеля, и поэтому режим процесса должен исключить условия, при которых возможно восстановление этих компонентов до каталитически активных металлов. Такому восстановлению препятствует использование избытка водяного пара или образование водяным паром соединений с другими компонентами катализатора. В результате попытка применить эти катализаторы для реакций с углеводородами без водяного пара неизбежно приведет к повышенному коксообразованию. [c.76]


    Процесс высокотемпературного риформинга, который используют для получения городского газа, может быть приспособлен для производства водорода как полупродукта в химической промышленности. В этом случае наиболее подходящим сырьем являются СНГ. Первая стадия риформинга осуществляется в присутствии катализатора на никелевой основе при температуре около 800 °С. Окись углерода выводится из реактора за счет смещения реакции в сторону образования СОг и за счет подачи избыточного пара в присутствии катализатора молибдата кобальта при температуре 250—300°С СО+НгО СОг+Нг. [c.244]

    При гидратации ацетилена в присутствии нертутных катализаторов ацетилен разбавляют азотом, смешивают с водяным паром и полученную парогазовую смесь пропускают при высокой температуре над нертутным катализатором, например окислами цинка, кобальта, хрома или других металлов. Продолжительность контакта парогазовой смеси с катализатором составляет доли секунды, вследствие этого отсутствуют побочные реакции, что приводит к увеличению выхода ацетальдегида и получению более чистого продукта. [c.137]

    Часто используются комбинации приведенных способов ослабления реакции. Так, например, углеводород испаряют, разбавляют азотом и пропускают через слой трехфтористого кобальта при 200—350 пары фторируемого углеводорода и фтор разбавляются каждый отдельно азотом и смешиваются постепенно (при 150—325 ) над катализатором, состоящим из тонких медных стружек, покрытых тонким слоем фторида серебра. В настоящее время можно считать, что в определенных условиях фтор, подобно хлору и брому, может применяться в реакции прямого галоидирования углеводородов. Однако работа с элементарным фтором всегда связана с опасностью взрыва вследствие необычайной силы действия фтора на органические соединения, а часто и вследствие недостаточной чистоты фтора (наличия в нем прнмеси кислорода), [c.162]

    Реакция (5) протекает очень быстро, что позволяет обогатить технологический газ водородом. Реакции (3) и (4) на кобальт-молибденовом катализаторе протекают практически до полного термодинамического равновесия с образованием сероводорода. Остаточное содержание OS и S2 не превышает 100 ррт. Выходящий из реактора газ проходит котел-утилизатор, в котором вырабатывается пар среднего давления, охлаждается до температуры 170°С, затем проходит холодильник, в котором охлаждается до температуры 40...50°С. Сконденсировавшаяся вода выделяется из газа, выводится в сепаратор, в котором из воды отдуваются растворенные газы, после чего она направляется на питание котлов-утилизаторов. [c.271]

    Контактные массы можно приготовить двумя способами [335]г 1) путем превращения высших водных окисей металлов в низшие, не содержащие воду окиси, и 2) путем восстановления окисей металлов при низкой температуре или в присутствии влажных газов при высокой температуре и обработкой восстановленных окисей водяным паром. Катализаторы, полученные из водных окисей железа, кобальта или пятиокиси ванадия, пригодны для реакции получения из ацетилена и аммиака азотсодержащих продуктов конденсации. При применении гидрата окиси железа не следует упускать из вида преимуществ натуральных водных окисей, например лимонита. [c.280]

    Приготовление брома по процессу Дикона, бромистый водород, полученный бромированием органических веществ, с избытком воздуха при 325—425° превращается в бром и воду из газов, получаемых при реакции, бром отмывается водой, отгоняется с паром и отделяется от конденсата выход 95—100% Медь можно применять катализаторы никель— кобальт— марганец-торий и церий 798 1 1 1 [c.388]

    Основными катализаторами процессов с участием молекулярного водорода являются элементы VПI группы периодической системы. Так, Ре, Со, N1 широко используются в процессах гидрирования Ре — наилучший катализатор синтеза аммиака карбонилы кобальта — оптимальные катализаторы процесса оксосин-теза Ре, Со, N1 — активные катализаторы орто-пара-превращения водорода, рекомбинации атомов водорода, гомомолекулярного водородного обмена, различных реакций изотопного обмена водорода с органическими и неорганическими соединениями. [c.62]

    Для такой конверсии органической серы в сероводород реактор заполняется катализатором Ним-окс (никельмолибдат) или Комокс (молибдат кобальта). Исходный продукт испаряется, смешивается с рециркулируюш,им газом, содержащим главным образом водород, и подогревается до 350°С. См есь проходит над катализатором гидроочистки и расщепляется па пары лигроина и сероводород. Полученный сероводород выводится из системы с помощью окиси цинка в процессе адсорбции и химической реакции со слоем окиси цинка. По мере поглощения сероводорода окись цинка конвертируется в сульфид цинка. В связи с этим способность слоя окиси цинка к поглощению серы ограничена. [c.102]


    Стадия десульфурации в процессе Газинтан аналогична принятой, в процессе КОГ . Рециркулирующий водород и пар лигроина проходят через реактор, загруженный катализатором из молибдата кобальта или никеля. Из серосодержащих органических молекул образуется сероводород, который поглощается при прохождении через слой окиси цинка или Люксмассы во втором реакторе. В системе десульфурации поддерживается температура 330—360°С, причем как гидродесульфурация, так и поглощение серы являются слабо экзотермическими реакциями, поэтому в целом вся система близка к адиабатической. Аналогично процессу КОГ при использовании сырья С высоким содержанием сернистых соединений могут быть применены внешние установки для пол ной или частичной гидроочистки. [c.108]

    Гомогенное взаимодействие окиси углерода с водяным паром нри температурах ниже 1000° С протекает очень медленно. Для увеличения скорости реакции в промышленности применяют катализаторы на основе окиси железа, кобальта, никеля, меди и других металлов. Наряду с основным (катализирующим) окислом в состав катализатора входят нромотирующие добавки в виде окислов хрома, магния, алюминия, цинка, свинца, калия, натрия и т. д. [c.191]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    В настоящее время ведется активная разработка технологии получения жидких топлив из угля путем его каталитического гидрирования. Роль водорода в процессе ожижения угля заключается в насыщении им свободных радикалов, образующихся при расщеплении соединений, входящих в состав угля, при повышенной температуре. Этот процесс может протекать либо непосредственно, либо через первоначальное гидрирование молекул растворителя, которые затем передают полученный водород углю. Под действием водорода протекают также реакции десульфирования и насыщения двойных связей и кольцевых ароматических структур. Реакции гидрирования требуют громадного количества водорода, и вряд ли возможно создать экономичный процесс ожижения угля без разработки новой технологии получения дешевого водорода. Альтернативный подход к этой проблеме [10] заключается в использовании дешевого синтез-газа для ожижения лигнита и биту-хминозного угля. Пытались [11] ожижать и десульфировать высокосернистые битуминозные угли под действием синтез-газа при 400—450°С и 21—28 МПа в присутствии молибдата кобальта и карбоната натрия (катализаторы) и водяного пара (в процессе с рециркуляцией каменноугольного масла). [c.326]

    Эту реакцию проводили как с низшими, так и с высшими парафинами, например с гексадеканом (С1вНз4), а также с другими типами углеводородов (нафтенами). Катализаторами для этой реакции могут служить также фториды других металлов, существующих в двух валентных состояниях. В качестве примера можно привести фториды кобальта — кобальт образует наряду с 0)р2 трифторид кобальта (СоРз). Трифторид кобальта может быть и сам по себе применен в качестве фторирующего вещества. Если пары н-гептана смешать с азотом и газовую смесь пропустить при 225—350° над трехфтористым кобальтом, то получается перфторгептан с выходом 80% [c.89]

    Катализаторы типа молибдата кобальта применяют для удаления ацетиленовых соединений из газов пиролиза — обычно после выделения ароматических углеводородов и кислотных газов. Промышленный процесс чаще всего проводят при следующих условиях давление 5,2—15,7 ат и выше, температура 177—316° С, объемная скорость 500—1000 ч . Для повышения избирательности гидрирования ацетиленовых углеводородов и снижения скорости образования полимерных отложений во время реакции к поступающему газу добавляют водяной пар. По мере образования полимерных отложений активность катализатора постепенно снижается и, в конце концов, необходимо его регенерировать. Снижение активности можно компенсировать, прогрессивно повышая температуру процесса. Катализатор в известной мере отравляется небольшими количествами сернистых соединений, содерн ащимися в газе, но вредное влияние серы также можно устранить повышением температуры процесса. Загрязненный катализатор регенерируют (обычно после 4—6 недель работы) обработкой водяным паром или смесью водяного пара с воздухом и последующим восстановлением водородом прп 400—455° С [32]. Содержание ацетиленовых углеводородов удается снизить с 1—2% до менее 0,001% при крайне незначительной потере олефинов. [c.338]

    Реакция (2.93) и (2.94) в отсутствие катализатора п промотора не могут, очевидно, играть существенной роли. Вследствие электроакцепторного воздействия карбоксильной группы на заместитель в пара-положении его направленное превращение происходит с участием монобромида кобальта  [c.25]

    Основные кинетические закономерности этих реакций в присутствии Ni и Со-катализаторов такие же, как и при гидроформилировании. Так, например, синтез насыщенных монокарбоновых кислот и гидрокарбоксилирование олефинов проводят в присутствии соединений и комплексов металлов УП группы при 120—280 С и 10—30 МПа. Наиболее активными катализаторами являются карбонилы кобальта и никеля, а в качестве активаторов можно использовать Mg, Al, Мп, u. При повышенном давлении СО гидрокарбоксилирование олефинов протекает в присутствии катализаторов. Наиболее легко вступают в реакцию а-олефины нормального строения, образуя смесь нормальных и а-метилзамещенных карбоновых кислот, причем в присутствии кобальтовых катализаторов получаются главным образом кислоты нормального строения, а в присутствии никелевых больше выход кислот изостроения. Добавка в реакционную систему 1г, HI, H3I, KI ускоряет реакцию и повышает выход кислот нормального строения. Скорость гидрокарбоксилирования возрастает также при добавке к СО небольших количеств водорода. Этилен в среде водяного пара в присутствии 0I2 или Со(СНзСОО)2 и 2H5I при 195 С и 7 МПа с селективностью 99% превращается в пропионовую кислоту. При проведении реакции в метаноле, содержащем 2% Н2О, гидро-карбоксилируются и гомологи этилена. Выход карбоновых кислот из олефинов Сз—Сю при 170—190 °С и давлении СО, равном 14—22 МПа, достигает 94%- [c.339]

    Бензин можно получить из угля, вернее из газов, образующихся при продувании водяного пара через слой раскаленного угля в газогенераторе — смеси оксида углерода СО и водорода Н2, так называемого воддашо газа. Его пропускают в реактор, где при температуре 180—200 °С и давлении, близком к атмосферному (0,15— 0,2 МПа), в присутствии катализаторов (кобальт, никель, железо и др.), происходит химическая реакция— рождаются молекулы искусственного жидкого топлива синтола. [c.19]

    При прохождении смеси паров и водородсодержащего газа над катализатором под влиянием температуры и давления протекают различные реакции, к числу которых относят реакции гидрообессеривания, гидрирование ненасыщенных соединений, гидрирование ароматических углеводородов, гидрокрекинг насы щенных углеводородов, деметилирование гомологов бензола Целевыми реакциями очистки являются гидрообессеривани и гидрирование ненасыш,енных углеводородов При получении бен зола высокой степени чистоты определяющими являются реакции гидрообессеривания, особенно гидрогенолиз (разрушение) наиболее термически стабильного соединения — тиофена Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия В промышленности широко распространен алюмокобальтмолибденовый катализатор 306 [c.306]

    Исследования, проведенные позднее, йо изучению конверсии окиси углерода водяными парами при температурах от 180° и выше с различиыр.га объемными скоростями над кобальт-то-риевым и железо-медным катализаторами показали, что при температурах 180—200° реакция конверсии протекает лишь в нeз нa-чительной степени. Этим следует объяснить малую долю реакции конверсии, имеющей место в случае синтеза над кобальт-то-риевым катализатором. [c.342]

    Показано, что на алюмо-кобальт-молибденовом катализаторе и на катализаторах-хемосорбентах на основе окислов меди и цинка (КС-4 и ГИАП-943-Н) в области температур 300—400° С, давлении 20 атм и соотношении СО2 СО О,5 не наблюдается высокоэкзотермической реакции метанирования, а реакция гидрирования СО2 до СО и Н2О идет на 20—30%- Катализаторы работают в этих условиях без температурных вспышек, на всех стадиях отсутствует крекинг гомологов метана, а появление 1 —1,5% паров воды не мешает процессу гидрирования и хемосорбции сернистых веществ, Библиогр. 1, табл. 3 [c.182]

    В 30-х годах было показано преимущество некоторых шпинелей как катализаторов окисления СО по сравнению с соответствующими оксидами [42]. Помимо высокой каталитической активности многие шпинели проявляют большую стабильность в условиях окислительного процесса. Например, в окислительных реакциях устойчивость структуры сложных кобальтсодержащих шпинелей выше, чем у простой шпинели С03О4. В среде этилена с кислородом при 250 °С С03О4 легко превращается в СоО с выделением кислорода, а кобальтит никеля в этой же смеси лишь частично разлагается на соответствующие оксиды [43]. В среде паров бензина с кислородом при 400 °С С03О4 также разрушается, а хромит кобальта остается неизменным [44, с. 379-384]. [c.55]

    К числу лучших из описанных в литературе катализаторов окисления пропилена в акриловую кислоту относятся сложные окисные катализаторы, содержащие МоОдГ твердый раствор ЗпО.з—М0О3 и молибдат кобальта (с добавками). Невысокая активность и низкая избирательность по акриловой кислоте свойственны молиб-дату и фосфату железа молибдат висмута при 400° С неактивен по отношению к рассматриваемой реакции. Данный процесс обычно проводят в присутствии водяного пара, добавляемого к исходной смеси, при температурах 350—380° С. Среди простых окислов—катализаторов данного процесса — упоминается актив- [c.200]

    В 1906 г. появилось первое сообщение Фокина о роли водородистых металлов в реакциях восстановления непредельных жирных кислот [63]. В сообщении указывалось, что пары амилового эфира олеиновой кислоты над платиной гидрируются в эфир стеариновой кислоты. Вслед за этим была изучена гидрогенизация эруковой, мезаконовой, итаконовой и других кислот [64], а также некоторых распространенных растительных масел [65]. Катализаторами гидрогенизации служили платиновая чернь и восстановленные палладий ( водородистый палладий ), никель и кобальт, т. е. катализаторы, которыми пользовался в свое время Зайцев (Pt и Рё) и с 1897 г. Сабатье (N1, Со). На работы этих ученых ФокИн делает соответствующие ссылки. Однако, в отличие от тех пособов контакта реагента с катализатором, которыми пользовались Зайцев и Сабатье, Фокин применяет иной способ он суспендирует порошки восстановленных металлов в эфире, а затем в масляной или валериановой кислотах, т. е. в растворителях, и гидрогенизацию ненасыщенных кислот осуществляет при постоянном токе водорода в растворе. Это, казалось бы, незначительное нововведение явилось исключительно важным шагом в дальнейшем развитии катализа. [c.58]

    Гетерогенизация галогенидов переходных металлов осуществлялась из их растворов в этиловом спирте. Было обнаружено, что катализаторы, получаемые при совместном закреплении пар галоге-нидов меди и кобальта меди и марганца - проявляют более высокую активность в реакции жидкофазного ошсленкя кумола, чем катализаторы, которые готовились при юс последовательной гетеро-генизации. [c.113]

    Известно, что различные вещества (металлическое железо, никель и кобальт) катализируют образование угля и водорода при пиролизе углеводородов, но на практике поверхмость катализатора быстро покрывается слоем угля, что ослабляет каталитическое действие. Если только не принимать мер для удаления отложений угля путем сдувания его газом, движущимся с большой скоростью, или же периодическим сжиганием его струей воздуха или кислорода, то катализатор утрачивает свою активность. Большое внимание было обращено также на некоторые другие процессы, которые можно эффективно катализировать, причем активность каталитических веществ не понижается отложениями угля. Среди них находятся реакции взаимодействия метана с водяным паром и углекислым газом  [c.229]

    S hultz и Eisenste ken осущ ествляли реакцию углеводородных газов- с водяным паром при 1000° в карборундовой трубке, применяя катализаторы, содержавшие железо, кобальт, никель, хром, алюминий, марганец, медь, ванадий, вольфрам или их оплавы. Теплота, необходимая для реакции, создавалась при помощи индукционного высокочастотного электрического тока. Катализатор или же имеющие подходящую форму металлические массы, воспринимающие. электрическую энергию, помещались в реакционной зоне.  [c.320]

    Гидратация в паровой фазе низших олефинов, включая этилен и пропилен, производится пропускание.м их с паром при обыкновенном или повышенном да-. влении над некоторылги катализаторами при температурах выше 100° (обычно 150—300°). В качестве катализаторов предложены тонко раздробленные металлы платиновой группы, золото, серебро, медь, железо, кобальт, никель, хром, тантал, ванадий, в>ольфрам, молибден и марганец или их соли, или другие соединения 1 . Их можно осаждать на инертные носители или подложки. Пр имером этой реакции может служить гидратация этилена паром над катализатором — фосфорнокислой медью на пемзе при 150° и атмосферном давлении. Гидратация этилена или пропилена протекает также в аналогичных условиях в присутствии катализаторов, состоящих из окиси меди и окиси вольфрама, окиси же.иеза и окиси вольфрама или мелкораздробленной платины на пемзе. В некоторых слу1 аях образуются в заметных количествах продукты дегидрогенизации алкоголей (альдегиды и кетоны). [c.334]

    Запатентован [121] оригинальный процесс деметилирования для производства п-ксилола в качестве сырья применяют псевдокумол. Учитывается, что при гидродеалкилировании этого сырья могут протекать многочисленные побочные реакции, например отщепление нескольких метильных групп вместо одной, изомеризация образующихся ксилолов с установлением термодинамического равновесия, трансалкилирование и др. Условия процесса выбраны с учетом возможно полного подавления нежелательных побочных реакций и достижения максимальной интенсивности избирательного деметилирования псевдокумола до -ксилола. В качестве катализатора предпочтительно применять окислы кобальта и молибдена на алюмосиликатном носителе. Для регулирования кислотности к катализатору добавляют определенные количества щелочи этим одновременно подавляются реакции изомеризации и трансалкилирования. Для уменьшения крекинга или разрыва бензольных колец исходное сырье подают в смеси с водяным паром. Результаты опытов по деметилированию псевдокумола приведены в табл. 23. Ксилольная фракция, выде- [c.345]

    Если к четыреххлористому углероду добавить иод, а фтор вводить в пары ССЬ, то на конце вводной трубки появляется пламя, и в результате реакции образуются все возможные хлор-фторметаны. Исследовались также и дрз гие катализаторы , причем лучшие выходы были достигнуты при пропускании смеси фтора, азота и паров четыреххлористого углерода над трехфтористым кобальтом. [c.415]

    Первые попытки фторирования простых углеводородов были предприняты в 1905 г. Муассаном и Шаванном, которые попытались осуществить взаимодействие твердого метана с жидким фтором при температуре— 187°С. Несмотря на низкую температуру и опыт исследователей результатом был сильнейший взрыв. Фреденхаген и Каденбах (1934) нашли, что введение фтора в пары углеводорода через отверстия экранирующего цилиндра из свернутой медной сетки значительно сдерживает реакцию. Во время второй, мировой войны исследования Бигeлoy Кеди , Гросса и других позволили разработать промышленные процессы парофазного фторирования. Покрытие медного катализатора фторидами серебра, золота или кобальта увеличивает его активность (температура 200 °С). В одном из этих процессов разбавленные азотом пары углеводорода и пары фтора вводили с противоположных сторон в реактор, заполненный медными стружками, покрытыми фторидом серебра, которые постепенно смешивались (200—300 °С). Применялся небольшой избыток фтора. Полученные продукты — фторуглероды и фтористый водород — собирали в охлаждаемых ловушках. [c.416]

    Этиленовые углеводороды, например этилен или бутилен, в смеси с окисью углерода и водяным паром проводят над катализаторами при 200—400° под высоким давлением (обычо 700 атл1 и выше). В качестве катализаторов рекомендуются разнообразные вещества среди них хлористый водород, хлориды щелочных металлов, меди, кобальта и других металлов, окислы металлов 3—6 групп периодической системы, фосфаты, молибдаты [1731 и хлорированные органические кислоты [174]. Были предложены также хлористый аммоний [175] и четыреххлористый углерод в присутствии активированного угля [176]. Согласно Ларсону, вместо олефинов можно исходить из галоидных алкилов, например хлористого этила [177]. Предполагается, что последние в условиях реакции отщепляют галоидоводородную кислоту и превращаются в олефины. Гарди [178] получал карбоновые кислоты из олефинов и окиси углерода в присутствии фосфорной кислоты в качестве катализатора. [c.344]


Смотреть страницы где упоминается термин Кобальт как катализатор при реакции с паром: [c.169]    [c.133]    [c.140]    [c.323]    [c.136]    [c.224]    [c.227]    [c.227]    [c.18]    [c.247]    [c.307]    [c.317]    [c.1064]    [c.302]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы кобальта

Кобальт реакции



© 2024 chem21.info Реклама на сайте