Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий от металлов на катионитах

    Тетраэдры с ионами 31 + электрически нейтральны, а тетраэдры с ионами трехвалентного алюминия АР имеют заряд минус единица, который нейтрализуется положительным зарядом катиона Ме (сначала катионом Ыа+, поскольку синтез чаще ведется в щелочной среде, затем в результате катионного обмена — катио — н<1ми других металлов, катионом НН или протоном Н ). [c.112]


    Косвенные методы определения металлов. Катионы некоторых металлов, например алюминия, циркония и других, восстанавливаются с большим трудом или не дают четких полярографических волн. В этом случае используют различные косвенные методы, основанные на неодинаковой прочности комплексных соединений металлов. Так, цирконий можно определить следующим образом. К анализируемому раствору циркония прибавляют комплексонат кадмия [c.506]

    Косвенные методы определения металлов. Катионы некоторых металлов, например алюминия, циркония и другие, восстанавливаются с большим трудом и не дают четких полярографических волн. [c.220]

    Металл-водородный . Натрий-водородный У, редкоземельно-водорОдный У и т. п.— образцы цеолита, в которых, как предполагают, в значительных количествах содержатся ионы как металла, так и водорода. Иногда такое представление о цеолите достаточно обосновано, однако чаще всего количество ионов водорода определяют как разность между количествами алюминия и катионов металла, найденными при анализе цеолитов. Чаще всего так называют продукты прокаливания смешанных металл-аммонийных форм цео лита. Многие цеолиты, применяемые в промышленных каталитических процессах, проходят такую обработку. Таким образом, термины металл-водородный У, частично катионированный У и декатионированный У — синонимы. [c.382]

    Весьма часто катионные комплексы возникают при использовании полидентатных реагентов — как одноосновных, так и много-основных. Например, при взаимодействии тридентатного одноосновного реагента с трехзарядными катионами, имеющими координационное число 6 (алюминий, галлий), катион может присоединять два остатка реагента, которые нейтрализуют лишь два положительных заряда катиона. Реагенты с высокой дентатностью (пента- или гекса-, очень часто тетра- и тридентатные) вообще образуют обычно только комплексы состава 1 1, поскольку возникновение высших комплексов требовало бы высоких координационных чисел у катиона металла и поскольку во многих случаях возникают непреодолимые пространственные препятствия. Образование этилендиаминтетрауксусной кислотой (потенциально гексадентатный четырехосновный реагент) комплексов строгого состава 1 1 положено, как известно, в основу метода комплексоно-метрического титрования. [c.119]

    Д.ТЯ бора не характерны соединения, в которых он входит в состав катионов, но весьма.типичны такие анионы, как ВОГи ВОз Все эти примеры показывают, что бор — неметалл, а алюминий — металл. [c.136]

    Объем пор цеолитов очень велик (см. табл. 5-1). Молекула цеолита состоит из окиси кремния, окиси алюминия и катиона какого-либо металла. Особенностью структуры молекулы цеолита является то, что в ней ион алюминия, так же как ион кремния, окружен четырьмя ионами кислорода. Но так как алюминий трехвалентен, а кремний четырехвалентен, то образуется избыточный свободный заряд, который компенсируется ионом какого-либо металла. Соотношение между количеством ионов кремния и алюминия в молекуле цеолита может меняться, но на каждый ион алюминия обязательно приходится ион какого-нибудь металла, компенсирующий избыточный заряд. [c.94]


    Нормальные окислительно-восстановительные потенциалы всех металлов катионов третьей группы имеют отрицательные значения. Поэтому все металлы, ионы которых относятся к третьей аналитической группе, растворяются в разбавленных кислотах. Легче растворяются алюминий, титан, марганец и цинк, труднее — никель и кобальт. Алюминий и цинк, кроме того, легко растворяются в щелочах. [c.105]

    Медь и железо можно отделить от хрома на катионитах КУ-1 и КУ-2 в Н-фор ме. Железо можно отделить от цинка и кадмия на анионите АВ-17. Анионит ЭДЭ-Юп при 0,03-н. кислотности сорбирует железо и тяжелые металлы, образуя с ними комплексные соединения за счет ковалентных электронов. Катиониты КБ-2 и КБ-4 избирательно поглощают катионы хрома (П1), кобальта и никеля. Разделение меди и кадмия можно осуществить яа сульфоугле, эспатите-1 или КУ-1, СБС, СДБ-2, СДВ-3 в Н-форме. Ионный обмен катионов никеля на КУ-1, СБС в Н- форме и аммонийной форме зависит от pH раствора и сго состава. Поглощение никеля происходит на катионите КМТ-1 в Na-форме. Цинк от никеля можно отделить на анионитах ПЭК, ПЭ-9, ТМ. Трех- и шестивалентный хром можно разделить на -СБС, СДВ-3 и анионите ММГ-1 при различных pH раствора. Алюминий, железо и цинк можно определять в сплавах, разделяя их на СБС, используя амфотерность и комплексообразование. Количественное разделение железа, ванадия и молибдена можно провести на окиси алюминия, сульфоугле, катионите СБС. [c.127]

    Обычно тип структуры синтетического цеолита обозна — чают буквами латинского алфавита А, X, V,. .. Ь и т.д. Перед буквами ставят химическую формулу катиона металла, компенсирующего отрицательный заряд алюминия в алюмосиликате. Например, СаХ означает цеолит типа X в кальциевой обменной форме ЬаУ, ЯеУ — соответственно лантановая и редкоземельная форма цеолита У. [c.110]

    Катион и анион многозарядны. Подавляющее число солей, относящихся к зтой группе, весьма малорастворимы и вследствие этого их обменное взаимодействие с водой практически незначительно. Исключение составляют сульфиды некоторых трехвалентных металлов, например алюминия и хрома, которые в водном растворе полностью и необратимо гидролизуются с образованием основания и кислоты  [c.138]

    К числу катионных кислот относятся также гидратированные ноны многовалентных металлов, например, гидратированный ион алюминия. Как известно, соли алюминия имеют в растворе кислую реакцию это обусловлено процессом [c.243]

    Основой структуры всех цеолитов является тетраэдр, состоящий из четырех анионов кислорода 0 , которые окружают значительно меньший по размерам ион Si или А1 . Тетраэдры с ионами Si электрически нейтральны, а тетраэдры с ионами алюминия имеют заряд минус единица, который в цеолите нейтрализуется положительным зарядом катиона металла Na" , так как синтез цеолита ведется чаще всего в щелочных растворах. [c.103]

    Катализаторы крекинга делятся на две группы природные и синтетические. Первыми природными катализаторами были различным образом обработанные природные глины. Глины типа флоридина обладают достаточной активностью даже без предварительной обработки и нуждаются лишь в формовании в частицы определенных размеров и формы. В отличие от этих глин, бентонитовые требуют предварительной обработки — активации. Активация осуществляется кислотами или некоторыми солями (сульфат алюминия, хлорид аммония), В результате такой обработки с поверхности катализатора удаляются избыточные катионы металлов, развивается пористая структура. Последующее прокаливание при 450—500° С приводит к удалению гигроскопической и частично структурной воды и дальнейшей полимеризации алюмосиликата. [c.230]

    Поэтому определение потенциалов нулевых зарядов металлов и стационарных потенциалов (Ест) металлов в данной среде может значительно облегчить выбор ингибиторов коррозии. Если Е ,з>Ест, т. е. поверхность металла при коррозии заряжена отрицательно, то наиболее вероятна адсорбция ингибиторов катионного типа или положительно заряженных коллоидных частиц. При Е ,з<Ест. т. е. когда поверхность металла заряжена положительно, наиболее вероятна адсорбция ингибиторов анионного типа или отрицательно заряженных коллоидных частиц (36]. Эта закономерность подтверждается тем, что для железа, алюминия, цинка, которые характеризуются отрицательными значениями потенциалов = = ст— н.з, наиболее высокие защитные свойства обнаруживают ингибиторы катионного типа. [c.91]

    При окислении металлов большое значение играет процесс диффузии реагентов. В начальный момент реакции на поверхности металла образуется слой его окисленной формы. Если дефектов в кристаллической решетке оксида металла мало, то реакция протекает очень медленно (например, алюминий, покрытый плотной и малодефектной пленкой АЬОз). Если же в кристаллической решетке оксида преобладает тот или иной тип дефекта (например, вакансии по металлу — катионные вакансии, вакансии по кислороду — анионные вакансии и др.), то характер поведения образца металла при окислении будет отличаться. Если преимущественным типом дефектов является наличие катионных вакансий, то для дальнейшего осуществления процесса окисления должна происходить диффузия ионов металла из металлической кристаллической решетки к поверхности окисленной фазы (рис. 11.6, а). При этом молекулярный кислород [c.326]


    Одной из главных причин, обусловливающих катионный обмен на глинистых минералах, является замещение внутри структуры кремния алюминием, а алюминия — металлами низшей валентности, обычно магнием. Это приводит к нескомпенсированности заряда структурной ячейки в целом, которая и уравновешивается адсорбированными обменными катионами. 1 акие катионы располагаются на базальной поверхности слоистых минералов и составляют около 80% всей емкости катионного обмена. Катионный обмен, вызванный замещением внутри решетки 51 + -> А13+ Mg + и др., характерен для минералов монтмориллонитовой группы. [c.117]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Связь А1 — О имеет большую степень ионности, поэтому в растворах солей AlglSOi/s, A1(N03)3 и т. п. образуются катионы А1"+. Алюминий — металл, бор — типичный неметалл. [c.139]

    На границе же с расплавленным металлом катионы алюмИ ния АР+ так же поверхностно неактивны, как и на границе с углем, поэтому повышение концентрации А1Гз в расплаве повышает межфазное натяжение на границе расплавленный алюминий — электролит. [c.244]

    Эквивалент нормальной соли равен ее формульному молекуляр-ному весу, деленному на число атомов металл-катиона в формульной молекуле и на валентность этого металла. Так, например, молекулярный вес сернокислого алюминия А12(504)з равен 342. Эквивалент этой соли равен 342 (2 3) = 57. Эквивалент соли К2СГО4 находится делением формульного молекулярного веса этого соединения на валентность и число атомов калия, но не хрома. [c.22]

    Если в качестве одного из компонентов исходного катализатора берется Т1С1д, то может образовываться иoн(Ti l2) +. Полимеризация в циглеровской системе протекает на двух атомах металлов. Катионы переходного металла инициируют процесс, а отрицательно заряженный комплексный ион алюминия или другого комплексообразующего металла обеспечивает рост по-лймерной цепи. [c.28]

    Определению алюминия мешают катионы, взаимодействующие с комплексоном III в условиях титрования Сб, Со, Си, Оа, 1п, Ре (II), Ре (III), ТЬ, РЬ, N1, Т1, У(1У), 2п, редкоземельные элементы катионы, образующие с дитизоном прочные комплексы (Н , Ag, платиновые металлы), катионыи анионы, окисляющиедитизон(Се (IV), Сг (VI), Мп(УП),Мо, V (V), 2г, персульфаты, перйодаты, нитриты). Влияние небольших количеств окислителей можно устранить введением 100 мг аскорбиновой кислоты. [c.71]

    На рис. 1 представлены ИК-спектры ацетона на изученных цеолитах после десорбции при 100°. Полоса поглощения в области 1700 см соответствует валентным колебаниям С-0 групп, а при 1422 и 1370 смг — асимметричным и симметричным колебаниям СНз-групп. Сопоставление спектров ацетона, адсорбированных на щелочных и декатионированной формах цеолитов, а также на алюмосиликате, показывает, что присутствие катиона способствует более прочной адсорбции. Для спектров ацетона на NaX и LiX характерны полосы поглощения при 1600 и 1490 сж . На LiX проявляется полоса и при 1445 см-К Наличие этих полос можно связать с образованием енольной формы адсорбированного ацетона при электронодонорном взаимодействии с цеолитом [4]. Более интенсивное проявление таких полос на цеолитах X с большей катионной плотностью, а также сопоставление спектров на Na- и Li-формах показывает, что енолизация связана, с влиянием катионов. Образование енола может в свою очередь привести к возникновению координационных структур типа ацетилацетонатов металлов, включающих атомы алюминия или катионы. Согласно работе [5] полоса 1600 см связана в таком случае с валентными колебаниями полуторной углерод-углеродной связи, а полосы 1440, 1460 и 1445 относятся к колебаниям V( =o) и б(с-н)- Рост интенсивности таких полос при термовакуумной обработке связан со сдвигом кето-еноль-ного равновесия в сторону образования енола. [c.329]

    Косвенные методы определения металлов. Катионы некоторых металлов, например алюминия, циркония, восстанавливаются с большим трудом и не дают хороших полярографических волн. Тогда используют различные косвенные методы, основанные на высокой прочности комплексных соединений этих металлов и на меньшей прочности аналогичных комплексов других металлов, которые непосредственно определяются полярографически. Так, цирконий не восстанавливается непосредственно на ртутном электроде. Однако цирконий можно определить следующим образом. К анализируемому раствору прибавляют комплексонат кадмия (этилендиаминтетраацетат кадмия) последний не восстанавливается при таком потенциале, который соответствует свободным ионам кадмия. Цирконий способен образовать этилендиаминтетраацетатный комплекс, значительно более прочный, чем соответствующий кадмиевый комплекс. Поэтому ионы циркония вытесняют кадмий из его комплекса. При этом образуется трилонат циркония и освобождается эквивалентное количество свободных ионов кадмия. Теперь появляется волна кадмия. Измеряя высоту этой волны, можно вычислить концентрацию циркония в анализируемом растворе. На рис. 50 показано относительное расположение полярографических волн трилоната кадмия (вторая волна) и несвязанных в комплекс свободных ионов кадмия (первая волна). Аналогичным методом можно определять катионы магния, кальция и др. [c.221]

    Наряду с образованием сульфидов для разделения ионов в количественном анализе широко применяется также осаждение различных катионов в виде малорастворимых гидроокисей. При этом для разделения иоиов используют либо амфотерность некоторых из них, либо различия в растворимости разных гидроокисей. Так, железо отделяют от ванадия, молибдена и алюминия, обрабатывая раствор избытком едкой щелочи. При этом неамфотерная гидроокись железа выпадает в осадок, тогда как остальные указанные металлы вследствие амфотерного или кислотного характера их гидроокисей остаются в растворе в виде анионов (VO.3, ЖоОТ и AIO2). [c.121]

    Небольшое различие в реакционной способности между цис- и транс-дихлорэтиленами в реакциях, индуцированных перекисями, в противоположность реакциям, катализируемым хлористым алюминием, свидетельствует о различной способности радикалов и катионов mpem-бутила реагировать с затрудненными (экранированными хлором) двойными связями. Все прочие различия между реакциями, индуцированными перекисями, и реакциями, катализируемыми галогенидами металлов (например, получение высоких выходов ненасыщенных хлоридов как с нормальными, так и с и.чопарафиповыми углеводородами при индуцированной перекисями конденсации, в то время как при катализируемой хлористым алюминием конденсации получаются высокие выходы пасыщенных хлоридов, но только с изопарафинами) объясняются основными правилами для реакций свободных радикалов и ионов карбония. [c.233]

    Катион многозарядный, анион однозарядный. Эта группа сс-лей крайне немногочисленна. Она включает ацетаты, иногда формиаты некоторых металлов, например алюминия, железа, магния, меди и др. Гидролиз их значительно усиливается при нагревании л приводит к образованию осадков гидроксосолей. Что же касаетс ч солей этих металлов, образованных другими одноосновными кислотами, таких, как нитриты, гипохлориты, гипобромиты, то практически эти соли не выделены вследствие полного и необратимого гидролиза. [c.138]

    Существующие методы синтеза катализаторов крекинга разделяют на три группы а) синтез катализаторов методом совместного осаждения жидкого стекла и соли алюминия (или других металлов) из соответствующих растворов б) пропитка свежеосажденного и промытого гидрогеля кремнекислоты солями алюминия или солями других металлов с последующим разложением солей нагреванием в) раздельное осаждение с последующим смешением отмытых свежих гидроокисей кремния и алюминия или других металлов. Среди этих методов наиболее распространенным и нашедшим широкое промышленное применение является метод совместного осаждения нз соответствующих водных растворов жидкого стекла и кислого сернокислого магния с последующей активацией магнийсиликатного гидрогеля раствором сернокислого алюминия. При активации в свежесформованном магнийсиликатном гидрогеле часть катионов замещается катионами алюминия из активирующего раствора. [c.91]

    При платформинге интенсивно протекают реакции изомеризации парафинов и нафтенов и гидроизомеризации олефинов. Это вызвано тем, что катализаторы нлатформинга относятся к числу так называемых нолифункциопальных (бифункциональных) катализаторов они катализируют одновременно реакции, протекающие по катионному механизму, свойственные кислым катализаторам, и реакции гидрирования-дегидрирования, характерные для металлических и окиснометаллических катализаторов. Бифункциональный катализатор состоит из алюмосиликата (нлн активированной кислотами окиси алюминия), содержащего небольшое количество одного из металлов VIII группы (Р1, Р(1, N1 г( др.). При умеренных темнературах порядка 300—350° С среди реакций, происходящих над бифункциональными катали-зато])ами нод давлением водорода, преобладают реакции изомеризации. [c.493]

    С кислотами NH3 образует соли аммония, содержащие ион NH4. Это кристаллические вещества. Большинство их, подобно солям щелочных металлов, хорошо растворимо в воде. Многие из, них изоморфны. этим солям. Сходство данных соединений на одном, примере иллюстрирует рис. 3.46 оно в значительной степени обусловлено близостью радиусов ионов для NH< г= 143 пм, а для К" " г =133 пм. Однако проявляется саоеобразие катиона NH — его вытесняет любой щелочной металл (по шкале ср° нейтральный аммоний NHil расположен между марганцем и алюминием), при этом происходит разложение аммония NH4 на NH3 и На (однако растворенный в ртути NH некоторое время может существовать в виде амальгамы при низкой температуре). Соли аммония термически неустойчивы, а также подвергаются гидролизу по катиону. [c.399]

    Уменьшение pH растворов не-6 8 10 12 pH окислительных кислот обычно приводит также к увеличению растворимости продуктов коррозии, которые не создают защитных пленок на поверхности металла. Растворы с высокими значениями pH (щелочные среды) растворяют металлы, гидраты окислов которых амфотерны, т, е, растворимы в кислотах и щелочах. Такими металлами являются алюминий, цинк, свинец, олово и некоторые другие. При этом в кислотах образуются ионы растворяющихся металлов, а в щелочных растворах — комп./юксные ионы, в то время как самостоятельные катионы металлов в этих растворах отсутствуют. [c.70]

    Цеолитные i лтализаторы значительно более устойчивы к нагреву и обработке водяным паром. Их структура не деформируется даже при нагреве до 1100 °С. Считается, что повышенная стабильность обусловлена геометрической структурой кристаллической решетки цеолита. Влияют на нее также природа обменивающегося катиона, степень обмена, соотношение оксидов кремния и алюминия. Последнее подтверждает рис. 5.5. Природа обменивающегося катиона оказывает сильное влияние на стабильность цеолитов. Температура, при которой разрушается кристаллическая структура, возрастает с увеличением размера катиона в ряду щелочных металлов, что обусловлено способностью различных катионов заполнять пустоты в кристалле после дегидратации. Трехвалентные катионы образуют наиболее стабильные цеолиты. В промышленных катализаторах содержание натрия поддерживают на минимально возможном уровне для предотвращения деформации структуры цеолита при эксплуатации в реакторе. [c.107]

    Таким образом, имеющиеся данные свидетельствуют о существенном влиянии природы отравляющего металла на степень отравления. Видимо, из-за различия в методах отложения металлов и испытания катализаторов единого мнения об относительной силе отравляющих металлов нет. Теоретического объяснения влияния типа металла также не имеется. В работе [202], правда, делается попытка представить в общем виде возможное поведение адсорбированных на поверхности алюмосиликатного катализатора различных катионов. В ней изучалось влияние на каталитическую активность натрия, калия, бария, цинка, магния, водорода, алюминия, тория. Исходный натрийалюмосиликат пропитывали водными растворами соответствующих солей. Общее количество рас- [c.155]

    При изготовлении катализаторов содержание натрия снижают до минимума, так как в его присутствии при высоких температурах в средах, содержащих водяной пар, резко снижается активность и стабильность катализатора. При замене в цеолите одновалентного металла (Na) на двухвалентный и более, например на кальций, рений, церий н др., его структурная характеристика изменяется (увеличивается размер пор) прн этом благодаря наличию на внутренней поверхности кристаллов цеолитов кислотных центров активность катализатора возрастает. Чем больше окнслов кремния и чем меньше окислов алюминия в решетке цеолита, тем больше расстояние между атомами алюминия. Следовательно, валентные связи между атомами алюминия -и других трехвалентных металлов все больше ослабевают, и образуются сильно выраженные диполи. Прн этом активность кислотных центров возрастает. Применяя цеолиты с различными типами решеток и различными катионами металлов, можно регулировать каталитические свойств а цеолитов и получать катализаторы различного назначения. [c.54]

    Соли серной кислоты — сульфаты — находят разнообразное применение. Особенно интересны двойные сульфаты — квасцы (например, K[A1(S04)2]). Кристаллы квасцов построены так, что один из металлов (трехвалентные хром, алюминий, железо) образует вместе с кислотным отстатком комплексный анион [Me(S04)2] , занимающий определенное место в кристаллической решетке. При растворении в воде квасцы диссоциируют на одно- и трехвалентные катионы и суль-фат-анионы, т. е. ведут себя как растворы смеси сульфатов  [c.117]

    В последнее время все большее применение в качестве адсорбентов и катализаторов находят цеолиты, как природные, так и синтетические. Цеолиты — это алюмосиликаты, обладающие строго регулярной кристаллической структурой. Каркас кристалла цеолита состоит из структурных тетраэдрических элементов 8104 и А1О4 , соединенных между собой общими атомами кислорода. Отрицательный заряд каркаса благодаря наличию в нем трехзарядного алюминия компенсируется зарядом катионов щелочных и щелочноземельных металлов, располагающихся в полостях структуры. В зависимости от кристаллической структуры окна этих полостей имеют размеры 0,4—1,1 нм (соизмеримые с размерами молекул). Поэтому на цеолитах могут адсорбироваться только те вещества, молекулы которых имеют размер по наименьшей оси (критический диаметр) меньше диаметра окна полости. Отсюда второе название цеолитов — молекулярные сита. Цеолиты жадно поглощают воду, и поэтому широко применяются для осушки газовых и некоторых жидких сред. При нагревании вода из них испаряется, с чем и связано нх название — цеолиты (кипящий камень — кипеть, литое — камень). Цеолиты научились синтезировать совсем недавно (1948). Особенностью их синтеза является процесс кристаллизации после получения алюмосиликагеля. [c.130]


Смотреть страницы где упоминается термин Алюминий от металлов на катионитах: [c.71]    [c.110]    [c.67]    [c.277]    [c.208]    [c.174]    [c.38]    [c.255]    [c.91]    [c.15]   
Ионообменные разделения в аналитической химии (1966) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий катион

Катионы металлов



© 2025 chem21.info Реклама на сайте