Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные между аминокислотами в белке

    Каждому белку присущи строго определенная последовательность аминокислот в полипептидной цепи и определенная пространственная структура. В связи с этим у белков различают четыре уровня структурной организации первичная структура соответствует последовательности остатков аминокислот в полипептидной цепи вторичная структура — расположению полипептидной цепи в пространстве при закручивании ее в спираль за счет водородных связей между группами СО и ЫН разных участков цепи третичная структура определяет, каким образом сворачиваются полипептидные цепи в клубки (субъединицы) путем образования связей, ионов с участием свободных амино- и карбоксигрупп на взаимо- [c.310]


Рис. 3-23. Водородные связи (выделены цветом), которые могут образовываться между аминокислотами в белках Пептидные связи обозначены Рис. 3-23. <a href="/info/917">Водородные связи</a> (выделены цветом), которые могут образовываться между аминокислотами в <a href="/info/577536">белках Пептидные связи</a> обозначены
    Подобно аминокислотам, белки сочетают в себе как кислотные, так и основные свойства. Являясь амфотерными полиэлектролитами, белки тем не менее существенно отличаются от свободных аминокислот, кислотно-основные свойства которых обусловлены а-амино- и а-карбоксильными группами. В белках основной вклад в формирование кислотно-основных свойств вносят заряженные радикалы аминокислотных остатков, расположенные на поверхности белковой глобулы. Основные свойства белков связаны с такими аминокислотами, как аргинин, лизин или гистидин, а кислые — с аспарагиновой и глутаминовой аминокислотами. Что касается а-аминных и а-кар-боксильных групп аминокислот, то их ионизация не имеет существенного значения, так как подавляющее их число участвует в образовании пептидных связей. Кривые титрования белков достаточно сложны для интерпретации. Это связано, во-первых, с наличием большого числа титруемых групп, а также с тем, что рА для каждой титруемой группы в белке может существенно отличаться от таковой в аминокислоте. Это связано с электростатическими взаимодействиями между ионизированными группами белка, наличием близко расположенных гидрофобных остатков, а также влиянием водородных связей. [c.52]

    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]


    Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже прн осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых вторичных связей . В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи. [c.130]

    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    Особенностью т-РНК является то, что на одном конце цепочки, содержащей всего 80 нуклеотидов, всегда помещается группа из трех частиц двух цитозина и одной аденина на другом конце находится гуанин. Водородные связи между основаниями обусловливают скручивание отдельных участков цепи в двойную спираль. Свободные нуклеотиды взаимодействуют с матрицей, на которой закрепляется совокупность аминокислот во время синтеза белка. Существование таких свободных нуклеотидов, возможно, связано с наличием в т-РНК пуриновых или пиримидиновых оснований, [c.391]

    Роль транспортным РНК в синтезе белка была отведена еще до их открытия. В 1955 г. "Ф. Крик в неопубликованной статье постулировал существование олигонуклеотида — адаптера, кото рый может нести аминокислоту и образовывать водородный связи с кодирующей полинуклеотидной матрицей. Изобретение адаптора было необходимо в связи с невозможностью обнаружить между аминокислотами и нуклеиновыми кислотами стереохими-ческое соответствие, достаточное для того, чтобы обеспечить считывание генетического кода. В 1957 г. в лаборатории М. Хог-ланда было показано, что в ходе белкового синтеза активированные аминокислоты переносятся на особый тип РНК, получивший тогда наименование растворимой РНК и называемой теперь транспортной. [c.385]

    Образование водородных связей между аминокислотами и основаниями может приводить к специфическим, зависящим от последовательности взаимодействиям между белками и одноцепочечными нуклеиновыми кислотами. Например, в смесях ДМСО — вода карбоксилат-анионы (моделирующие боковые группы аспарагина и глутамина) образуют комплекс с гуанином, в 30 раз более прочный, чем комплекс между гуанином и цитозином в тех же условиях. Среди пяти обычных оснований нуклеиновых кислот только гуанин может вступать в это взаимодействие. [c.209]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Из шести электронов наружного электронного слоя атома кислорода в молекуле воды два электрона химически связаны с атомами водорода, а четыре электрона, т. е. две электронные пары, остаются свободными и участвуют в образовании межмо-лекулярных водородных связей. По-видимому, некоторые группы белковых молекул связывают воду посредством водородных связей. В молекуле белка с помощью водородных связей уменьшается расстояние между соседними атомами. Вода участвует также в активации карбоксильных групп аминокислот, что необходимо для биосинтеза белков. [c.24]

    Белки представляют собой биологические молекулы с длинными цепями, построенными из аминокислот. Белковая цепь имеет специфическое расположение, которое удерж1[вается водородными связями между группами N—Н и С=0, расположенными вдоль цепи (см. разд. 11.5, ч. Г). При денатурации белка, например при варке яйца, повышение тепловой энергии вызывает разрыв водородных связей, и регулярное расположение групп вдоль белковой цепи нарушается. Какие знаки имеют величины ДЯ и Д5 в процессе денатурации белка  [c.197]

    В самом деле, белки представляют собой макромолекуляр-ную группу, совокупность аминокислот, объединенных между собой пептидными связями, которые образуют цепи, соединенные водородными, дисульфидными, ионными, Ван-дер-Ваальса и прочими связями. Нередко в образовании связи участвует и небелковая группа она может быть по своей природе углеводной, липидной, фосфорной и т. п. [c.415]

    Другая вторичная структура найдена в р-кератине и фиброине шелка. В этих белках, которые содержат преимущественно а-аминокислоты с короткими боковыми цепями, водородные связи возникают между различными полипептидными цепями и стабилизуют так называемую структуру складчатого листа. [c.657]

    Каждый белок строится из своего набора аминокислот, остатки которых располагаются в полипептидной цепи в строго определенной последовательности. Так формируется молекула или первичная структура белка, специфичная для каждого вида организмов. Фрагменты такой молекулы взаимодействуют между собой, образуя водородные связи, в результате чего цепочечная молекула скручивается в спираль. Каждый виток спирали содержит нецелочисленное количество остатков, также связанных между собой, что делает неповторимой пространственную структуру спирали и придает устойчивость всей системе. Особенности скручивания цепей определяют вторичную структуру белка. Полипептидные цепи белка могут взаимодействовать не только за счет водородных связей. В сшивании и скручивании молекулы участвуют еще и амидные связи, дисульфидные мостики, связи между радикалами, поскольку радикалы могут включать самые разные функциональные группы. [c.434]

    Как полагают Меклер и Идлис, "обязательный компонент любой А-А-связи - водородная связь, образующаяся между полярной группой боковой цепи одного аминокислотного остатка и карбонилом остова полипептидной цепи - компонентом аминокислотного остатка-партнсра" [352. С. 43]. Вокруг таких водородных связей имеются гидрофобные рубашки, "защищающие их от атаки молекулами растворителя, в первую очередь, воды. Таким образом Природа обеспечивает образование особых, ранее неизвестных, специфических связей между аминокислотами - Л-Л-связей" [352. С. 44]. Из описанной структурной модели A-A-комплекса, однотипной для всех 26 пар аминокислотных остатков, не ясно, почему водородная связь является "обязательным компонентом любой A-A-связи". Это исключено по целому ряду причин. Во-первых, стабилизирующая энергия водородной связи, даже если она экранирована от контактов с водой, во много раз уступает суммарной энергии других видов невалентных взаимодействий, прежде всего, дисперсионной энергии. Во-вторых, точечное взаимодействие двух атомов этого "обязательного компонента" не может обеспечить стереокомплементарность остатков А и A. Напротив, как хорошо известно [353], взаимное расположение групп С = 0 и Н-О (H-N) определяется не столько самой водородной связью, сколько потенциальной энергетической поверхностью окружающих ее атомных групп. Она реализуется только в том случае, если удовлетворяет требованиям других видов невалентных взаимодействий, среди которых наибольшие ограничения накладывают ван-дер-ваальсовы взаимодействия. В-третьих, сближенность акцептора и донора протона требует определенной ориентации друг относительно друга основной цепи одного остатка и боковой цепи другого, что должно лишать конформационной свободы оба аминокислотных остатка и вести к реализации у всех пар A-A-связей данного типа одинаковых конформационных состояний. Такая унификация пространственного строения A-A-комплексов, как отмечалось, противоречит эксперименту. И наконец, в-четвертых, с предложенной моделью A-A-связи не согласуется четко проявляющаяся в трехмерных структурах белков тенденция боковых цепей заряженных остатков (Arg, Lys, Glu, Asp), находящихся на поверхности глобулы, принимать полностью развернутые конформации и ориентироваться в [c.536]

    В последние годы достигнуты большие успехи в изучении химической структуры белков. Была полностью подтверждена правильность полипептидной теории строения белка. Кроме пептидной связи, в молекулах белка были открыты дисульфидные и водородные связи, или мостики. Образование дисульфидной связи между аминокислотами происходит по типу образования цистина из молекул цистеина (стр. 204). [c.217]

    Лич и Линдлей [118] высказали предположение о том, что все те белки, которые являются ферментами, характеризуются сходными соотношениями между аминокислотами, способными к образованию водородных связей и, следовательно, к созданию перекрестной сети путей переноса электронов . Такое утверждение о соотношениях, характеризующих ферментативные белки, представляет собой развитие предположений Сент-Джиорджи [119] и других авторов [120—122]. [c.260]

    Предполагают, что атом железа (Fe на рис 1.1), находящийся в непосредственной близости от Од и Og (Островская 1993), может участвовать в транспорте электронов между вышеупомянутыми переносчиками, которые расположены на разных белках. Наличие ионов бикарбоната, которые формируют водородные связи с аминокислотами белков D1 и D2, а также взаимодействуют с атомом негемового железа, является одним из факторов, необходимых для нормального функционирования акцепторной стороны ФСП (van Pensen et al. 1999). [c.11]

    Основную роль в образовании третичной структуры играют нековалентные взаимодействия между радикалами аминокислот — водородные, ионные, гидрофобные связи. Аминокислоты, входяш ие в белки, различаются по физико-химическим свойствам радикалов. Между аминокислотами с неполярными (гидрофобными) радикалами возможны гидрофобные взаимодействия между полярными радикалами возникают водородные связи, а между заряженными полярными радикалами — ионные (рис. 1.16). Все эти связи относятся к числу слабых их энергия в водной среде не слишком сильно превышает энергию теплового движения молекул при комнатной температуре, и поэтому их образование и разрушение — легкообратимые процессы. [c.31]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    Водородная связь является важным факторо м, определяющим кон-формационную устойчивость. Данные рентгеноструктурного анализа говорят о том, что в кристаллах аминокислот, пептидов и белков атом водо рода, связанный 1С азотом, во всех без исключения случаях вовлечен в образование N—Н---0 = С водородной связи (диаграмма б). Почти во всех случаях расстояние между атомами азота и кислорода равно 2,79+0,12 А. Образование водородной связи приводит к почти линейному расположению связанных систем. [c.709]

    На поверхности белков имеется большое количество гидрофильных групп, которые обусловливают создание вокруг этих макроструктур почти сплошной водной оболочки. Гидрофобные радикалы аминокислот, образующие полипептидные цепи, обращены преимущественно внутрь структуры. Несмотря на это, некоторое количество воды может быть связано и внутри белковых макроструктур. Часть гидрофильных групп может содержаться и во внутренних отделах белковых макроструктур кроме того, некоторая часть воды может быть замкнута внутри этих структур в своеобразных ячейках , образованных гидратированными полипептид-нымн цепочками. И, наконец, дипольные молекулы воды могут попросту вклиниваться в водородные связи, не нарушая при этом их прочности. Принято различать интермицеллярную воду, находящуюся в свободном состоянии между отдельными белковыми макромолекулами, и интрамицеллярную воду, находящуюся внутри белковых глобул. Для устойчивости коллоидиых частиц имеет значение только вода, создающая внешнюю водную оболочку. Именно она и препятствует столкновению и объединению белковых макромолекул. [c.339]

    Порядок химической связи аминокислот друг с другом создает первичную структуру макромолекулы белка. Однако его свойства зависят также и от конформации полипептидной цепи (вторичной структур ы). Одной из моделей вторичной структуры белка является так называемая а-спираль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность 1илиндра. Устойчивость а-спирали обеспечивается водородными связями между группами NH и С=0 (рис. 11.1). [c.334]

    Поверхность фибриллярных и глобулярных белков имеет большое количество гидрофильных групп, создающих вокруг этих макроструктур почти сплошную водную оболочку. Гидрофобные радикалы аминокислот, образующих полипептидные цепи, обращены, видимо, преимущественно внутрь структуры. Тем не менее некоторые количества воды связаны (иммобилизованы) и внутри их 1) диполи воды могут вклиниваться в водородные связи, не нарушая их прочности 2) гидрофильные группы содержатся и во внутренних отделах макроструктур белков, где связывают определенное количество воды 3) некоторое количество воды замкнуто внутри белковых молекул в своеобразных сотах , образованных гидратированными полипептидными цепочками. Благодаря этому различают интрамицеллярную воду, находящуюся внутри белковых глобул, и интермицеллярную воду, находящуюся в свободном состоянии между ними. Для устойчивости коллоидных частиц имеет значение только вода, создающая внешнюю водную оболочку, препятствующую столкновению и объединению частиц. [c.180]

    Ядра Н, N. С и О лежат в плоскости из-за резонанса, а связи находятся в гране-положении. Полимеры аминокислот меньших размеров, называемые олигопептидами, образуют в растворе хаотические спирали, но белки имеют более или менее фиксированную трехмерную структуру, удерживаемую водородными связями (разд. 14.8), связями —5—5— между остатками цистинов, а также ионными и вандерваальсовыми силами. Последовательности аминокислот многих белков и полные трехмерные структуры последних были определены с помощью дифракции рентгеновских лучей (гл. 19). Один белок — рибонуклеаза — был синтезирован в лаборатории двумя различными методами. В этом случае полипептид с остатком аминокислоты свертывается в правильную спираль и дает такую же трехмерную структуру, как нативный белок. [c.601]

    Образование хаотично сформированных агрегатов является ошибкой, которая приводит к появлению функционально неактивных белков, поэтому в клетках предусмотрены механизмы быстрой их деградации и распада на отдельные аминокислоты. Однако в природе существует немало генетически детерминированных агрегатов, включающих в себя несколько полипептидных цепей, образующих большие белковые макромолекулы. Четвертичной структурой называют ассоциированные между собой две или более субъединиц, ориентированных в пространстве. По-видимому, более правильно применительно к четвертичной структуре белков говорить не об агрегатах, а об ансамблях глобул. Характеризуя четвертичную структуру белков, следует исключать ее псевдоварианты. Так, белковый гормон инсулин состоит из двух полипептидных цепей, но они не являются полноправными глобулами, а образуются в результате ограниченного протеолиза единой полипептидной цепи. Не являются белками с истинной четвертичной структурой и мультиферментные комплексы (гл. 6). Они представляют собой типичные надмолекулярные структуры. При образовании четвертичной структуры отдельные субъединицы взаимодействуют друг с другом исключительно при помощи нековалентных связей, в первую очередь водородных и гидрофобных. Весьма существенным является тот факт, что контактные поверхности взаимодействующих субъединиц комплементарны друг другу В контактных участках расположены гидрофобные группировки, которые получили название липкие пятна . [c.39]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Известно, что многие ферменты содержат в активном центре 8Н-груп-пы, абсолютно необходимые для каталитической реакции. При их окислении ферменты теряют свою активность. Предполагают, что одной из главных функций глутатиона является сохранение этих ферментов в активной восстановленной форме. Окисленный глутатион может восстанавливаться под действием глутатионредуктазы, используя НАДФН. Кроме того, глутатион может оказывать ингибирующее действие на некоторые белки. В частности, известная реакция инактивации инсулина под действием глутатионинсулинтрансгидрогеназы, в которой 8Н-глутатион является донором водородных атомов, разрывающих дисульфидные связи между двумя полипептидными цепями молекулы инсулина. Установлена также коферментная функция глутатиона, в частности для глиоксилазы I. Ранее обсуждалось участие глутатиона в транспорте аминокислот через клеточную мембрану. [c.453]

    Однако при определенных условиях полипептиды могут образовывать определенные пространственные (трехмерные) структуры. Эти структуры образуются вследствие внутримолекулярного взаимодействия друг с другом и с растворителем различных групп мономерных звеньев полимерной молекулы. Например, в 1951 г. Лайнус Полинг и Роберт Кори теоретически предсказали, что полипептиды могут образовывать спиральную структуру вследствие наличия водородных связей между карбонильным атомом кислорода г-го фрагмента и амидным атомом водорода (г + 4) го фрагмента, что в дальнейшем нашло подтверждение на большом экспериментальном материале. Каждый белок с определенной нерегулярной последовательностью аминокислот может образовать уникальную пространственную структуру. Следует отметить, что любая тонкая биологическая функция, выполняемая белком, реализуется только при наличии такой структуры. Любое ее нарушение нагреванием или изменением pH среды (денатурация), не сопровождающееся расщеплением ковалентных связей, приводит к полной потере функциональной активности белка. Лишь небольшие белки могут легко претерпеть обратное превращение в исходное состояние. Обратное превращение денатурированного высокомолекулярного белка в исходную биологически активную структуру (ренатураци.ч) возможно, только если использовать специальную процедуру, т.е. в том случае, если ни мономерные компоненты, ни полимерные цепи не были повреждены в процессе денатурации. [c.15]

    Пространственная структура зависит не от длины полипептидной цепи, а от последовательности аминоютслотных остатков, специфичной для каждого белка, а также от боковых радикалов, свойственных соответствующим аминокислотам. Пространственную трехмерную структуру или конформацию белковых макромолекул образуют в первую очередь водородные связи, а также гидрофобные взаимодействия между неполярными боковыми радикалами аминокислот. Водородные связи играют огромную роль в формировании и поддержании пространственной структуры белковой макромолекулы. Водородная связь образуется между двумя электроотрицательными атомами посредством протона водорода, ковалентно связанного с одним из этих атомов. Когда единственный электрон атома водорода участвует в образовании электронной пары, то протон притягивается соседним атомом, образуя водородную связь. Обязательным условием образования водородной связи является наличие хотя бы одной свободной пары электронов у электроотрицательного атома. Что касается гидрофобных взаимодействий, то они возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды, которая вытесняется на поверхность белковой глобулы. По мере синтеза белка неполярные химические группировки собираются внутри глобулы, а полярные вытесняются на ее поверхность. Таким образом, белковая молекула может быть нейтральной, заряженной положительно или же отрицательно в зависимости от pH растворителя и ионо-генных групп в белке. К слабым взаимодействиям относят также ионные связи и ван-дер-ваальсовы взаимодействия. Кроме того, конформация белков поддерживается ковалентными связями 8—8, образующимися между двумя остатками цистеина. В результате гидрофобных и гидрофильных взаимодействий молекула белка спонтанно принимает одну или несколько наиболее термодинами-чесю выгодных конформаций, причем, если в результате каких-либо внешних воздействий нативная конформация нарушается, возможно полное или почти полное ее восстановление. Впервые это показал К. Анфинсен на примере каталитически активного белка рибонуклеазы. Оказалось, что при воздействии мочевиной или р-меркаптоэтанолом происходит изменение ее конформации и, как следствие, резкое снижение каталитической активности. Удаление мочевины приводит к переходу конформации белка в исходное состояние, и каталитическая активность восстанавливается. [c.35]


Смотреть страницы где упоминается термин Водородные между аминокислотами в белке: [c.263]    [c.34]    [c.62]    [c.449]    [c.271]    [c.147]    [c.302]    [c.92]    [c.200]    [c.273]    [c.127]    [c.46]    [c.1060]    [c.224]   
Молекулярная биология клетки Том5 (1987) -- [ c.133 , c.136 ]




ПОИСК







© 2025 chem21.info Реклама на сайте