Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диены скорость

    При введении электронодонорных заместителей в диен скорость реакции диенового синтеза также увеличивается. Например, константы скорости взаимодействия 2,3-дихлорбутадиена-1,3, бутадиена-1,3 и 2,3-диметилбутадиена-1,3, с малеиновым ангидридом равны при 25°С соответственно 9-10-, 5,9-10-1 и 2,0 [44, 1961, т. 83, с. 2885]. [c.491]

    В табл. 6 дано сравнение скоростей гидрогенизации бензола, циклогексена и циклогексадиенов. Циклогексен гидрогенизуется в 8 раз быстрее бензола, а также быстрее циклогексадиенов. Необходимо отметить, что циклогексадиен с сопряженной системой двойных связей — циклогекса-диен-1,3 — гидрируется быстрее, чем циклогексадиен с изолированными двойными связями — циклогексадиен-1,4. [c.252]


    Кинетические уравнения, описывающие процесс сополимеризации трех мономеров, могут быть составлены на основе тех же принципов [22, 25]. Достоверных значений констант для скоростей реакций при тройной сополимеризации не опубликовано. Скорость вхождения третьего мономера в цепь в значительной степени определяется его природой так, скорость вхождения линейных диенов незначительна, в то же время для циклических она сравнима со скоростью вхождения этилена. [c.300]

    Большинство исследователей считают, что относительные активности этилена и пропилена в присутствии третьего мономера не меняются. Как уже отмечалось выше, в ряде случаев все же взаимодействие активного центра с диеном приводит к изменению его природы, что, естественно, изменяет скорость вхождения этилена и пропилена в полимерную цепь [19]. Степень этих изменений зависит как от концентрации диена, так и от его реакционной способности [22]. [c.300]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    По данным более поздних работ [141 оказалось, что такой механизм не позволяет объяснить результаты ряда экспериментальных исследований. Например, при малых конверсиях олефинов Се селективность образования диенов близка к нулю, в то время как по Воеводскому она составляет 40%. Таким образом, скорость реакции Воеводского мала. Данные кинетических измерений [151 указывают на необходимость учета вероятностей образования различных алкенильных радикалов, отщепления и, главным образом, прилипания легких радикалов по л-связи. Эти концепции с определенными упрощениями [16, 17] позволяют обеспечить удовлетворительное совпадение расчета и эксперимента. Аналогичный подход развит и в наших работах [9] и будет проиллюстрирован ниже. [c.240]


    Установлено, что отношение констант скоростей гидрирования диенов и олефинов тем больше, чем ниже температура 66 при 288 и 103 при 204 °С. Однако селективность повышается со снижением температуры медленнее, чем падает скорость гидрирования диенов, которая уменьшается в этом интервале температур в 10 раз [c.55]

    Как и в низкотемпературных процессах (см. гл. 3, стр. 149), разница в скоростях гидрирования олефинов и диенов очень велика. Так, например, отношение констант скоростей гидрирований сопряженных диенов и олефинов на катализаторе WSj - - NiS в интервале температур 205—290 °С при давлении 3—14 кгс/см составляет от 103 при 205 °С до 65,7 при 290 °С. Поэтому технологическое осуществление процессов гидроочистки олефинов от диенов достигается относительно легко. [c.237]

    Кинетика и механизм термического крекинга сопряженных диенов мало изучены. В одной из данных работ [390] было показано, что распад дивинила является сложной цепной реакцией, кинетика которой при 570—620 °С, пониженном давлении и невысоких степенях конверсии описывается законом первого порядка. В этой же работе было показано, что цепной характер реакции совместим с зависимостью мономолекулярной константы скорости от давления. С увеличением степени конверсии распад дивинила начинает заметно тормозиться продуктами распада. [c.231]

    Впервые на возможность полимеризации диеновых углеводородов с сопряженными двойными связями и на особенности этого процесса указал С. В. Лебедев. Им были установлены условия полимеризации диенов и зависимость скорости этого процесса от характера и положения замещающих групп. Изучив скорость полимеризации различных непредельных соединений с сопряженными двойными связями, в том числе производных дивинила, Лебедев пришел к следующему выводу скорость полимеризации бутадиена возрастает с введением в его молекулу заместителей в положение 2 и еще более увеличивается при введении двух заме- [c.225]

    Электронодонорные заместители в диене способствуют ускорению реакции, электроноакцепторные замедляют ее. Для диенофила справедливо обратное электронодонорные группы снижают скорость реакции, а акцепторные группы повышают. Циклические диены, в которых двойные связи фиксированы в цисоидной конформации, обычно реагируют быстрее, чем соответствующие соединения с открытой цепью, которые приобретают цисоидную конформацию в результате вращения [660]. [c.242]

    Определения скорости реакции диенов с ангидридом хлормалеиновой кислоты методом газовой хроматографии при 40° [c.474]

Рис. 7. Область с обратным течением и зона турбулентного горения в полностью развитом турбулентном течении в следе за плохо обтекаемым телом. 1 — однородное распределение скоростей в набегающем потоке 2 — область с почти 100% сгоранием Л — диен 4 — турбулентный перенос вещества и массы через границу 5 — полнота сгорания (аппроксимация) в — распространяющийся фронт пламени 7 — турбулентный перенос тепла 8 — распределение скоростей в потоке за диском 9 — реакционная зона 10 — турбулентный перенос вещества в реакционную зону 11 — область с рециркуляцией 12 — обратный поток газообразных продуктов сгорания. Рис. 7. Область с <a href="/info/892122">обратным течением</a> и <a href="/info/536054">зона турбулентного</a> горения в полностью <a href="/info/1440151">развитом турбулентном течении</a> в следе за <a href="/info/1883584">плохо обтекаемым телом</a>. 1 — <a href="/info/1451502">однородное распределение</a> скоростей в набегающем потоке 2 — область с почти 100% сгоранием Л — диен 4 — <a href="/info/1224134">турбулентный перенос вещества</a> и массы <a href="/info/334755">через границу</a> 5 — <a href="/info/90827">полнота сгорания</a> (аппроксимация) в — распространяющийся фронт пламени 7 — <a href="/info/1322393">турбулентный перенос тепла</a> 8 — <a href="/info/6255">распределение скоростей</a> в потоке за диском 9 — <a href="/info/321318">реакционная зона</a> 10 — <a href="/info/1224134">турбулентный перенос вещества</a> в <a href="/info/321318">реакционную зону</a> 11 — область с рециркуляцией 12 — <a href="/info/26243">обратный поток</a> <a href="/info/95691">газообразных продуктов</a> сгорания.
    На основании данных, приведенных на схемах 25.17-25.19 можно провести оценку влияния заместителей в диенофиле и диене на скорость реакции Дильса-Альдера. [c.1912]

    В рассматриваемом случае мы встречаемся с ситуацией, уже знакомой нам по нескольким примерам в реакциях 1,2- и 1,4-присоединения к сопряженным диенам (разд. 8.18), в реакции алкилирования толуола по Фриделю — Крафтсу (разд. 12.14 ) и в сульфировании фенолов (разд. 25.14). При низкой температуре направление реакции определяется ее скоростью, а при высокой температуре — положением равновесия. [c.996]

    Реакция (5.160) циклоприсоединения по Дильсу—Альдеру между 2,6-диметил-га-бензохиноном и метиловым эфиром (Е)-гексадиен-3,5-овой кислоты в толуоле даже через семь дней приводит только к следовым количествам циклоаддукта. Если же в качестве растворителя использовать воду, а в качестве диена — натриевую соль той же кислоты, то уже через час образуется 77% циклоаддукта, выделенного в виде метилового эфира после этерификации диазометаном [715, 716]. И в этом случае резкое повышение скорости реакции, благодаря чему последняя становится полезной и в препаративном отношении, по-видимому, объясняется гидрофобными взаимодействиями между диеном и [c.373]


    Возможные направления процессов изомеризации и восстановления при гидрировании метиллинолеата приведены иа схеме (30). Наиболее простым процессом должно было быть восстановление ДО эфиров 18 1 (9с н 12с) и далее до стеарата, однако конкурирующие реакции изомеризации приводят к нескольким диенам (сопряженным и несопряженным) и моноенам. Изомеры образуются в результате миграции двойной связи и изменения стереохимии Юлекулы. Состав продуктов частичного восстановления зависит от катализатора, температуры, давления н других факторов, влияю- Циx на степень доступности атомов водорода на поверхности ката-лизатора. Важное значение имеют также способность различных Ложных эфиров адсорбироваться иа поверхности катализатора и сорбироваться с нее н скорость их гидрирования. При гидриро- ании смеси эфиров относительная легкость адсорбции может [c.39]

    Наибольшей специфичностью в отношении образования 1,4-звеньев (и с-1,4-звеньев) обладает литий и его органические производные. Б углеводородных средах связь углерод — литий является в значительной степени ковалентной. Электронодефицит-ность лития, с одной стороны, открывает возможность образования координационных комплексов с молекулами, имеющими повышенную электронную плотность (в том числе, с молекулами бутадиена), а с другой стороны, приводит к тому, что литийорганические соединения в растворе сильно ассоциированы. Экспериментально установлено, что при полимеризации диенов скорость инициирования пропорциональна концентрации литийалкила в степени а скорость роста цепи — в степени Это [c.179]

    На основании этих данных Натта [23] высказал предположение, что полимеризацию диенов в углеводородных средах под влиянием литийалкилов следует рассматривать как ионно-координационный процесс, в то время как процессы, осуществляемые при участии литийалкилов в сольватирующих средах, а также при участии соединений других щелочных металлов, представляют собой анионные процессы. Однако истинная анионная полимеризация, по-видимому, осуществляется лищь в сильно сольватирующих средах, например, в гексаметилфосфортриамиде, где металлорга-ническое соединение в значительной степени диссоциировано на свободные ионы [24]. Образующиеся при этом полибутадиены содержат около 85% 1,2-звеньев и не содержат 1,4-звеньев. Полимеризация бутадиена в среде гексаметилфосфортриамида под влиянием литийалкилов протекает с исключительно высокой скоростью [25]. [c.180]

    При алкилировании изобутана чистым пропиленом ухудшается качество алкилата и резко возрастает расход серной кислоты. Поэтому нропан-пропиленовую фракцию перерабатывают в смеси с бутан-бутиленовой в соотношении, обеспечивающем содержание пропилена менее 50% от суммы олефинов Сд и С4. Этилен, диены, углеводороды и выше, органические соединения серы, вода — нежелательные примеси в сырье алкилирования. В промышленности концентрация т серной кислоты снижается с 98,5 до 90% при контактировании соответственно с 0,067—0,105 м этилена, 0,111—0,247 м диенов, 17—67 кг органических соединений серы (в расчете на чистую серу), 62—100 кг воды. Это соответствует росту расхода серной кислоты в среднем от 10 до 30 кг/т алкилбензина при концентрации нежелательных примесей в сырье на уровне 0,1%. Повышение концентрации инертных углеводородов (пропан, я-бутан) в сырье приводит к снижению скорости транспортирования реагирующих веществ, и поэтому их содержание необходи.мо максимально снижать. [c.169]

    Величина 4[КН] меняется с глубиной пиролиза в результате как изменения концентрации (так как реакция идет с увеличением числа молекул, [КН] возрастает), так и величины k , которая отре-деляется составом продуктов пиролиза. Изменяется также величина к[Щ в результате уменьшения не только [М], но и к, связанного с ростом термостабильности продуктов М по мере углубления пиролиза. В результате задача определения [СгН макс в общем виде решена быть не может. Качественно можно утверждать а) с увеличением температуры время достижения максимального выхода этилена снижается, а максимальный выход несколько возрастает б) как время достижения максимального выхода, так и его значение зависят от свойств исходного сырья в) с увеличением давления в результате расходования части образующегося этилена по реакции второго порядка с диенами время достижения максимального выхода и его значение снижаются г) скорость снижения выхода этилена после достижения максимума тем выше, чем выше температура и давление, и зависит от качества исходного сырья. [c.99]

    Скорость полимеризации зависит от строения диенов, внепших условий и природы катализаторов. С повьшхением темпфатуры и давления полимеризация ускоряется. Процесс полимеризации проходит как цепная свободиорадцкальная реакция в присутствии инициатора, но может протекать и по ионному пути, в частности, на катализаторах Циглера-Натта. [c.113]

    Следовательно, даже если отношение к к1 будет велико (что предпочтительнее), отношение наблюдаемых скоростей может быть значительно меньше, поскольку оно зависит от корня квадратного из к к . Поскольку, однако, гидрирование диенов идет на гладких поверхностях с большими константами скоростей, чем гидрирование ацетиленовых углеводородов, то при осуществлении этих конкурирующих реакций на пористом катализаторе более быстрая реак1да (с к- ) будет замедляться диффузией в узких порах сильнее (в у раз), чем более медленная реакция (с к ), т. е. при переходе от внутрикинетической во внутридиффузионную область селективность катализатора в отношении конкурентного гидрирования ацетиленовых соединений в присутствии диенов возрастает (тем сильнее, чем больше размер зерна катализатора и меньше его поры). Напротив, такой переход нежелателен для смеси этилен + ацетилен, так как на алюмопалладиевом широкопористом катализаторе именно ацетилен быстро и селективно гидрируется в этилен. [c.93]

    Гиль-Ав и Герцберг-Мпнцлп (1961), а также Березкин с сотр. (1964) описали в дальнейшем интересные варианты кинетических исследований. Они определили скорость реакции Дильса — Альдера, использовав колонку длиной 2 м с диенофилом (ангидридом хлормалеиновой кислоты) в качестве жидкой фазы, нанесенной на инертный носитель в отношении 1 2. При прохождении через колонку проба диена частично реагирует с жидкой фазой, при этом образуются нелетучие сложные соединения, которые остаются в колонке. Непрореагировавший диен регистрируется детектором. Таким образом, скорость реакции можно представить как функцию времени пребывания диена в колонке, если варьировать скорость потока. [c.472]

    Температура обычно влияет на скорость гидрирования меньше, чем на скорость других реакций. Так, повышение температуры с 50 °С до 100 °С вызывает лишь 4-кратное увеличение скорости гидрирования сложных эфиров на скелетном никелевом катализаторе. Вместе с тем избирательность восстановления с повышением температуры падает, и максимальная региоселективность достигается при возможно более низкой температуре. Например, в 1-фенил-ундека-1,3-диен-5-оне на никеле Ренея под давлением водорода 100 атм гидрируются при температуре 40 °С практически только сопряженная диеновая группировка, при 130 °С - эта группировка и карбонильная функция, при 260 °С - все восстанавливающиеся структуры, включая бензольный цикл гидрогенолиз С-0-связи не происходит  [c.36]

    Такой характер изменения изомерного состава продуктов 1,2- и 1,4-присоедниения, несомиенио, свидетельствует об обратимости реакции электрофильного ирисоедниения к сопряженным диенам. Распределение иродуктов в обратимом, равновесном процессе зависнт от внешних условий (например, температуры) для каждого конкретного с.п чая. Практически, одиако, трудно, а иногда и невозможно достичь состояния равновесия и соотношение иродуктов реакции часто отвечает неравновесным условиям. Рассмотрим в качестве примера ситуацию, когда из ветцества А в результате двух параллельных, конкурирующих, но обратимых реакций образуются продукты В и С, причем вещество В образуется с большей скоростью, чем вещество С, поскольку ЛОв <АОс . Но в термодинамическом отношении вещество С стабильнее В, так как АОс°>АОв°. [c.555]

    Перегруппировку 1,5-диенов по схеме [3,3]-снгматропной реакцн называют перггруппиро кой Коупа [58, 59). Эта реакция рассмотрен в разд, 10,2 КЦ. 1, где особенно обращалось внимание на вырожденны перегруппировки, в результате которых реагент и иродукт структурн идентичны. Отсутствие зависимости скорости реакции от полярност растворителя и параметры активации согласуются с выводом, что реа1 ция проходит по согласованному мономолекулярному механизму [60] [c.206]

    Полимеризация при 5°. Компоненты (примечание 13) для полимеризации добавляют в том порядке, как указано в предыдущей методике (примечание 2) 195 ч. воды нагревают до 50°, при перемешивании добавляют дрезинат214 (калиевая соль кислоты канифольного масла) и фосфат натрия до полного растворения (примечание 3). Раствор охлаждают до комнатной температуры и доводят pH до 10,0 (примечание 4). Затем в полимеризационную систему добавляют раствор эмульгатора (примечания 4 и 5). После этого растворяют грег-додецилмеркаптан в нужном количестве стирола (примечание 15) и вводят в реакционную колбу (примечание 4). Добавляют перегнанный бута-диен в небольшом избытке, чтобы путем испарения добиться нужной для полимеризации загрузки. Сульфат железа и натриевую соль формальдегидсульфо--1шслоты к остающимся 5 ч. дистиллированной воды добавляют в указанном порядке. Этот раствор вводят в систему с помощью шприца. Колбу вращают в термостате при 5° в течение 5 мин со скоростью 40 об/мин. К оставшемуся стиролу добавляют гидроперекись п-ментана (примечание 16) и с помощью шприца этот раствор вводят в систему. После этого колбу снова вращают в термостате при 5° со скоростью 40 об/мин. Для определения скорости полимеризации через разные промежутки времени отбирают пробы латекса (примечание 17). Вращение продолжают до тех пор, пока не будет достигнута нужная степень превращения. Полимеризацию заканчивают введением в систему раствора ингибитора, после этого колбу вращают [c.68]

    В основе получения модифицированных типов Б К могут лежать и другие химические реакции. Регулированное сшивание БК в условиях полимеризации вызывается строго дозированной добавкой в шихту диенов с несопряженными двойными связями, например дивинилбензола, диметаллила и др. В зависимости от количества диена получаются растворимые, структурированные БК, а также сшитые продукты с различным содержанием геля (до 80%). Сшитый БК обладает меньшей ползучестью, большей восстанавливаемостью, несколько улучшенными физико-механическими показателями вулканизатов. Понижение скорости шприцевания заготовок из сшитого БК можно предотвратить увеличением дозировки диена (выше 4%). [c.282]

    Больман с сотр. [220] изучили кинетику циклизации диен-диина (XVIII) в пиридине и нашли, что образование циклического мономера представляет собой реакцию первого порядка по отношению к диендиину. Эти данные подтверждают мнение указанных авторов (см. раздел Механизм реакции Глязера , стр. 257), считающих, что действительное образование связи С — С представляет собой стадию, определяющую скорость конденсации при применении Си +Упиридина. [c.335]

    Сильное влияние растворителей на скорость реакции наблюдалось также в случае присоединения тетрацианэтилена к этил-пропениловому тиоэфиру [518] и вербенену—1,3-диену с закрепленной трамс-конфигурацией [519]. Реакция [2+2]-циклоприсоединения цис- или транс-1,2-бис(трифторметил)-1,2-дици- [c.227]

    Найдено, что в ряду растворителей от о-ксилола до хлороформа скорость реакции присоединения тетрацианэтилена к антрацену возрастает в 70 раз [125]. Замена этилацетатной среды на уксусную кислоту ускоряет реакцию между циклопентадиеном и акролеином в 35 раз [129]. Маловероятно, чтобы столь слабая чувствительность к природе растворителя была обусловлена биполярным активированным комплексом. Экспериментальные данные лучше согласуются со следующим механизмом сначала диен и диенофил образуют комплекс типа ДЭП/АЭП, который затем через электроноизбыточный поляризуемый активированный комплекс непосредственно превращается в продукт реакции. В некоторых случаях замена растворителя приводит к существенному изменению энтальпии активации реакции Дильса—Альдера. Определение относительных величин энтальпии сольватации исходных веществ в раствори-телях-ДЭП и АЭП методом калориметрии показало, что в растворителях-ДЭП стабилизированы реагенты, тогда как в более электроотрицательных растворителях-АЭП стабилизируется электроноизбыточный активированный комплекс [128]. Отсюда следует, что влияние растворителей на энтальпию активации реакции Дильса — Альдера с участием электронодефицитного малеинового ангидрида и тетрацианэтилена в качестве диено-фила можно объяснить электронодонорными (или электроноакцепторными) свойствами растворителя, при км сольватация диенофила возрастает в растворителях-ДЭП [128, 538—540] (см., однако, работу [130]). [c.238]

    Электронодонорные группы, присутствующие в арене, дезактивируют кольцо и направляют протон в положение 2 и 5. Скорость восстановления алкилбензолов снижается в порядке метил > > этил > изопропил > грет-бутил. Аналогично, восстановление анизола дает 1-метоксициклогексадисн-1,4 (уравнение 163), а восстановление 3-метилового эфира эстрадиола (101) — диен (102) (уравнение 164). [c.393]

    Арины являются очень активными диенофилами, дающими с разнообразными диенами аддукты Дильса — Альдера, например (97), часто с очень высоким выходом [89]. Эти реакции часто используются при изучении механизмов реакций как тест на присутствие аринов. Особенно часто применяют для этих целей тетра-циклон, фуран или 1,3-дифенилизобензофуран, которые дают высокие выходы. Реакция [4 + 2]-циклоприсоединения стереоспецифична, т. е. образуется только ыс-аддукт (136), и поэтому эта реакция долл<на быть синхронной [схема (74)]. Это согласуется с симметричным синглетным основным состоянием дегндробензола и разрешенной синхронной реакцией, проходящей супраповерхностно для обоих компонентов дегндробензола и диена (135). Некоторые наблюдения подтверждают, что эта реакция действительно является синхронной. Прежде всего скорость ее зависит от легкости достижения диеном плоской ис-конформации, необходимой для максимального перекрывания орбиталей в (135). Соединения, в которых плоская ц с-конформация пространственно дестабилизо-вана, дают очень мало [4 + 2]-аддуктов, а дегидробензол димери- [c.614]

    Сочетание реакции гидроалюминирования кратных связей и нротолиза образующихся алюминийоргаиических соединений позволяет создать метод некаталитического гидрирования двойных и тройных связей. Р1з-за больших различий в скоростях присоединения фрагмента А1 II по концевым п внутренним кратным связям с помощью этого метода возможно селективное гидрирование концевых двойных связен диенов и триеиов (схема 87). [c.118]


Смотреть страницы где упоминается термин Диены скорость: [c.147]    [c.77]    [c.111]    [c.124]    [c.107]    [c.243]    [c.554]    [c.1907]    [c.1910]    [c.19]    [c.64]    [c.471]    [c.40]    [c.117]   
Основы химии полимеров (1974) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Диены



© 2025 chem21.info Реклама на сайте