Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид колориметрическое

    Содержание платины в катализаторах определяют колориметрическим методом, основанным на образовании окрашенного комплексного соединения, образующегося при взаимодействии раствора платинохлористоводородной кислоты с хлоридом олова. [c.122]

    ОПРЕДЕЛЕНИЕ ОБЩЕГО СОДЕРЖАНИЯ ХЛОРИДОВ В НЕФТЯНЫХ ДИСТИЛЛЯТАХ КОЛОРИМЕТРИЧЕСКИМ МЕТОДОМ. [c.14]

    Данный колориметрический метод предназначен для определения хлоридов в жидких углеводородах, в которых полностью отсутствует сероводород, а общее содержание серы незначительно. Метод не применим к углеводородам с общим содержанием серы выше 10 ppm и к окрашенным соединениям. Для определения содержания хлоридов в концентрациях выше 1 ppm можно использовать UOP Метод 588. Бромиды и йодиды, которые достаточно редко встречаются в пробах, определяются и рассчитываются как хлорид. Углеводороды (такие как стирол), которые полимеризуются в присутствии бифенила натрия, не могут быть проанализированы этим методом. Метод может применяться для того, чтобы качественно определить, является хлорид органическим или неорганическим. [c.14]


    Присутствие хлоридов в большой концентрации нежелательно при колориметрическом определении железа, так как хлориды связывают железо в комплекс и ослабляют интенсивность окраски роданистого комплекса железа. При колориметрировании солянокислых растворов, для получения правильного результата, необходимо создавать в обоих цилиндрах с исследуемым и стандартным раствором одинаковую концентрацию хлоридов и других посторонних солей. Между тем, при анализе силиката такие одинаковые условия создать трудно, так как количество соляной кислоты, приливаемой для разложения и переведения силиката в раствор, обычно бывает произвольным и точно не учитывается. Поэтому колориметрическое определение железа лучше проводить в азотнокислом растворе. [c.468]

    Один раз в 7 дней колориметрическим методом определяется содержание в воде азота аммонийных солей (10—15 мг/л) и фосфора (3—5 мг/л) один раз в месяц — содержание хлоридов (определяется титрованием, допускается не более 350 мг/л). [c.311]

    Метод определения объемной доли метилового спирта основан на колориметрическом измерении интенсивности окраски, получаемой после взаимодействия фуксинсернистой кислоты с формальдегидом, образующимся в результате реакции окисления метилового спирта, содержащегося в испытуемом спирте, марганцово-кислым калием. Контроль сивушных масел проводится колориметрическим методом. Массовую долю сухого остатка определяют весовым методом. Наличие фурфурола в спирте проверяют, используя методы, основанные на реакции с соляно-кислым или уксусно-кислым анилином, и ограничиваются заключением о том, что анализируемый спирт выдержал испытания или не выдержал. Определение окисляемости спирта основано на изменении времени обесцвечивания раствора перманганата калия, добавленного к испытуемому спирту. Спирт, выпускаемый сульфитно-спиртовыми заводами, содержит серу. Допускается содержание серы в техническом этиловом спирте не более 10 мг/л. Серу определяют сжиганием спирта в токе очищенного воздуха. Газы от сжигания проходят через поглотительные сосуды с 3 %-ным раствором пероксида водорода. После сжигания жидкость из поглотительных сосудов переносится в стакан и кипятится для удаления избытка перекиси водорода. Интенсивность помутнения подкисленных растворов при добавлении раствора хлорида бария сравнивают со шкалой растворов сравнения визуально или с помощью фотоколориметра-нефелометра. [c.333]


    Хлориды в сере Колориметрический по обесцвечиванию комплекса ртути (I) с дифенилкарбазоном 0,02 мкг С мл - [232] [c.220]

    К 10 мл анализируемого раствора прибавляют 2 мл 0,1 М раствора комплексона III и устанавливают pH 4—5 посредством ацетатного буфера. Экстрагируют серебро несколькими порциями раствора дитизона в СС , пока окраска органической фазы не перестанет изменяться. Объединенные экстракты встряхивают с 5 мл смеси 20%-ного раствора хлорида натрия и 0,03 N НС1. При этом серебро количественно переходит в водную фазу, в то время как ртуть остается в экстракте. После разбавления водной фазы и установления pH 5 серебро снова экстрагируют раствором дитизона. По окраске неводной фазы серебро определяют затем визуальным, колориметрическим или фотометрическим методами. Приведенная методика пригодна для определения серебра даже в присутствии 100 000-кратных количеств Си, В и РЬ [92]. [c.151]

    В колориметрическом методе полигликоль осаждают обработкой пробы в маленькой центрифужной пробирке хлоридом бария и фосфорномолибденовой кислотой. Осадок отделяют и промывают с повторным центрифугированием, затем обрабатывают концентрированной серной кислотой. Сернокислотную вытяжку разбавляют, нейтрализуют, доводят до определенного объема и в аликвотной его части определяют содержание молибдена. Этим методом удобно пользоваться для анализа полигликоля в количестве 0,05— [c.224]

    Колориметрический анализ. В градуированную центрифужную пробирку емкостью 15 мл вносят 10 мл фильтрата подготовленной плазмы, затем прибавляют в указанном порядке 1 мл разбавленной (1 4) хлористоводородной кислоты, 1 мл 10%-ного раствора хлорида бария и 1 мл 10%-ного раствора фосфорномолибденовой кислоты. После введения каждого реактива раствор перемешивают стеклянной палочкой. [c.225]

    Как показывает рис. 11.12, концентрация ионов меди является решающей при колориметрическом определении аминов. Кривая I показывает зависимость оптической плотности реакционного раствора, содержащего 0,372 мг этаноламина, от концентрации дигидрата хлорида меди(II). Концентрация триэтаноламина и салицилового альдегида составляла 15,0 и 0,5% (об.) соответственно. По этой кривой видно, что для получения максимальной оптической плотности необходимо не менее 5,0 мг дигидрата хлорида меди (II). Кривая 2 показывает влияние иона меди на оптическую плотность раствора в холостом опыте. Очевидно, что для получения минимального поглощения в холостом опыте требуется минимальная концентрация ионов меди (5 мг дигидрата хлорида меди(II) в 2 мл реактива, что соответствует концентрации хлорида меди в реактиве 0,25%). [c.442]

    Из колориметрических методов определения воды наиболее широкое применение находят методы, основанные на использовании бромида и хлорида кобальта(П). Влияние воды на хлорид ко-бальта(П) было описано в одной из ранних работ Винклера [96]. Им было отмечено образование синего раствора при растворении безводной соли кобальта в абсолютном этаноле. При добавлении воды окраска изменялась от синей до фиолетовой и далее до розовой. Последующие работы были посвящены изучению механизма изменения окраски. [c.345]

    Для определения воды в твердых, жидких и газообразных веществах применяют различные методы. В случае твердых веществ для экстракции воды используют подходящие смешивающиеся с ней жидкости и колориметрическим методом определяют содержание воды в экстракте. Газы могут быть предварительно промыты растворителями, например спиртом. Бромид и хлорид кобальта(П) обычно используют в качестве индикаторов для визуального определения содержания влаги в атмосфере и применяют во многих приборах, предназначенных для измерения отно- [c.347]

    Для выяснения поведения железа в процессе его хроматографического отделения от хлоридов ниобия и тантала нами был проделан следующий эксперимент. По окончании хроматографического опыта колонка разрезалась по длине на несколько частей, угольные фракции сжигались и в них колориметрически определялось содержание железа. Для сравнения железо определялось в аналогичных условиях и в исходном угле. Полученные нами данные показаны на рис. 2. Как видно из рисунка, практически все железо было адсорбировано на первых 5 см длины колонки. [c.241]

    Умягчитель воды, загруженный Ма-катионитом, регенерируют хлоридом натрия после обработки 132,5 воды. Смолу обрабатывают 39 а рассола, служащего для регенерации, и промывают достаточным количеством воды О бъем раствора при этом увеличивается до 96 л 100 мл этой жидкости подвергли колориметрическому анализу на железо, в результате чего было найдено 420 мг этого элемента. Рассчитайте концентрацию железа в неочищенной воде, выразив ее в единицах у (в граммах на 1 л). (Допустите, что рассол хлорида натрия не содержит железа.) [c.274]

    Диапазон измеряемых концентраций 1— 100 мкг/8 мл Колориметрическое определение, основанное на образовании комплексного соединения розового цвета при взаимодействии диангидрида с гидроксиламином и хлоридом железа(II ) в среде этилового спирта. [c.88]


    Колориметрическое определение по реакции капролактама с гидроксиламином и хлоридом железа (111). [c.98]

    Для определения общего содержания хлоридов взвешенный образец углеводорода перемещают в делительную воронку, содержащую толуол. Для быстрого перевода органических галогенсодержащих соединений в неорганические добавляется реактив дифенил натрия. Избыток реактива разрушается, смесь подкисляется. После расслоения смеси на отделенные фазы водная фаза сливается и анализируется на содержание хлоридов колориметрическим методом. В качестве определяющего реагента используется ртуть (2) роданоферриатный ионный метод. Интенсивность окраски роданоферриатного раствора измеряется при длине волны 460 нм, а концентрация хлорид-иона определяется непосредственно по калибровочному графику. [c.14]

    В качестве ингибиторов хроматы большей частью используют в циркуляционных системах охлаждения (например, в двигателях внутреннего сгорания, конденсаторах перегонных колонн, башенных холодильниках). Концентрация применяемого для этой цели Naj rOi составляет около 0,04—0,2 % более высокие концентрации используют при повышенных температурах или в пресной воде с содержанием хлоридов более 10 мг/л. Значение pH следует поддерживать в пределах 7,5—9,5, добавляя при необходимости NaOH. Периодически следует проводить аналитические измерения (колориметрические) с целью поддержания концентра- [c.266]

    Другие реакции имеют более широкий диапазон применения. Например, малорастворимая в воде хлораниловая кислота, растворы которой интенсивно поглощают свет в зеленой области спектра, образует осадки с такими катионами, как кальций, стронций, барий и цирконий. Уменьшение оптической плотности раствора при образовании осадков можно использовать для определения катионов. Этот реагент пригоден и для колориметрического определения анионов. Например, малорастворимый хлоранилат бария в присутствии следовых количеств сульфата переходит в нерастворимый в воде сульфат бария, а эквивалентное количество хлораниловой кислоты переходит в раствор. Содержание ее можно определить по увеличению светопоглоще-ния раствора. Аналогично можно проводить анализ хлоридов и фторидов в растворе, используя хлоранилаты ртути или лантана. [c.366]

    Реакция с треххлористой сурьмой, другими хлоридами металлов и цветные реакции с различными кислотами используются в методах колориметрического определения ретинола [38, 39]. Достаточно надежные данные дает метод определения ретинола по интенсивности максимума поглощения при 325 нм [40, 41]. [c.145]

    Осадок RejS обрабатывают щелочным раствором Н2О2 для переведения рения в перренат. Последующее определение рения проводят лк бым методом — весовым, колориметрическим и т. д. Осаждению мешают элементы сероводородной группы, окислители. Умеренные количества хлоридов (до 0,2jV) не мешают осаждению. Ошибка определения 6—16%. Преимущество метода перед сероводородным заключается в его простоте..  [c.176]

    При фотометрическом определении молибдена применяют [329] искусственные стандарты, имитирующие окраску эфирных экстрактов роданидных соединений пятивалентного молибдена. Их готовят смешиванием аммиачного раствора розеокобальт-хлорида [Со(ЫНз)5-Н20]С1з и (нейтрального раствора метилового оранжевого. Полученные растворы устойчивы 4—5 дней и обеспечивают получение удовлетворительных результатов только П ри работе в трубках Эггерца или колориметрических цилиндрах, но не в колориметре Дюбоска. См. также [1484]. [c.220]

    Сульфиты определяют прямым иодометрическим методом или отгоняют SOj, поглощают ее раствором NaOH и иодометрически титруют этот раствор. Прямое определение используют при содержании сульфитов >0,5 мг л и при отсутствии мешающих веществ. При содержании сульфитов 0,02 мг/л их колориметрически определяют с фуксином. Для устранения влияния сульфидов к пробе добавляют 1 мл насыщенного раствора хлорида ртути (И). [c.184]

    Определение галои-дов в сере основано на сжигании образца, поглощении продуктов тридистиллятом и упаривании со щелочью. Полученный раствор солей обрабатывают сильным окислителем, газовый поток очищают, галоиды собирают в ловушку, охлаждаемую жидким воздухом, и определяют спектроскопически. Чувствительность определения хлора 10 %, брома и иода — 10 % [7]. Определение хлоридов в сере описано в работе [232]. Используются нефелометрический, линейно-колористиче-ский и колориметрический методы. Последний основан на разрушении хлоридами окрашенного соединения ртути (II) с дифенилкарбазоном. Применение бензола увеличивает чувствительность метода до 0,16 мкг, а хлороформа — до 0,02 мкг в 1 мл. Средняя ошибка определения 4—10%. [c.217]

    Зыка С Сотр. [966, 967] предложил методику колориметрического определения ртути в рудах с меркупралем, в основу которой положено разложение навески смесью азотной и соляной кислот, отгонка ртути в виде хлорида, экстракция окрашенного комплекса ртути бензолом и измерение оптической плотности экстракта при длине воЛны 420—430 нм. Метод проверен на рудах и баритах, где содержание ртути составляло 10" —10 %. [c.147]

    Фосфор в силоксановой резине определяют в сернокислом растворе колориметрически в виде фосфорномолибденовой сини при Х = 680 нм [234, 235] после отделения двуокиси кремния. Бор определяют также в сернокислом растворе путем титрования ш елочью с маннитом [247]. Хром определяют сразу после выщелачивания содового плава в воде колориметрическим методом в виде хромата натрия. Определение олова основано на обратном комплексонометрическом титровании хлоридом цинка в среде с pH = 5 [223, 230]. Этот метод применим, если отсутствуют элементы, которые тоже титруются в этой среде. В противном случае необходимо олово отделить (см. разд. П. 10.3). [c.113]

    Кислоты, большинство амидов и нитрилы не мешают определению сложных эфиров описанным колориметрическим методом. Условия гидроксиламинолиза недостаточно жестки и реакция с амидами и нитрилами в этих условиях не протекает. Наоборот, хлорангидриды активно участвуют в обоих реакциях. Карбонильные соединения в высоких концентрациях также реагируют с гидроксиламином. Переходные металлы, например медь, никель и ванадий, реагируют с гидроксамовыми кислотами, образуя окрашенные комплексы, которые мешают определению. Возможно, что ванадий вообще успешно может заменить железо в этом определении [6]. Ионы, комплексно связывающие Ре +, например хлорид, тартрат, ацетат, а также вода могут оказывать значительное влияние на интенсивность окраски при определении как сложных эфиров, так и ангидридов. [c.148]

    При исследовании возможности разработки количественного метода было найдено, что никель-5-нитросалицилово-альдегидные производные нерастворимы в большинстве растворителей и поэтому не могут быть определены колориметрически. При замене соли никеля солью меди и нитросалицилового альдегида салициловым удалось получить производные первичных аминов, растворимые в некоторых органических растворителях. Был приготовлен реактив, содержащий салициловый альдегид, ацетат меди (или хлорид меди) и триэтаноламин в метаноле. Первичные амины образуют с этим реактивом растворимый окрашенный продукт, имеющий максимум поглощения при 445 нм. Вторичные амины мешают определению, так как они также дают окрашенные продукты. Для специфического анализа первичных аминов был приготовлен водный реактив, в котором большинство продуктов реакции первичных аминов нерастворимо. Их извлекают дии-зопропиловым эфиром или бензолом и анализируют колориметрическим методом. При этом оказалось, что окрашенные продукты реакции не обнаруживают максимум поглощения в видимой части спектра. Несмотря на это, была сделана попытка провести анализ, измеряя оптическую плотность окрашенного раствора при 430 нм. Была построена калибровочная кривая, которая оказалась прямой, за исключением начальной ее части. Если к триэтаноламину, входящему в состав реактива, добавить 0,01% моноэтаноламина, то получается прямолинейная зависимость, соответствующая закону Ламберта — Бера во всем интервале концентраций. Однако вторичные и третичные амины вызывают смещение кривой поглощения. Поэтому необходимо было найти такой способ, при котором максимум поглощения находился бы в видимой области и не зависел от присутствия вторичных или третичных аминов. [c.441]

    При взаимодействии спиртовых растворов хлорида галлия и дифенилкарбазона образуется соединение темно-малинового цвета, пригодное для колориметрического определения галлия в чистых солях [36, 37, 38, 47]. Максимальное развитие окраски в случае солянокислого и ацетатно-аммиачного буфера наблюдается при pH 4—5,6. Состав комплексного соединения при равновесных условиях при pH 4—5,6 соответствует отношению Оа К = 1 2. При pH 4,5 сразу после смешивания растворов состав комплекса 2 3, а при pH 5,6—1 1. Степень Диссоциации ко1Мплексного соединения в спиртовой среде в присутствии избытка реагента 0,83% lg/ y т =7,16. Большинство органических растворителей экстрагирует комплекс. Максимум [c.149]

    Кроме того, для анализа таблеток ноксирона может быть применен фотоэле к тро колориметрический метод, основанный на образовании окрашенного комплекса гидроксамовой кислоты с хлоридом окисного железа и экстракцией этого комплекса в слой н-бутанола. [c.156]

    Количественное определение. Определение небольших количеств азотистой кислоты удобно производить колориметрическим методом. Для приготовления стандартных растворов пользуются нитритом серебра. Для этого раствор нитрата серебра смешивают с раствором нитрита натрия, не содержащего хлоридов и карбонатов. Выделившийся кристалический осадок отфильтровывают, промывают холодной водой, перекристаллизовывают из горячей воды, свободной от следов нитритов, и высушивают до постоянного веса в эксикаторе над хлоридом кальция в защищенном от света месте. Отвешивают 0,405 г нитрита серебра, растворяют в горячей воде, прибавляют 0,2—0,3 г хлорида натрия и объем доводят в мерной колбе емкостью 1 л до метки 100 мл отстоявшегося раствора помещают в литровую колбу и снова разводят водой до объема 1 л 1 мл раствора содержит [c.362]

    Иногда для анализа твердых и газообразных топлив применяют метод, основанный на колориметрическом определении карбида меди. Так, Боллер [12] для извлечения воды из твердых веществ использовал инертные газы, например азот или водород. Поток такого газа, содержащего пары воды, пропускали через трубку с карбидом кальция при 180—200 °С. Выделяющийся при этом ацетилен проходил через аммиачный раствор сульфата или хлорида меди, что приводило к образованию красного карбида меди. Для повышения степени дисперсности образующегося карбида меди в раствор соли меди добавляли желатину или спирт [34]. Цвет раствора сравнивали либо с цветом стандартного красителя, либо с цветом рубинового стекла. [c.355]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Химический анализ посредством турбидиметрии и нефелометрии при благоприятных условиях может дать точность, срав нимую с точностью колориметрических методов он также обладает очень высокой чувствительностью 1[59]. Фосфор, например, можно заменить при концентрации 1 части его более чем на 3 10 частей воды осаждением стрих-нинмолибдатом. Одну часть аммиака в 1,6- 10 частях воды можно обнаружить с помощью комплексного соединения хлорида ртути (II) (реагент Несслера). [c.59]


Смотреть страницы где упоминается термин Хлорид колориметрическое: [c.243]    [c.383]    [c.90]    [c.321]    [c.29]    [c.174]    [c.26]    [c.83]    [c.90]    [c.110]    [c.321]    [c.108]    [c.127]    [c.277]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.898 ]




ПОИСК







© 2025 chem21.info Реклама на сайте