Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПДК в воздухе превращение в природе

    В практике горного дела необходимо учитывать многие химические реакции. Так, воздействие влаги на каменный уголь, хранящийся на воздухе, может привести к самовозгоранию. Поэтому при создании многих промышленных процессов необходимо знать условия и направление протекания тех или иных химических реакций. Как и все явления природы, химические реакции сопровождаются изменениями энергии, например выделением или поглощением тепла, излучением и т. п. Поэтому законы, определяющие течение химических превращений, связаны с законами превращения энергии. Эти законы составляют предмет особой науки — термодинамики. Ее приложение к химии называется химической термодинамикой. Основные законы термодинамики вытекают из многовековой практики человечества. Ее первый закон устанавливает невозможность создания машины, которая производила бы работу без затраты энергии —так называемого вечного двигателя первого рода. Второй закон термодинамики указывает на невозможность существования вечного двигателя второго рода, т. е. периодически действующей машины, которая производила бы работу за счет охлаждения окружающей среды. Такая машина могла бы, например, использовать неограниченные запасы энергии морей и океанов. [c.14]


    Источником углеводов в природе служит процесс фотосинтеза — превращение в зеленых листьях растений углекислого газа воздуха в углеводы. Энергию для этого процесса дает солнечный свет. Фотосинтез служит единственным источником органических веществ в живой природе, поскольку животные неспособны синтезировать органические вещества нз неорганических они лишь перерабатывают органические веи ества, накопленные растениями. Велика роль продуктов фотосинтеза и в качестве источников энергии и каменный уголь, и нефть, и газ, и тем более древесина — все это консервированная солнечная энергия , накопленная за счет фотосинтеза. Общий результат фотосинтеза можно выразить схемой  [c.317]

    Меченые атомы помогли разрешить проблему, волновавшую исследователей в течение почти 200 лет,— проблему механизма фотосинтеза. До недавнего времени считалось, что диоксид углерода, поглощаемый растениями из воздуха, разлагается в них (при помощи солнечного света) на углерод и кислород. В дальнейшем предполагали превращение углерода в углеводы и выделение кислорода в атмосферу. Методом меченых атомов было установлено, что диоксид углерода усваивается растением целиком, а кислород (выделяемый в атмосферу) растение берет из воды. Эти данные явились одной из главных отправных точек для пересмотра старых теорий фотосинтеза и создания новых взглядов на его природу. [c.413]

    ГАЗИФИКАЦИЯ, превращение орг. части тв. горючих ископаемых (уголь, торф, сланцы) или жидких топлив (нефт. сырье) в горючие газы при высокотемпературном (1000—2000 °С) взаимод. с окислителем (Оз. воздух, водяной пар, СОг). Проводят в газогенераторах (поэтому получаемые газы наз. генераторными). Состав газов зависит от природы топлива, типа окислителя (дутья), т-ры процесса и его технол. оформления. Известны разл. способы Г. (напр., сжигание кускового топлива в слое, мелкозернистого — в кипящем слое, угольной пыли и жидкого топлива — в факеле), однако все они характеризуются однотипными хим. р-циями. Напр., при Г. твердых горючих ископаемых часть топлива сгорает (р-ции 1,2), обеспечивая весь процесс теплом, др. часть реагирует с СОг и НгО (3,4) нек-рые продукты конвертируются (5)  [c.114]

    Р. в т. т. широко распространены в природе и используются в хим. технологии. Важнейшие из них изменение состава горных пород под действием воды, кислорода воздуха, организмов и т.п. (хим. выветривание) образование и превращение минералов р-ции, протекающие при обжиге, получении цементов получение катализаторов деструкция и окисление полимерных материалов окисление металлов и сплавов синтез тугоплавких и термостойких материалов горение и взрывы твердых ВВ. В совр. микроэлектронике на Р. в т. т. основана, по сути дела, вся технология изготовления резистов. Важнейшее направление-модификация полимерных материалов и создание на этой основе новых в-в со св-вами металлов и полупроводников (см. Химия твердого тела). [c.211]


    Реакции могут протекать в поверхностных слоях графита, и роль внедренной кислоты состоит в создании (регулировании) положительного заряда на его углеродных сетках. Если молекулы субстрата внедряются в незаполненное межплоскостное пространство графита, то реакция будет протекать без непосредственного контакта молекул субстрата с молекулами внедренных кислот, и направление реакции определяется в основном пространственными затруднениями, создаваемыми углеродными слоями графита. При локализации процесса в заполненном кислотами межплоскостном пространстве графита на процесс влияет природа кислоты-катализатора и вышеуказанные пространственные затруднения. Каталитическими центрами могут быть и внедренные кислоты, расположенные по краям кристаллов графита. В этом случае роль пространственных затруднений, создаваемых сеткой графита, должна быть незначительной. Самый неспецифический путь каталитического действия заключается в вымывании внедренных веществ в раствор и протекании реакции вне графита. Другими словами, слоистые соединения графита являются внутренними дозаторами катализатора. С точки зрения возбуждения реакций полимеризации мономера предпочтительны умеренные температуры процесса (-20°С), усиливающие влияние и природы внедренной кислоты, и параметров пространственной сетки графита. На это указывают зависимости эффективности катализатора от природы кислоты Льюиса и неактивность индивидуально взятых графита или кислоты [154, 155]. Низкие, как правило, скорости превращений определяют недостаточную технологичность катализаторов - соединений включения в графит, хотя у них есть и очевидные достоинства стабильность на воздухе, устойчивость к гидролизу, селективность в некоторых процессах. [c.60]

    Воздействие химических соединений, содержащихся в отходах, на человека и живую природу происходит как прямым, так и косвенным путем. Прямой путь - попадание вредных соединений в организм человека с воздухом и питьевой водой косвенный путь - например, биологический. Вначале загрязнители попадают в растения, поедаемые животными, а затем с пищей -в организм человека. При этом с первоначальными соединениями происходят химико-биологические превращения, приводящие к образованию новых, более или менее опасных для организма веществ. [c.336]

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]

    Скорость превращения медных солей арилкарбоновых кисло зависит от природы и положения имеющихся заместителей в ядре В отсутствие воздуха и водяного пара процесс протекает ш уравнению [c.157]

    Вакуум измеряют либо манометрами Мак-Леода или Пирани до - 10 мм рт. ст.), либо ионизационным манометром (до 10 ° мм рт. ст.). Для уменьшения продолжительности откачки целесообразно повысить температуру, но при этом не должно происходить спекания образца адсорбента или изменения природы поверхности. В какой-то мере выбор эффективных температур откачки связан с дополнительными опытами, поисками, ошибками, а также с некоторыми общими представлениями о физических и химических свойствах адсорбента. Некоторые инертные твердые тела, характеризующиеся высокой температурой плавления и устойчивой полиморфной модификацией, например корунд (а-окись алюминия), можно откачивать при температуре 1000°. Многие активные окислы, полученные осаждением или разложением при низких температурах, весьма чувствительны к нагреванию. Например, некоторые модификации двуокиси титана медленно спекаются в присутствии влажного воздуха [1] даже при 50°. Удельная поверхность некоторых модификаций активной окиси железа [2] и гидроокиси алюминия [101], полученных осаждением, также заметно уменьшается в результате откачки при 100°. Заметные структурные превращения в гидратированных кремнеземах и силикагелях [3] могут происходить при нагревании до 200° и даже иногда ниже 200°. Важно иметь в виду, что температура откачки подобного рода адсорбентов должна быть заметно ниже температуры начального процесса приготовления образца. [c.348]


    При нагревании твердых горючих ископаемых без доступа воздуха их органическая масса претерпевает сложные превращения, в результате которых в зависимости от конечной температуры и других условий проведения процесса из одного и того же угля образуются в разном количестве и разного состава газообразные, парообразные (жидкие) и твердые продукты При прочих равных условиях осуществления процесса нагревания углей без доступа воздуха характер всех образующихся продуктов определяется природой, стадией зрелости и особенностями молекулярной структуры органических веществ исходных углей [c.15]

    Нахождение Крахмала в природе и его образование. Крахмал —одно из самых распространенных веществ в растительном мире. Он содержится в семенах, зернах, тканях и корнях различных растений. Особенно много его в клубнях картофеля (около 20%) и в зернах злаков (до 70—80%). Это— запасное питательное вещество растений. Крахмал — продукт усвоения двуокиси углерода и воды Превращение СОз и НаО в сложные органические вещества — эндотермический процесс, сопровождающийся поглощением солнечной энергии. Так как он протекает под действием света, то получил название фотосинтеза. Весь процесс фотосинтеза тесно связан с зеленым веществом растений — хлорофиллом. Солнечная энергия превращается при этом в химическую энергию органических веществ. За последние годы выяснено, что до 25% поглощаемой растениями двуокиси углерода осуществляется не из воздуха, а корневой системой растений (при поглощении карбонатов из почвы). При этом процесс образования органических веществ начинается не в листьях, а в зеленых образованиях, находящихся внутри растения. Выяснить это удалось методом радиоактивных изотопов. [c.246]

    Микробы чрезвычайно широко распространены в природе — в почве, воде, воздухе —и принимают активное участие в различных изменениях и превращениях веществ в природе. Так, благодаря микробам осуществляется разложение целлюлозы, попадающей в почву с растительными остатками. Почвенные микробы осуществляют процесс образования почвенного гумуса, являющегося основой структуры почвы. Микробы производят разложение попадающих в почву органических азотистых [c.109]

    В реакции (1) может принимать участие вода, находящаяся в воздухе или имеющаяся в избытке в составе композиции. Эта реакция может изменить природу концевых групп, но не оказывает влияния на молекулярный вес, степень сшивания или степень превращения в нерастворимый полимер. [c.294]

    Гексахлорид вольфрама плавится при 275° и кипит при 347°. В твердом состоянии это фиолетовые кристаллы плотность 3,52 г см . При 226,9° происходит ai -полиморфное превращение, природа которого не изучена [1,5]. Гексахлорид устойчив в сухом воздухе, но медленно разлагается на свету. Влага выше 60° гидролизует W le  [c.316]

    Из природных дисперсных материалов торф относится к наиболее гидрофильным, что, в общем, закономерно, поскольку его образование происходит вследствие биохимического и химического превращений отмирающей растительности в условиях избыточного увлажнения и ограниченного доступа воздуха. Гидрогеологические, климатические и геоморфологические условия формирования торфяных месторождений, многообразие расте-ний-торфообразователей предопределяют сложность химического состава и структуры надмолекулярных образований торфа. Торфяные системы в общем случае представляют собой дисперсный капиллярно-пористый материал, в котором на долю твердой фазы приходится примерно 15—40% объема, занимаемого материалом. Твердая фаза торфа, в свою очередь, является полидисперсной системой с развитой поверхностью раздела фаз (50—400 м2/г) и по своей природе относится к многокомпонентным полуколлоидно-высокомолекулярным соединениям с признаками полиэлектролитов и микромозаичной гетерогенности. [c.63]

    Тяжелые нефтяные остатки (гудрон и др.) представляют собой очень сложные смеси углеводородов различных классов и их гетеропроизводных, состав которых во многом зависит от природы нефти. В процессе окисления этих продуктов, с целью получения битумов, протекает ряд параллельных и последовательных реакций, приводящих, в конечном счете к накоплению наиболее высокомолекулярных соединений асфальтенов. Механизм этих реакций в настоящее время изучен, однако для практических целей часто достаточно знать только количественные превращения основных комхюнентов, входящих в состав битумов. Опыты [84] показали, что процесс окисления битума протекает в два периода первый до температуры размягчения 50°С и второй от- 50 до 90°С. Согласно данным этих же авторов, наиболее интенсивно кислород воздуха расходуется в первый период процесса, который длится значительно меньше времени, чем второй. Полученные ими данные, а также элементарный анализ указанных фракций, позволивших определить их структурно-групповую характеристику по методу Корбетта [82], показали, что количество ароматических колец в процессе окисления в моно- и бициклоароматических углеводородов уменьшается, а в бензольных смолах и асфальтенах растет, тогда как в спиртобензольных смолах наблюдае гся минимум ароматичности на границе двух периодов окисления. [c.34]

    В нормальных условиях (при 0°С и атм. давлении) в газообразном состоянии находятся элементы гелиевой группы (Не, Ne и т. д.), а также ряд элементов, образующих молекулярные газы О , Nj, Hj, F, и lj. Атм. воздух состоит из Nj и о, (соотв. 75,5 и 23,1% по массеХ благородных газов, NjO, СО2 и паров HjO (остальные 1,4%). В природе Г. образуются как продукты жизнедеятельности бактерий, при превращениях орг. в-в, восстаиовлении минер. солей и др. В недрах Земли Г., в основном СН и др. легкие углеводороды, как правило, сопутствуют нефтям встречаются газовые месторождения, содержащие до 70% не леводородных компонентов (HjS, СО, к др.). [c.474]

    Адсорбция белков и других биологических полимеров чрезвычайно сложна, поскольку в ней участвуют водородные связи с группами ОН, НН или СО, ионные связи через четвертичные аммониевые ионы, присутствующие в некоторых разновидностях белков, и в особенности связп гидрофобной природы, возникающие между сегментами протеиновых цепей и зависящие от их конфигурации. Взаимодействие поверхности кремнезема с желатином обсуждалось в гл. 3 (см. рис. 3.11, лит. к гл. 3 [856]), а с белками и с родственными веществами будет рассмотрено в гл. 7 (см. лит. к гл. 7 [249—273]). Данная тема, вызывает постоянное внимание вот уже в течение более четверти века. Еще в 1954 г. Холт и Боукотт [441а] измерили адсорбционную способность на превращенном в порощок кварце с известной величиной удельной поверхности по отношению к коровьему альбумину. Из полученных данных можно подсчитать, что при монослойном покрытии на 1 нм поверхности удерживалось около 4 амидных сегментов, принимая усредненное значение молекулярной массы амидного сегмента равным 100. По-видимому, такая величина адсорбции является правдоподобной, если рассматривать протеиновую цепь в форме спирали. Максимальная адсорбция наблюдалась при pH 5—6. Те же авторы [4416] исследовали поведение белков и аминов с длинными целями, получаемых в виде мономолекулярных пленок на поверхности раздела фаз воздух—вода, когда ниже этой поверхности вводилась кремневая кислота. Белки более прочно связывались при их изоэлектрической точке такое связывание может происходить между органическими катионными группами молекулы и заряженными участками на поверхности кремнезема и, кроме того, путем образования водородных связей. [c.980]

    Первые попытки научного осмысления накопленного человечеством опыта и наблюдений за природой были сделаны в Древней Греции за несколько столетий до рождества Христова. Греческий философ Фалес из Милета (VI век до н. э.) впервые попытался определить первичный элемент, лежащий в основе всего разнообразия веществ в природе. Он решил, что этим элементом является вода. Фалес представлял себе Землю в виде плоского диска, накрытого полусферической крышкой неба и плывущего по бесконечному океану воды. Последователь Фалеса Анаксимен считал первичным элементом воздух. Он заполняет пространство между землей и небом, а сжатие воздуха в направлении к центру Вселенной дает твердые и плотные разновидности вещества воду и землю. Гераклит из Эфеса в V веке до н. э. добавил к указанным элементам еще и огонь — первооснову всех изменений и превращений веществ. [c.6]

    В природе происходит непрерывный процеас превращения органических веществ. В организмах органические вещества распадаются (окисляются) быстро, а при соприкосновении с воздухом идет медленное окнсление и другие процессы (например, гниение), которые вызываются воздействием микроорганизмов. В результате этих процессов образуются как простые вещества (СН , СОз, Н О, ЫНз), так и более сложные органические вещества. Если превращение протекает без доступа воздуха, тогда очень медленно образуются более богатые углеродом продукты (процесс обугливания). Таким путем из остатков древних растений в течение миллионов лет образовался каменный уголь. [c.14]

    Окислительно-восстановительный потенциал. Жизнедеятельность бактерий зависит от потенциала. Процессы превращения остатков органических соединений при свободном доступе кислорода (аэробные условия) и воды аналогичны медленному горению и называются тлением. Гумификация (перегни-вание) характеризуется недостаточным доступом воздуха (анаэробные условия) и влаги. Этот процесс приводит к накоплению зауглероженпого остатка (гумуса), часть которого может растворяться в воде. Превращение органических веществ в условиях избытка влаги и отсутствия кислорода широко распространено в природе и называется оторфением оно приводит к появлению твердых гумусовых продуктов. Образование сап-ропелей из водорослей и планктона протекает в отсутствие кислорода под слоем воды (восстановительные реакции) и известно как процессы гниения, или гнилостного брожения. [c.30]

    Природные органические вещества принимают участие в постоянном процессе круговорота элементов в биосфере Земли. Возможность деструкции всех природных органических веществ микроорганизмами ни у кого не вызывает сомнения. Сто лет назад Луи Пастер писал ...роль бесконечно малых казалась мне бесконечно большой... благодаря участию их в разложении и возвращению в воздух всего, что жило [197]. Очень яркая, образная картина огромного кладбища, каким предстала бы перед нами природа в отсутствие микроорганизмов, представлена в известном учебнике академика В. Л. Омелянского [193]. Видный советский микробиолог А. Е. Крисс [150] указывает По доступности для бактериальных ферментов органическое вещество разделяется на нестойкое и стойкое органическое вещество. Эти термины означают, что всякое органическое вещество в подходящих условиях подвергается превращениям энзимами бактерий, но не с одинаковой легкостью . Автор здесь имеет в виду органическое вещество , продуцируемое в Мировом океане. Но эти слова можно в полной мере отнести ко всем природным органическим соединениям биосферы, особенно если учесть деятельность не только бактерий, но актиномицетов и микроскопических грибов. И то, что органика сохраняется на протяжении веков в древних мощах, мумиях египетских фараонов и т. п., отнюдь не означает, что она стойка к микробной атаке, а означает лищь отсутствие подходящих условий для проявления разрушительной способности микроорганизмов. То же самое можно сказать и об углеводородах нефти, которые залегают в недрах Земли практически без изменений миллионы лет — будучи извлеченными на поверхность, в аэробных условиях они сразу же находят для себя потребителей среди разнообразнейших представителей микробного мира. [c.144]

    ГНИЕНИЕ (аммонификация), разложение азотсодержащих орг. соед. (преим. белков) под действием гнилостных микроорганизмов с образованием разл. орг. и неорг. веществ. Превращение белков начинается с гидролиза, происходящего при участии ферментов, секретируемых микробными клетками. Образующиеся аминокислоты ассимилируются микроорганизмами, к-рые выделяют разнообразные продукты, среди к-рых много дурнопахнущих (напр., метилмеркаптан, скатол), ядовитых аминов (чтрупные яды>), NHa, СО2, HjS, Н3РО4 и др. Г. может происходить без доступа воздуха и в условиях аэрации. Имеет большое значение в формировании плодородия почвы. Благодаря Г. происходит минерализация белков и др. в-в погибших животных, растений и др. организмов, что играет важную роль в круговороте в-в в природе. [c.140]

    К тем же выводам приводят результаты измерений интенсивности термоионной эмиссии положительных ионов с поверхности катализаторов разного состава нри пропускании над ними (410 и 450° С) смеси воздуха с пропиленом, содержащей 1 об. % gH [7]. Катализаторы наносили на платиновый диск анода лампы-диода. Изменения величин ионного тока (i ) и работы выхода электрона при варьировании состава катализаторов оказа.тись симбатными (рис. 5). Однако наблюдается тем большее отклонение от линейной связи между величинами lg и работы выхода, чем меньше содержание молибдена в катализаторе. Следовательно, величина работы выхода электрона пе является единственным фактором, определяющим скорость образования продуктов поверхностных превращений пропилена в присутствии кислорода и интенсивность их ионизации. Природа и скорость этих превращений зависят от химического состава катализатора, а не только от его электронных свойств. [c.150]

    В противоположность этой реакции каталитический характер многих других превращений был выяснен раньше. Выяснение каталитического характера реакций происходило по мере того, как становились более ясными состав исходных и конечных продуктов реакции, их основные свойства и стехиометрические отношения. Для Пристли, например, было очевидным, что пары спирта претерпевают разложение посредством раскаленной трубки. Но он не мог еще оценить значение данного явления и тем более сказать что-либо существенное о содержании явления. По-иному уже представляются исследования голландских химиков. Несмотря на то, что эти исследования проводились до установления стехиометрических законов, они основывались на более четких представлениях о составе исходных и конечных продуктов. У голландских химиков спирт также был пропущен через раскаленную глиняную трубку, в результате чего был получен газ такой же, как и при перегонке спирта с серной кислотой . Замена глиняной трубки на стеклянную приводила к тому, что реакция прекращалась. Это навело на мысль о том, что через стенки глиняной пористой трубки в сферу реакции попадает воздух, который и вызывает реакцию. Тогда они провели опыты в глиняной трубке, изолированной от воздуха свержу стеклянной трубкой, а также в стеклянной трубке, наполненной куооч1ками глиняной трубки. В 01боих случаях реакция снова происходила. Поэтому они пришли к выводу, что глина — материал трубки должен иметь влияние на природу газа [6]. Это уже нечто такое, что указывает на связь с савременным катализом. [c.11]

    Было также показано [44, 46], что изменение расхода воздуха несколько меняет и механизм процесса. В частности, наиболее изменялось содержание спирто-бензольных смол и асфальтенов (для гудрона ромашкинской нефти). Но природа исходного сырья настолько сильно влияет на характер химических превращений, что изменения, связанные с расходом воздуха, могут развиваться по разным закономерностям. [c.35]

    Изучение процесса разложения аммиачного хромата меди в токе воздуха и инертных газов показало зависимость скорости разложения хромата от природа среды. Минимальная скорость реакции наблюдается при разложении хромата на воздухе, причем среда влияет только на скорость реакции и не оказывает никакого влияния на глубину превращения. Замена воздуха (полная или частичная) на инертные газы приводит к возрастанию скорости реакции. Это позволило предположить, что кислород торлозит реакцию разложения аммиачного хромата меди. [c.56]

    Развитие озоно-антозоновой теории Шенбейна можно проследить со всеми подробностями в очень небольшом числе сообщений [19], главным образом в письмах к Фарадею, хотя Шенбейн опубликовал очень много работ. Действительно, в каталоге Королевского общества перечислено примерно 364 сообщения Шенбейна, из которых последнее касается вопроса о нахождении перекиси водорода в атмосфере. Исходной точкой теории Шенбейна было его открытие, что некоторые вещества, например эфир, скипидар и фосфор, медленно окисляются на воздухе и при этом делаются эффективными в качестве отбеливающих веществ. Помня об аналогичном отбеливающем действии озона, Шенбейн сделал вывод, что это действие обусловлено образованием озона или, как он позже выразился, превращением в озон обычного кислорода, который в форме озона соединяется с веществом, подвергаюшдмся окислению. Теория эта сразу объясняла, каким образом отбелка, требующая определенного энергетического эффекта, может осуществляться посредством кислорода, и в то же время находилась в полном согласии с концепцией Шенбейна о природе озона. Сначала он считал, что озон представляет соединение кислорода и водорода, но впоследствии выяснил, что озон является аллотропной активной формой кислорода. По-видимому, он не считал, что кислород и озоп различаются по структуре, а признавал только их неодинаковую активность или полярность. [c.15]

    Один из наиболее распространенных в пром-сти и в лабораторных условиях методов получения П.— полимеризация В. в р-ре ( лаковый метод) по периодич. или непрерывной схеме. Химич. природа растворителя существенно влияет на мол. массу образующегося П. вследствие различий в кинетике реакций передачи цепи на растворитель. Мол. массу П. можно регулировать также добавлением небольших количеств уксусного или пропионового альдегида или др. регуляторов полимеризации. В качестве растворителя часто применяют метанол для удобства осуществления последующего гидролиза в щелочной среде при получении поливинилового спирта. В реакционную смесь вводят, напр., 48% метанола (в молярной концентрации в расчете на В.) и 0,05% динитрила азодиизомасляной к-ты. В периодич. процессе (65°С, перемешивание, отсутствие воздуха) через 12—18 ч степень превращения достигает 95—98%. Однако процесс удобнее завершать при степени превращения 60—70% с последующей отгонкой не вступившего в реакцию мономера. Непрерывную полимдаизацию осуществляют до степени превращения 50—60%. В указанных условиях степень полимеризации достигает 1200—1600. Количество боковых цепей и молекулярно-массовое распределение П. значительно изменяются в зависимости от условий полимеризации присутствия регулятора, природы растворителя и его количества (определяемого обычно требуемой вязкостью конечного р-ра, степенью превращения и т. д.). Так, степень разветвленности ф (по ацильным группам) П., получаемых полимеризацией в метаноле до степеней превращения 98% (периодич. процесс) и 50—60% (непрерывный процесс), равна 1,5 и <0,4 соответственно (значение ф находят сравнением степеней полимеризации П. и поливинилового спирта, полученного из него). При этом молекулярно-массо-вое распределение является бимодальным. Б результате непрерывного процесса полимеризации в среде [c.191]

    Для большинства полимерных карбкатионов и карб-анионов в той или иной степени характерны различные спонтанные реакции, приводящие к их полной дезактивации (рекомбинация с противоиопом, отщепление протона или гидрид-иона и др.) или превращению в менее активные формы (изомеризация). Скорость этих реакций и, следовательно, время жизни соответствующих М. меняются в очень широких пределах в зависимости от природы ионной группы, противоиона, растворителя и др. факторов. Обычно время жизни карбанионов выше, чем аналогичных карбкатионов. В нек-рых случаях время жизни растущих М. (в отсутствие воды, воздуха и др. активных примесей) может быть теоретически неограниченным и достигать суток и месяцев такие М. обладают рядом специфич. свойств (см. Живущие полимеры). [c.48]

    А происходящие на наших глазах превращения Железные гвозди ржавеют, трава растет, дерево горит Один набор химических индивидов переходит в другой. Изучением таких превращений и занимается наука, называемая химией. Если бы указанные превращения, иначе говоря химические реакции, не происходили, Земля оставалась бы безжизненной планетой. Бобовое растение забирает углекислый газ из воздуха и воду из почвы и превращает их в углеводороды в результате чудодейственной последовательности химических реакций, называемых фотосинтезом. Все процессы жизнедеятельности являются химическими реакциями. И все, чем мы пользуемся, что носим, в чем живем, передвигаемся, чем играем, производится посредством управляемых химических реакций. Занятие химика — изобретение реакций, превращающих окружающие нас вещества в те, что служат удовлетворению наших нужд. Нам нужны кремниевые полупроводники для компьютеров, но в природе нет кремния как такового. Зато на любом побережье вы найдете диоксид кремния в виде песка. Средствами химии песок превращается в элементный кремний. Нам необходимо иметь эффективное средство против болезни Паркинсона. Химики синтезируют карбидофу [c.7]

    Бирингуччо был одним из первых, кто заметил увеличение веса металлов при их обжиге на воздухе (кальцинация, т. е,— превращение в известь ). Однако наблюдаемое увлечение веса металлов он объясняет своеобразно. Я не хочу обойти молчанием,— пишет он, — интересное и в высшей степени примечательное явление, происходящее при прокаливании свинца в пламени. Свинец действительно увеличивается в весе и становится на 8 — 10% тяжелее, чем до прокаливания. Это кажется удивительным, если вспомнить свойство огня разрушать все тела с потерей вещества. Поэтому вес свинца должен был бы уменьшиться, тогда как в действительности он увеличивается. При продолжительном нахождении в огне должна была бы уничтожиться большая часть его, в то время как наступает обратное. Причину этого, может быть, следует искать в том, что природа элемента-огня соответствует тому основному положению, согласно которому все тяжелое стремится к середине, и что все тела тем тяжелее, чем они плотнее. Огонь, таким образом, вытесняет все водные и воздухоподобные части из смеси, образующей свинец, так как последний представляет собой плохо смешанный металл и закры- [c.135]

    С давних времен процесс обжигания металла на воздухе, или кальцинация , т. е. превращение металла в известь (от alx — известь ), сопоставляли с процессами горения дерева, угля и других горючих тел, в результате которых также оставалась земля (зола). Горение же таких тел рассматривалось как разрушение или распад тела с выделением летучих продуктов. Роль воздуха в процессах горения оставалась невыясненной, несмотря на то что в металлургической практике с древнейших времен применялось дутье для усиления пламени, а металлурги и естествоиспытатели хорошо знали, что для питания огня необходим воздух (еще в XV в. об этом писал Леонардо да Винчи см. стр. 132). Не уделялось никакого внимания и выяснению природы летучих продуктов горения. Лишь Ван-Гельмонт в XVII в. указал, что в результате горения дерева и угля образуется лесной дух (см. стр. 154). [c.199]


Смотреть страницы где упоминается термин ПДК в воздухе превращение в природе: [c.189]    [c.205]    [c.365]    [c.145]    [c.140]    [c.295]    [c.121]    [c.20]    [c.123]    [c.696]    [c.249]    [c.50]    [c.194]    [c.169]   
Утилизация и ликвидация отходов в технологии неорганических веществ (1984) -- [ c.28 ]




ПОИСК







© 2024 chem21.info Реклама на сайте