Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конверсия аммиака время

    За последнее время в промышленных условиях на многослойных катализаторах, работающих под давлением — 8 кгс/см (0,8 МН/м ), при тщательной очистке газов и температуре конверсии 900 °С удалось довести степень конверсии аммиака до 96%. С увеличением давления повышается и оптимальная температура конверсии. Однако следует иметь в виду, что с повышением температуры и давления сильно возрастают потери платины. [c.352]


    Несколько измененная конструкция реактора была испытана этой же фирмой на опытной установке . Реактор представлял собой систему одинаковых элементов из двух труб из алунда или силлиманита, концентрически вставленных одна в другую. Длина каждой трубы 2 м, расстояние между ними не более 5 мм наружный диаметр внутренней трубы 33 мм, внутренний диаметр наружной трубы 40 мм. На внутреннюю поверхность наружной трубы и наружную поверхность внутренней трубы наносили катализатор — сплав 88% платины и 12% рутения . Максимальная температура реакционного пространства 1200—1300 °С. Через кольцевой зазор контактного элемента пропускали смесь аммиака и метана в объемном соотношении 1 0,96 со скоростью 40—200 м/сек время пребывания газовой смеси 0,032 сек при 1150 °С и 705 мм рт. ст. Степень конверсии аммиака в синильную кислоту 87%, степень конверсии метана — 91%. Непрореагировавший аммиак составлял 7,2%. [c.98]

    По нашим данным, время конверсии аммиака на платинородиевом катализаторе при 900° С может быть приближенно выражено уравнением (при степени конверсии в пределах 90—98 /о)  [c.59]

    В настоящее время разработаны и получили распространение комбинированные установки для получения разбавленной азотной кислоты, в которых процесс конверсии аммиака проводится под атмосферным давлением, а кислотная и щелочная аб- [c.196]

    Исходную смесь метана, аммиака и кислорода (в виде воздуха) подают в объемном соотношении 1,1 1 1,5. Степень конверсии аммиака 83—85%, селективность по синильной кислоте 78—80%, время контакта до 0,05 с. [c.164]

    На установку получения синильной кислоты окислительным аммонолизом метана подают в час 600 м метана. Объемное соотношение метана, аммиака и воздуха равно 1,1 1 7,1. Время контакта газов 0,02 с, степень конверсии аммиака 85%, селективность по синильной кислоте 80%. Определить массовую производительность 1 м катализатора по синильной кислоте. Коэффициент увеличения объема газов 4,8. [c.164]

    В результате неправильных действий машиниста отделения нагнетателей возду.ха производства аммиака одного химического комбината содержание кислорода в газе, выходящем из агрегата конверсии, достигло 4%. Агрегат конверсии был немедленно остановлен. Кислород попал в конвертированный газ при следующих обстоятельствах. Во время пуска агрегата лампа, сигнализирующая закрытие клапана выхода природного газа на свечу, не загоралась. Аппаратчик цеха конверсии не обратил на это внимания и не проверил истинное положение отсечного клапана. Отсечной клапан не [c.13]


    Конверсия углеводородных газов является в настоящее время наиболее распространенным и экономичным методом получения водорода для синтеза аммиака. [c.33]

    В последнее время этот процесс приобрел исключительно большое значение [4—10]. Развитие его связано с увеличением потребностей и расширением производства водорода, используемого при синтезе аммиака и метанола в химической промышленности, при гидрокрекинге и гидроочистке нефтепродуктов в нефтеперерабатывающей промышленности, а также в других отраслях промышленности. В то же время катализаторы конверсии углеводородов еще далеки от совершенства. [c.5]

    Газовые реакции на твердом катализаторе распространены в химической промышленности. В частности, производство азотных удобрений было бы невозможным без каталитических реакций конверсии метана и моноксида углерода, синтеза аммиака и окисления его до моноксида азота. Серную кислоту, необходимую для производства фосфорных удобрений, в настоящее время получают почти исключительно контактным способом, основанным на каталитическом окислении сернистого ангидрида в серный. Примеры таких процессов в нефтехимических и органических производствах — каталитический крекинг и риформинг нефтепродуктов, а также синтез метанола и других спиртов и углеводородов. Реакторы для таких процессов обычно называют контактными аппаратами или колоннами синтеза. [c.285]

    Паро-кислородная конверсия метана. Основное количество водорода для синтеза аммиака производится в настоящее время паро-кислородной или наро-воздуш-ной конверсией углеводородов, обычно природного газа, главным компонентом которого является метан. Конвертируемая смесь горючего, кислорода и водяного пара пропускается через контактный аппарат с насадкой из гранул никелевого катализатора. Реактор диаметром [c.77]

    Для получения кинетических. данных наиболее простой путь — осуществление изотермической р аботы интегральных конверторов, так как это ограничивает число переменных и облегчает интегрирование. Однако на практике изотермическая работа редко осуществляется, особенно для реакций с высокими тепловыми эффектами,вследствие ограничений в отводе тепла. Эти ограничения имеют большое значение, потому что плохой контроль за потоком тепла, приводящий к небольшим температурным градиентам в слое, может вызвать очень сильный эффект, поскольку скорость реакции экспоненциально зависит от температуры. При исследовании экзотермических реакций обычно применяют адиабатические трубные реакторы. Система температурного режима осуществляется таким образом, чтобы предотвратить утечку тепла через стенки реактора. Следовательно, профиль температур развивается вдоль длины реактора, размеры последнего зависят от теплоты реакции, теплоемкости реакционной среды и кинетики реакции. Полномасштабные заводские конверторы вследствие низкого соотношения поверхности и объема обычно работают адиабатически, и поэтому адиабатические- конверторы небольшого размера могут быть полезны для испытания на длительность пробега или для моделирования промышленной производительности. Эти конверторы могут работать либо на уровне полупромышленного масштаба, либо как пилотные установки. Адиабатические реакторы в настоящее время применяются для моделирования полномасштабных промышленных условий таких реакций, как высокотемпературная и низкотемпературная конверсия окиси углерода, реакция метанирования и синтез аммиака. [c.56]

    В настоящее время основную массу азотной кислоты производят из синтетического аммиака, получаемого на основе конверсии природного газа. Аммиак, поступающий из цеха синте- [c.212]

    Поскольку при низких температурах скорость реакции слишком мала, промышленные процессы проводят при более высокой температуре. В этих условиях скорость реакции увеличивается, но степень превращения исходных веществ уменьшается, что заставляет работать с рециркуляцией непрореагировавших газов. Первые процессы синтеза аммиака проводили адиабатически под давлением около 250 ат. При этом на каждый процент конверсии в аммиак повышение температуры составляло 17° общая конверсия практически не превышала в то время 8—9%. В некоторых современных процессах стараются работать в условиях, наиболее приближающихся к адиабатическим, и достигают конверсии до 40%. [c.52]

    Катализаторы нашли широкое применение в промышленности. В настоящее время около 90% новых производств в химической промышленности основаны на применении катализаторов. Наиболее крупнотоннажными каталитическими процессами являются синтез аммиака, производство серной и азотной кислот, крекинг нефти, конверсия природного газа. [c.274]


    Во время второй мировой войны семь заводов синтетического аммиака в США и Канаде были переведены на водород, вырабатывавшийся паровой конверсией углеводородного сырья. [c.170]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    В настоящее время процессы конверсии углеводородных газов и окиси углерода различными окислителями широко распространены в химической промышленности для получения дешевых восстановительных газов и водорода. Строящиеся установки по получению синтез-газа для производства аммиака и спиртов стали компактными благодаря правильному применению кинетических закономерностей для расчета реакторов, изученных в лабораториях и проверенных на полупромышленных установках. [c.51]

    В настоящее время конверсия метана и его гомологов является основным промышленным методом получения водорода ц технологических газов для синтеза аммиака, спиртов, моторного топлива и других продуктов. [c.71]

    В отличие от азота водород в молекулярном виде почти не встречается в природе, но в связанном виде - вода и органическое сырье (нефть, газ) - его запасы весьма велики. Из воды водород извлекали через газификацию угля (2С + О2 = 2СО -газификация, СО + Н2О = СО + Н2 - конверсия СО) и электролизом воды. В настоящее время основным источником водорода являются природный газ (СН4) и вода - из обоих компонентов извлекают Нг- Получаемый аммиак стал практически единственным источником связанного азота для многих других производств азотсодержащих соединений. Ежегодное потребление аммиака составляет десятки миллионов тонн в год. Его использование не ограничено производством удобрений. Основные пути переработки ННз представлены на рис. 5.38. [c.436]

    Известно, что по аммиачно-хлоридному способу производства соды раствор хлористого натрия, насыщенный аммиаком, подвергается карбонизации с помощью двуокиси углерода, что приводит к образованию бикарбоната натрия, который выпадает в осадок и отделяется фильтрацией. Бикарбонат далее прокаливается для получения карбоната натрия, в то время как маточный раствор после кристаллизации бикарбоната подвергается переработке с целью регенерации аммиака. Водный маточный раствор содержит в основном хлорид аммония, но если конверсия хлористого натрия неполная, то он также присутствует в растворе в достаточно большом количестве. В маточном растворе присутствует в незначительном количестве свободный аммиак и его летучие соединения, например бикарбонат и карбонат аммония, а также некоторые примеси из исходного раствора. [c.45]

    В 1959 году по проекту ГИАП введен в строй цех по производству азотной кислоты комбинированным методом с использованием тонкой очистки аммиачновоздушной смеси, обеспечивающей высокую конверсию аммиака и сохранение катализатора. В 1968 году созданы установки по производству разбавленной азотной кислоты под высоким давлением мощностью 120 тыс. тонн в год. Начиная с 1976 года, основным типом установок в отечественной азотнокислотной промышленности становятся системы с замкнутым энерготехнологическим циклом, работающие по комбинированной схеме мощностью 380 тыс. тонн в год (АК-72). Аналогичные системы используются в настоящее время и за рубежом. К ним относятся, например, агрегаты фирмы Гранд Паруасс (Франция) мощностью от 900 до 1250 т/сутки, работающие по комбинированной схеме, и разработанные совместно ГИАП и Гранд Паруасс аналогичные агрегаты мощностью до 2000 т/сутки. [c.212]

    В общем однако можно сказать, что расположение бывает двух ти- юв. Если условия давления и скорости прохождения газа дают возможность конвертировать большую часть входящей азото-водородной смеси в аммиак во время одного прохождения газа через колонну, то часто пользуются несколькими колоннами, соединенными последовательно, или же устройством параллельных рядов без повторной циркуляции газов под высоким давлением. В этом случае выходящая из последней колонны азото-водородная смесь расширяется до одной атмосферы и используется в качестве топлива или для других целей. В процессах, ведущихся под давлением лишь в несколько сотен атмосфер и работающих при условиях, дающих небольшую конверсию, аммиак удаляется из газа после выхода его из колонны, а оставшаяся газообразная азотоводородная смесь под высоким давлением возвращается во входящую струю газа. При таком циркуляционном устройстве необходимо периодически или непрерывно удалять некоторую час1ь газа для сохранения процентного содержания аргона, метана и других инертных газов на низком уровне. [c.181]

    На Березниковском АТЗ в 1943 г. вступила в строй третья очередь производства слабой азотной кислоты, в основном на оборудовании, вывезенном Из Дпепродзерншнского АТЗ. Здесь же в 1943 г. реконструировали контактное отделение цеха азотной кислоты. В свое время это отделение было построено по проекту фирмы УДЕ , согласно которому установили свыше 400 аппаратов с катализатором в виде платиновой фольги толщиной 0,02 мм и шириной 12 мм. На таких аппаратах степень конверсии аммиака была ниже, а удельные потери платины значительно выше по сравнению с сетчатыми катализаторами. Во время реконструкции все аппараты фирмы УДЕ заменили на 10 аппаратов с нлатиноид-ными сетками. [c.41]

    Вторая работа, выполненная на Кемеровском АТЗ, связана с изысканием нового катализатора для окисления аммиака в окись азота. Вследствие острой дефицитности и высокой стоимости родия (он в 5 раз дороже платины), входившего в состав катализатора, во время войны и, частично, в послевоенный период применялись катализаторные сетки из платины без добавки 7—10% родия. При этом степень конверсии аммиака была ниже на 3—4%, а потери платины выше на 15—20%, чем в случае работы с платипородиевыми катализаторами. [c.42]

    Для достижения максимальной степени конверсии аммиака необходимо определить оптимальное время контактирования, измеряющееся обычно десятитысячными долями секунды. При малой скорости газа и, следовательно, при передержке аммиака на катализаторе степень конверсии аммиака снижается вследствие дефиксации некоторой части азота. При недостаточном времени соприкосновения газа с катализатором степень конверсии такл<е снижается, так как аммиак не успевает полностью окислиться. [c.365]

    Механически прочный при истирании алюмогелевый носитель готовится путем быстрой коагуляции гидрозоля алюминия. В последнее время [137] разработан рациональный способ получения водорастворимой алюминиевой соли — основного хлорида алюминия А12(0Н)аС1. Весьма важным свойством его является способность образовывать при определенных условиях гидролиза студни при низкой концентрации А12О3 в растворе. Студни образуются при смешении водных растворов А12(0Н)8С1 с аммиаком. После сушки и прокалки гранулы А12О3 приобретают механическую прочность и мелкопористую структуру. Изменение пористой структуры достигается путем введения добавок в основной хлорид алюминия или путем обработки сформировавшихся гранул А1аОз растворами кислот. Пропитывая гранулы такого носителя нитратом никеля, можно получить активный никелевый катализатор для конверсии метана. [c.186]

    Получение технологического газа методами автотермической парокислородной и паровоздушной конверсии природного газа широко распространено в СССР и некоторых других странах. Одно из преимуществ этого метода - универсальность. Получение различных по назначению технологических газов и применение в качестве исходного сырья углеводородных газов различного оостава не требует существенного изменения технологической схемы и ее аппаратурного оформления /16/. До начала строительства крупных аммиачных комплексов (середина 60-х годов) в Советском Союзе значительная доля аммиака производилась парокиало-родной и паро-кислородовоздушной конверсией природного газа. Б настоящее время еще значительная часть аммиака и метанола производится этим способом. [c.239]

    В связи с перспективностью водорода как моторного топлива практический интерес представляет его конверсия в вы-сококипящие топлива, использование которых было бы более приемлемым для автомобильного транспорта. Одним из таких топлив является аммиак [178], производство которого хорошо освоено, он относительно недорог и имеет удовлетворительные термодинамические свойства. В нормальных условиях аммиак находится в газообразном состоянии и представляет собой бесцветный газ с резким и характерным запахом. При температурах окружающей среды аммиак снижается уже при давлении 0,6—0,7 МПа. Сжиженный аммиак характеризуется умеренными энергетическими показателями (см. табл. 4.1). Массовая энергоемкость аммиака по отношению к бензину, метанолу и водороду ниже в 2,5, 1,1 и 6,5 раза соответственно, в то время как по энергоплотности он превосходит большинство разработанных систем хранения водорода на автомобиле. [c.189]

    Арсенал средств для осуществления этапа в может быть весьма значительным. Уже в настоящее время можно видеть проекты, в которых имеются элементы кибернетической организации процесса. Примером может служить проект агрегата синтеза аммиака - большой мощности . В этом агрегате увеличение содержания метана в конвертированном газе после отделения конверсии природного газа вызывает накопление метана в циркуляционном газе отделения синтеза аммиака, что ведет к увеличению числа продувок системы. Продувочные газы после выделения из них аммиака сжигаются в топке трубчатого конвертора. Повышение температуры топочных газов, как следствие сжигания метана и водорода, содержащихся в продувочном газе, приводит к снижению содержания метана в конвертированном газе. Эта схема имеет структуру и принципиальные связи подобно операционному усилителю с обратной связью аналоговой вычислительной машины. По аналогии с терминами электроники имеется глубокая отрицательная обратная связь , которая делает схему нечувствительной к изменениям как на входе системы, так и внутри ее. Обратной связью юхвачены отделения шахтной конверсии и конверсии окиси углерода, а также отделение очистки II предкатализа, что в значительной мере упрощает управление агрегатом. [c.488]

    В настоящее время крупнейшей областью использования процесса паровой конверсии углеводородов является производство азото-водородной смеси для синтеза аммиака. Суммарные действующие и строящиеся мощности производства аммиака в США достигли уровня 6,3 млн. т/год. Из них поимерно 4,5 млн. т/го( работают на водороде, получаемом каталитической конверсией углеводородов (главным образом природного газа) с водяным паром. Это соответствует мощности по производству водорода порядка более 28 мнл. м /сутки. [c.170]

    Скорость окисления аммиака иа платиноидных катализаторах по реакциям (1.20)—(1.22) очень велика. Оптимальное время контактирования при атмосферном давлении составляет около ЫО с, причем выход N0 в этих условиях может достигать 997о- Время контактирования зависит от давления и температуры конверсии (рнс. 1-31). Для новых сеток оно может быть рассчитано по следующему уравнению, вывод которого дан в работе [6]  [c.42]

    На стадии конверсии предполагают использовать двухступенчатое окисление аммиака на неплатиновом катализаторе НК-2У. На стадии селективной очистки от оксидов азота применяется алюмомедьцинковый катализатор АМЦ-10 (ТУ 113-03-28-02-84). Загрузка 14 т, время пробега 3 года. [c.87]

    Контактные аппараты поверхностного контак-т а применяются реже, чем аппараты с фильтрующим или взвешенным слоем катализатора. При поверхностном контакте активная поверхность катализатора невелика. Поэтому aппaJ)aты такого типа целесообразно применять лишь для быстрых экзотермических реакций на высокоактивном катализаторе, обеспечивающем выход, близкий к теоретическому. При этих условиях в контактном аппарате не требуется размещать большие количества катализатора. Принципиальная схема контактного аппарата с катализатором в виде сеток показана на рис. 102. В корпусе аппарата горизонтально укреплены одна над другой несколько сеток (пакет сеток), изготовленных из активного для данной реакции металла или сплава. Подогрев газа до температуры зажигания производится главным образом в самом аппарате за счет теплоты излучения раскаленных сеток. Время соприкосновения газа с поверхностью сеток составляет тысячные — десятитысячные доли секунды. Такие аппараты просты по устройству и высокопроизводительны. Они применяются для окисления аммиака на платино-палладиево-родиевых сетках, для синтеза ацетона из изопропилового спирта на серебряных сетках, для конверсии метанола на медных или серебряных сетках и т. п. Эти же процессы с применением других менее активных, но более дешевых катализаторов проводят в аппаратах с фильтрующим или взвешенным слоем катализатора. В некоторых случаях, чтобы совместить катализ и нагрев газовой смеси, катализатор наносят на стенки теплообменных труб. [c.236]

    За период, прошедшии со времени выхода в свет первого издания книги (1969 г.), в промышленности производства аммиака произошли существенные изменения. Основным методом получения синтез-газа в настоящее время является трубчатая конверсия природного газа с предварительной тонкой двухступенчатой очисткой от сернистых соединений, с последующей низкотемпературной конверсией окиси углерода, тонкой абсорбционной очисткой от двуокиси углерода и метанированием кислородсодержащих примесей. [c.7]

    В настоящее время наибольший интерес представляет разработка основ приготовления таких типов катализаторов, которые обладают определенной спецификой, мало изучены, достаточно распространены и имеют большое практическое значение. Такого рода требованиям к объекту исследования удовлетворяет группа катализаторов, используемых в процессах паровой, парокислородной и парокислородовоздушной конверсии углеводородного сырья, осуществляемых в крупном промышленном масштабе для получения водорода, и синтез газа-сырья для многотоннажного производства аммиака, метанола и других продуктов. [c.84]

    Методы паровой и пароуглекислотной конверсий различного углеводородного сырья используются в настоящее время в промышленности для получения разнообразных продуктов синтез газа для производства аммиака [1 —3], синтетического природного газа [4, 5], технического водорода [1, 2, 6], водорода высокой степени чистоты 17], газов с различным соотношением СО, применяемых в виде сырья для синтеза метанола (Нз СО = 2 1), оксосинтеза (Нз СО = = 1 1) [1, 2] и восстановительных газов металлургической промышленности (Нз СО ниже единицы) [8]. Эти методы пригодны также для получения газов с заданным соотношением На СОз, использование которых перспективно для микробиологического синтеза. Принципиальная схема и условия ведения процесса определяются в первую очередь характером целевого продукта, однако выбор условий процесса в значительной мере зависит и от принятого сырья. В качестве последнего для процессов конверсии используют природный газ, нефтезаводские газы, сжиженный газ и жидкие углеводороды нафта . [c.242]

    Изучение использования оборудования цеха совмещенной конверсии показывает большие возможности роста производства и производительности труда за счет улучшейня показателей интенсивной нагрузки агрегатов. Так, среднемесячные коэффициенты интенсивной нагрузки этих агрегатов в 1965 году колебались от 0,85 до 0,49, что указь1вает на значительные технические возможности повышения интенсивной нагрузки агрегатов. Резкое периодическое понижение среднемесячной производительности агрегатов совмещенной конверсии объясняется также нарушениями синхронности в функционировании отдельных звеньев производства аммиака (цехов компрессии, медноаммиачной oчиqтки, синтеза аммиака), имеющих между собой технологическую связь. Невозможность продолжения работы на склад вызывает необходимость перевода цеха совмещенной конверсии на непроизводительное функционирование. Поскольку по существующей системе учета работа агрегатов в атмосферу включается в общее время фактической работы, то показатель интенсивной нагрузки агрегатов конверсии снижается. [c.325]


Смотреть страницы где упоминается термин Конверсия аммиака время: [c.17]    [c.214]    [c.4]    [c.204]    [c.209]    [c.83]    [c.116]    [c.83]    [c.116]    [c.83]   
Технология азотной кислоты Издание 3 (1970) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Время аммиака

Время конверсии

Конверсия аммиака



© 2024 chem21.info Реклама на сайте