Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты, анализ цистеин

    При анализе данных табл. 1.4 виден ряд закономерностей. На долю дикарбоновых аминокислот и их амидов в большинстве белков приходится до 25-27% всех аминокислот. Эти же аминокислоты вместе с лейцином и лизином составляют около 50% всех аминокислот. В то же время на долю таких аминокислот, как цистеин, метионин, триптофан, гистидин, приходится не более 1,5-3,5%. В протаминах и гистонах отмечено высокое содержание основных аминокислот аргинина и лизина, соответственно 26,4 и 85,2% (см. Химия простых белков ). [c.40]


    Метод гидразинолиза обладает рядом специфических недостатков. Так, при обработке гидразином распадаются частично иЛи полностью такие аминокислоты, как цистеин и цистин, аспарагин и глютамин, а также дикарбоновые аминокислоты. Гидразиды некоторых аминокислот оказываются недостаточно устойчивыми и в ходе последующей обработки могут перейти в свободные аминокислоты. Это,является основным пороком метода и часто делает его непригодным для анализа ряда белков. Тем не менее этот метод находит широкое применение в ряде лабораторий и по сей день. Причиной этого является его относительная простота и возможность применения для анализа тех белков, у которых гидразиды С-концевых аминокислот достаточно устойчивы. [c.72]

    Качественным эмиссионным анализом установлено содержание в соке следующих микроэлементов кальций, натрий, медь, магний, алюминий, кремний и титан. В наибольшем количестве содержатся магний, а затем кальций. Хроматографией на бумаге исследован аминокислотный состав сока [17]. Состав свободных аминокислот сока (мг%) цистеин — 5S0, а-аланин — 80, фенилаланин — 72, лейцин — 96. Из них фенилаланин и лейцин являются незаменимыми аминокислотами [16]. [c.374]

    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    Сальмин, простой белок, не содержащий цистеина и ароматических аминокислот, не изменяет своего молекулярного веса при облучении, что установлено седиментационным анализом в ультрацентрифуге и методом светорассеяния [71]. [c.228]

    Полярографический анализ очень важных биологически серусодержащих аминокислот и белков явился предметом многочисленных исследований. Было изучено [125, 126, 138, 139] анодное восстановление цистеина, который содержит группу —8Н, на КРЭ и платиновом электроде, а также восстановление цистина, который содержит группу —5—5—, на КРЭ. [c.391]

    Электрохимические исследования аминокислот, нуклеиновых кислот и белков непосредственно связаны между собой, поскольку первые являются структурными элементами более сложных макромолекул. Электрохимические исследования двадцати основных 1-а-аминокислот [230—232] показали, что только шесть из них — цистеин, цистин, метионин, гистидин, тирозин и триптофан — окисляются на пирографитовом и стеклоуглеродном электродах. В области pH от 1 до 10 их окисление протекает необратимо при н.и.э.>1,0 В, причем с ростом pH потенциал полуволны или максимум тока смещается в отрицательную сторону. Процессы окисления сопровождаются пассивацией электрода продуктами реакции. По данным ЯМР- и ИК-спектроскопии, продукты реакции имеют сложную полимерную структуру, что не позволяет пока перейти к детальному анализу механизма. Тем не менее полученные результаты оказались полезными при интерпретации электрохимического поведения белков, адсорбированных на графитовых электродах [245, 246]. [c.163]


    В отличие от белков к-т-е- -группы фибриллярные белки группы коллагена растяжимы не более чем на 10%. Рентгенограммы белков этих двух групп также различны. Коллаген не встречается в растениях, но составляет около 7з всех белков организма животных, являясь составной частью хрящей, сухожилий, костей и кожи. Анализ аминокислотного состава коллагена показывает, что на 7з он состоит из глицина. Цистеин и триптофан в нем не встречаются, а количество серусодержащих и ароматических аминокислот очень невелико. Около 20% аминокислот в коллагене составляют пролин и оксипролин. Последняя аминокислота, так же как и оксилизин, встречается только в коллагене и родственных ему белках. Есть основания считать, что гидроксильные группы этих аминокислотных остатков появляются в белке уже после синтеза всей полипептидной цепочки. [c.249]

    С этой целью мы провели анализ частоты замен аминокислот в зависимости от их основных особенностей (полярности, характера заряда, числа кодонов, массового числа и др.). Эти данные относятся к уже указанным выше материалам но ЛДГ цыплят и свиией. Частота замен для разных аминокислот была неодинаковой (от О до 54—67%) и не зависела от абсолютного количества данной аминокислоты в молекуле фермента. Не зависела она и от полярности илп от характера заряда, от массы молекулы или числа кодонов. Частота замен не зависела и от того, какилш группами обусловлены полярность и заряд аминокислоты. Например, цистеин, имеющий ЗН-группу, заменялся у цыплят в 28% случаев, а у свиней совсем не заменялся. Указанные замены не зависели от места расположений аминокислотного остатка во вторичной структуре молеку- [c.105]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]


    В методе анализа аминокислот и пептидов, предложенном Бови и Тайерсом [78], в качестве растворителя используется трифтор-уксусная кислота. Преимущества этого растворителя по сравнению с водой или 020 в том, что он позволяет точно определить значения химических сдвигов. Трифторуксусную кислоту можно использовать и в качестве стандарта. Для этого приготавливают ее растворы с концентрацией 207о (вес/объем). Глицин, цистеин и цистин менее растворимы в этой кислоте, однако можно получить и их спектры. В анализе, описанном в работе [78], спектры были получены при частоте 40 МГц. Анализируемые растворы приготавливали, растворяя 100 мг анализируемого соединения в [c.306]

    Меркаптогруппы в ь-цистеине и ь-глутамил-ь-цистеилглицине определяли путем обработки этих соединений смесью 1 1 1 %-ного КМп04 и 1 %-ной Н28 04 на фибергласовой бумаге и затем газообразным № С1 [49]. Радиоактивность Мп СЬ, образующегося из МпОг, измеряли счетчиком Гейгера — Мюллера. Этим методом можно обнаружить несколько миллиграммов серусодержащих аминокислот, однако он не является специфичным по отношению к тиольной группе, поскольку анализ этим методом чувствителен и по отношению к метионину. [c.358]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

    Значительное затруднение при расшифровке последовательности аминокислот может возникнуть, если в молекуле анализируемого белка присутствуют остатки цистеина или цистина. При окислении цистеина образуются S—S-мостики, которые не только являются причиной ошибочных выводов, но и препятствуют дальнейшему анализу, так как содержащие их белки и полипептиды весьма устойчивы к ферментативному расщеплению. Поэтому до проведения анализа рекомендуется избавляться от S—5-мостиков и предотвращать спонтанное окисление свободных SH-rpynn. Кроме того, следует иметь в виду возможность SH/S—S-обмена. Если в реакционной смеси одновременно присутствуют свободные SH-группы и S—S-мостики, в ней могут происходить перестройки, при которых связанные S—S-мостиком пары пептидов обмениваются своими партнерами  [c.33]

    При гидролизе происходит разрушение некоторых аминокислот полностью распадается триптофан, на 50—60%—карбоксиметил-цистеин и на 5—10% — треонин и серии. Эти потери следует учитывать при количественном анализе, вводя соответсгвуюш,ие поправки. Чем быстрее производится удаление кислоты, тем меньше вероятность нежелательных побочных реакций. [c.167]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Возможны также анализы смесей сильных кислот с аминокислотами, содержащими две кислотные и одну основную группы — глутаминовой и аспарагиновой кислотами и цистеином. [c.144]

    В гидролизатах коллагена и эластина содержатся десмозин и изодесмозин их разделяли в модифицированных условиях по одноколоночной [59, 60], а также по двухколоночной схемам анализа [61, 62]. Множество работ посвящено хроматографии серусодержащих аминокислот. Определены объемы выхода производных цистеина [63] и цистина, полученных после модификации белков и последующего гидролиза [64]. Найдены условия разделения производных лизина, полученных при модификации нативного белка, а также разработаны условия ускоренного анализа этих соединений [65, 66]. Метилгистидин и некоторые редкие аминокислоты разделяли на 15-сантиметровой колонке [67]. При снижении скорости потока в реакторе вдвое было достигнуто 10—20-кратное увеличение чувствительности при определении N-метиламинокислот, которые разделяли в специально разработанных условиях [68]. Триптофан и его производные разделяли на амберлите G-50 [69]. [c.349]

    Серусодержащие аминокислоты. В нашем распоряжении имелись две серусодержащих аминокислоты — метионин и цистеин, поэтому детальный анализ, который может быть проведен во всех других группах, дать затруднительно однако можно отметить следующие общие полосы у метионина имеется интенсивная полоса поглощения 1623 см , у цистеина аналогичная полоса расположена у 1615 см . Эти две полосы можно назвать общими, так как они имеют одинаковую интенсивность и форму. Указанная полоса может быть отнесена к деформационным колебаниям аминогруппы в цвиттерионной структуре. Так же как и в других группах аминокислот, здесь четко проявляется полоса 1585 см-  [c.142]

    При рассмотрении результатов анализа (см. табл. 15) видно, что белки отличаются от других природных макромолекулярных соединений, нанример от целлюлозы или крахмала, большим числом различных единиц, входяш их в состав макромолекул (20 аминокислот вместо только одного моносахарида —глюкозы). Кроме того, белки содержат различные аминокислоты в определенных соотношениях. Некоторые белки содержат большое количество определенных аминокислот так, например, коллаген богат гликоколем, пролином и оксипролином, кератин — цистеином и оксикислотами, глиадин пшеницы — глутаминовой кислотой, а салъмин — белок из спермы рыб — состоит почти исключительно из аргинина и не содержит кислотных групп. [c.424]

    За немногими исключениями, все методы аминокиачотного анализа требуют предварительного гидролиза белка. Чувствительность каждой аминокислоты к гидролизу изменяется не только с условиями гидролиза, но и в зависимости от сопутствующих белку веществ. Например, было показано, что цистин и цистеин могут разрушаться прп кислотном гидролизе в присутствии углеводов, но не распадаются в отсутствие последних. [c.10]

    Нингидриновый метод применим не ко всем аминокислотам и не используется больше, по-видимому, с 1960 года. В результате этого метода глицин образует полимеризующийся формальдегид, тогда как гистидин, аргинин, триптофан, цистеин, аспарагиновая и глутаминовая кислоты, очевидно, не пригодны для анализа этим методом [7]. В качестве жидкой фазы использовали и силиконы [7, 164, 158], и полиэфиры [4, 149]. Предпринимались попытки [121] декарбоксилирования в присутствии N-бромсукцинимида (БСИ), однако образующиеся нитрилы и альдегиды, содержащие на один углеродный атом меньше, имели различные количественные соотношения в зависимости от характера аминокислоты. [c.89]

    Тетранитрометан, предложенный Херриотом [47] в качестве мягкого нитрующего агента, использовался Валле с сотр. [48— 50] для распознавания различных состояний остатков тирозина. Помимо тирозина, ТНМ взаимодействует с сульфгидрильными группами цистеина, но не вступает в реакцию с остатками других аминокислот. При работе с ТНМ необходимо соблюдать осторожность, поскольку он является ядовитым и сильно взрывчатым веществом. За ходом реакции можно следить по возрастанию концентрации ионов водорода (на рН-метре). Степень нитрования можно определять спектрофотометрически или анализом аминокислотного состава. [c.354]

    Гурд и др. [193] подтвердили такой механизм, установив, что (ГлиГли — СиОгН) катализирует гидролиз /г-нитрофенилацетата. Ли с сотр. [197] показал, что скорость гидролиза эфиров аминокислот возрастает при увеличении константы комнлексо-образования. Анализ спектров протонного магнитного резонанса эфиров аминокислот (этилового эфира глицина, метилового эфира оксипролнна и метилового эфира фенилаланина) позволяет сделать вывод, что металлы [С( (11) и Сп(П)] связываются как с аминогруппами, так и с эфирными карбонильными группами. В случае этилового эфира цистеина ионы металла образуют связи как с аминогруппами, так и с сульфгидрильными группами. В последнем случае константа скорости щелочного гидролиза комплекса кадмия с эфиром цистеина (1 1) в 11 раз больше скорости гидролиза эфира цистеина без образования комплекса. [c.129]

    Было обнаружено образование комплексов между Mo(V) или Mo(IV) и широким рядом серусодержащих аминокислот, сложных эфиров и карбоновых кислот [110]. Комплексы Mo(V) представляют собой диамагнитные димеры, мостиком в которых служит атом кислорода или серы. Они являются производными иона МоО +. Комплексы с серусодержащей аминокислотой, цистеином, по-видимому, наиболее близки по структуре к молибденовым ферментам. В связи с этим им было уделено наибольшее внимание [111, 112]. На рис. 44 приведены схемы реакций образования молибденовых комплексов цистеина и его сложных эфиров. Структура комплексов установлена по данным химического анализа и ИК-спектроскопии (табл. 25). Для соединений XIV (R = СО2СН3 [113], XVa (R = СО2С2Н5) [114] и XV6 (R = СОг ) [115] эта структура подтверждена методом рентгеноструктурного анализа. [c.302]

    У глицина отношение числа биполярных молекул к числу незаряженных молекул очень велико. Ионизация карбоксильной группы глицин-катиона начинается практически до того, как происходит отщепление протона от группы МН .Это характерно и для других аминокислот. Но если радикал К аминокислот содержит какие-либо дополнительные кислотные и основные группы, ионизация приобретает более сложный, конкурентный характер. Одновременную ионизацию двух карбоксильных групп глутаминовой кислоты можно дифференцированно определить путем сравнения констант ионизации ее обоих моноэфиров с константой ионизации самой кислоты. Такой метод применим и при анализе одновременной ионизации аминной и сульфгидрильной групп цистеина, а также аминной и фенольной групп тирозина. Ионизация карбоксильных групп этих соединений начинается до того, как она проявляется в заметной степени в остальных [c.91]

    Джонсону с сотрудниками [38] удалось хроматографически проанализировать 33 аминокислоты в виде амиловых эфиров К-ацетилпроизводных, включая 17 протеиновых, применяя низкие отношения стационарной фазы к твердому носителю и осуществляя хроматографическое разделение смеси аминокислот на сдвоенных колонках при различных температурах. Первая колонка длиной 2,4 м содержала 1% Карбовакса 1540, нанесенного на хромосорб W (60 —80 меш). С этой колонки при 125° за 25 мин элюировались производные аланина, валина, изолейцина и лейцина. После этого температуру колонки быстро повышали до 148° для анализа производных глицина, -аланина, пролина, треонина, серина, цистеина, метионина, фенилаланина, оксипролина и аспарагиновой кислоты, которые элюировались из колонки в порядке перечисления (рис. 6). [c.263]

    Определение серусодержащих аминокислот. Большинство исследователей считает, что при кислотном гидролизе цистин и цистеин сильно разрушаются и их следует определять, проводя отдельный анализ [63, 65]. Хороший метод для этой цели был разработан Муром [56]. Подлежащий исследованию белок предварительно (для окисления цистина и цистеина в устойчивую при кислотном гидролизе цистеиновую кислоту) обрабатывается надмуравьиной кислотой [64]. Избыток надмуравьиной кислоты разрушается воздействием НВг, легко удаляемой из системы под вакуумом. После гидролиза в 6 и. растворе НС1 проводится анализ на ионнообменной колонке с сульфированным полистиролом (Дауэкс 50X8), при котором цистеиновая кислота определяется с высокой точностью. В других случаях для окисления цистеина в цистин гидролизат белка подщелачивают до pH 6,8 и оставляют на воздухе в течение 4 ч [53]. [c.192]

    При анализе 2-бутиловых эфиров К-ТФАпроизводных 14 аминокислот на второй колонке порядок выхода этих производных был аналогичен порядку выхода соответствующих им н-бутиловых эфиров N-TФAпpoизвoдныx, за исключением изменения последовательности выхода между производными фенилаланина и аспарагиновой кислоты. Производные аланина, валина, лейцина, треонина, серина, цистеина, фенилаланина, тирозина разделялись на энантиомеры, а производные глицина и ВВ/ЬЬ-изолейцина, метионина и аспарагиновой кислоты элюировались вместе. [c.52]

    На колонке, заполненной сорбентом с 10% силикона ХЕ-60, при 140° С хорошо разделялись производные аланина, валина, изолейцина, глицина, лейцина и серина. Авторы работы [61] указывают, что хотя на этой НЖФ не делятся производные треонина и изолейцина, она предпочтительна для количественного анализа амиловых эфиров N-ТФАпроизводных аминокислот. Амиловые эфиры ТФАпроизводных цистеина, пролина, оксипролина, метионина, фенилаланина, аспарагиновой и глутаминовой кислот полностью разделяются при температуре 185° С только на колонке с 5% силикона MS,i [63]. [c.55]

    Недавно Литеану и др. [558] провели анализ некоторых а-аминокислот (цистеина, аргинина, лейцина и гистидина) потенциометрическим титрованием раствором соли ртути(И) с Hg -селективным электродом. Мембрану электрода они получили прессованием смеси Agi и AgjS, взятых в молярном соотношении 3 1 [559]. Цистеин определяют в области концентраций 10 —10 моль/л. Даже при определении только 0,13 мкг/мл цистеина скачок потенциала в точке эквивалентности при ошибке 1% равен 80 мВ. Другие а-аминокислоты титруются при pH 4,6. Скачок потенциала в точке эквивалентности при ошибке 1% колеблется от 15 до 35 мВ, что существенно отличается от поведения цистеина. [c.192]

    Этот метод позволяет проводить одновременно анализ 50 фракций. После развития пурпурной окраски фракции разбавляют 5 мл смеси этанол—вода (1 1), охлаждают перед электрическим вентилятором и встряхивают в течение 30 сек для окисления большей части оставшегося гидриндантина. Измеряют величины экстинкции при 570 ммк (и 440 ммк для пролина и оксипролина). В реакции с нингидрином, изображенной на стр. 78, все аминокислоты, за исключением цистеина, дают один и тот же окрашенный продукт — дикетогидриндилиден-дикетогидриндамин [14]. [c.77]


Смотреть страницы где упоминается термин Аминокислоты, анализ цистеин: [c.215]    [c.523]    [c.933]    [c.94]    [c.98]    [c.359]    [c.150]    [c.192]    [c.55]    [c.211]    [c.28]    [c.29]    [c.306]    [c.150]   
Методы химии белков (1965) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Цистеин



© 2024 chem21.info Реклама на сайте