Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия вещества

    Вещество на выходе непосредственно из хроматографической колонки или из детектора выделяют из потока газа-носителя при помощи систем специальных ловушек, а затем используют обычный метод подготовки проб для ИК-спектроскопии. Вещество, попадающее в ловушку, либо вымораживается и затем подвергается обычной подготовке, либо улавливается таким образом, чтобы затем его можно было бы без дальнейших приготовлений подвергать спект--ральному анализу. [c.121]


    Планирование хода анализа. В соответствии с данными табл. 8.19 для определения компонентов смеси целесообразно применить методы ИК- и масс-спектрометрии. Поскольку невозможно провести определение отдельных веществ в смеси, ее необходимо разделить. Исходя из температуры кипения пробы, можно сделать вывод, что наиболее подходящим в этом случае является метод газовой хроматографии [75]. При идентификации веществ методами ИК- или масс-спектрометрии обходятся одним газовым хроматографом. В случае небольших количеств газохроматографических фракций ИК-спектроскопию следует проводить до масс-спектрометрии, так как при ИК-спектроскопии вещество не разрушается. [c.424]

    Вертикальное освещение в сочетании с надлежащей защитой исключают прямое попадание света в трубку спектроскопа. Вещество, обычно в жидком состоянии, помещается в изогнутую пробирку, снабженную вертикальным плоско-параллельным стеклянным окном, обращенным в сторону спектрографа. После разложения в призме излучаемый свет регистрируется на фотопластинке. [c.430]

    Достижения инфракрасной спектроскопии веществ в твердой фазе. [c.125]

    Необходимо отметить, что на сегодняшний день в литературе по ИК-спектроскопии веществ, являющихся объектами неорганической технологии, нет монографического материала, который бы связал воедино вопросы методики исследования и оценки полученных результатов с привлечением фактического (справочного) материала для решения конкретных химико-технологических задач, [c.3]

    Кирхгоф показал, что для каждого элемента, разогретого в пламени горелки, характерен свой спектр. Таким образом, снимая спектр излучения химического элемента, Кирхгоф как бы снимал отпечатки пальцев такого элемента. Получив такую информацию, можно было решить и обратную задачу опознать элемент, входящий в состав неизвестного вещества. Прибор, используемый для определения элементов описанным способом, получил название спектроскопа (рис. 17). [c.102]

    Именно спектроскоп позволил доказать, что Солнце (а также звезды и межзвездный газ) состоит из элементов, полностью идентичных земным. Этот вывод окончательно разбил утверждение Аристотеля (см. гл. 2), считавшего, что небесные тела состоят из веществ, отличающихся по своей природе от веществ, составляющих Землю. [c.103]

    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]


    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]

    Б. Спектроскопические методы. На первый взгляд кажется, что оптическая спектроскопия является идеальным методом для изучения неустойчивых промежуточных продуктов, однако во многих случаях применение этого метода встречает существенные трудности. Причина заключается в малой концентрации присутствующих промежуточных веществ, а также в сложности выделения спектров промежуточных веществ (эмиссионных или абсорбционных) из спектров других присутствующих веществ. Тем не менее имеется большое число примеров успешного использования этих методов. Так, спектры испускания возбужденных радикалов, атомов и ионов наблюдались в случае тлеющих и дуговых разрядов, а также во взрывных реакциях и пламенах. В частности, при электрически возбуждаемом излучении [16, 17] были идентифицированы радикалы Сг, СН, Н8, 82, О, СК, КН, ОН, PH, HgH. Подобным же образом в пламенах и взрывах [18] наблюдались, в частности, радикалы С2, СН, ОН, КН, 80, Н, С1, СНО. Однако в обоих этих примерах наблюдаемые спектры испускания могут дать сведения только об относительном количестве возбужденных радикалов и ничего не говорят о типе или количестве радикалов, присутствующих в невозбужденных состояниях и не способных к излучению. [c.96]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Для анализа дифенилолпропана можно использовать метод инфракрасной спектроскопии, но в ограниченных пределах. Примеси, содержащиеся в дифенилолпропане, имеют малые различия в спектре, поэтому метод неприменим, если в продукте содержится несколько веществ. Сообщалось о применении этого метода для определения трис-фенола . [c.195]

    Как и следует ожидать из данных ультрафиолетовой поглотительной спектроскопии (см. выше), парафины и нафтены в основном лишь слабо флуоресцируют. Ароматические соединения, начиная от бензола, обладают слегка видимой флуоресценцией (полосы поглощения видны в коротких длинах волн обыкновенного ультрафиолета), но флуоресценция увеличивается по мере усложнения структуры кольца, полосы поглощения близки к видимой области или в самой видимой области [202]. Использование флуоресцирующего спектра при решении аналитических проблем было ограничено, хотя некоторые ароматические соединения, находящиеся в более тяжелых нефтяных фракциях, дают характерные картины [203—204]. Но так как флуоресценция очень чувствительна к следам инородных веществ [205 ], то другой метод, ультрафиолетовая спектроскопия поглощения, должен быть использован в качестве дополнения к этим анализам. [c.190]

    Инфракрасная спектроскопия играет важную роль в идентификации неизвестных веществ, благодаря тому что каждое химическое соединение и.меет неповторимый ИК-спектр. На рис. 13-34 в качестве примера приведены ИК-спектры тетрахлорэтилена и циклогексена. [c.590]

    Осложнения и ограничения, связанные с применением спектроскопии ЯКР, обусловлены тем, что непосредственное измерение переходов ядерного квадрупольного резонанса может осуществляться лишь в твердых веществах. Из-за сложности микроволнового спектра больших молекул эти измерения — единственный источник информации [c.276]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]


    Рассмотренные молекулярные параметры энергия диссоциации, межъядерные расстояния, равновесная конфигурация, число симметрии — важны для химии не только как индивидуальные характеристики молекул. По ним можно рассчитать термодинамические свойства веществ и константы равновесия химических реакций. В нашей стране ведутся обширные исследования молекулярных параметров методами спектроскопии (В. И. Кондратьев, В. М. Татевский, Л. В. Гурвич, А. А.. Мальцев и др.), м асс-спектрометрии (Л. И. Горохов, Л. И. Сидоров и др.), газовой электронографии и другими физическими методами. [c.50]

    Спектроскопия в видимой и ультрафиолетовой области. Прибор состоит из тех же узлов, что и при исследовании ИК-спектра. Источники излучения — лампы накаливания и разрядные трубки. Кюветы и призмы делают из веществ, пропускающих излучение. Для видимой области это стекло, для ближней ульт- [c.150]

    Как способ отождествления различных изомеров колебательная спектроскопия очень широко применяется в органической химии. Она позволяет установить для данного вещества существование не только мономеров, но и отдельных конформеров. Так как время жизни данного конформера (Ш с) в сотни и тысячи раз больше периода колебаний (10 —10 с), он успевает проявить себя в колебательном спектре. Измерение зависимости интенсивности полос двух конформеров от температуры позволяет определить теплоту превращения одного из них в другой, т. е. относительную их устойчивость. Однако далеко не всегда одни только колебательные спектры достаточны для однозначного определения равновесной конфигурации молекулы. Обычно должна использоваться совокупность данных нескольких взаимозаменяющих методов исследования, например вращательной и колебательной спектроскопии, электронографии, измерения дипольных моментов и др. [c.176]

    Спектры растворов, жидкостей и кристаллов могут служить важным источником сведений о межмолекулярном взаимодействии, о его тонких деталях. Сравнивая величину низкочастотного сдвига при растворении вещества в серии растворителей, можно определить, как изменяется энергия межмолекулярного взаимодействия веществ с растворителем, электронно-донорные свойства растворителей и др. Особое значение при изучении межмолекулярного взаимодействия приобрела спектроскопия водородной связи. [c.178]

    Большое внимание уделяют приготовлению эталонной смеси. Нельзя без проверки применять выпускаемые промышленностью реактивы квалификации чистый для анализа или чистый . Часто для контроля чистоты недостаточно определения одного только показателя преломления. Точный анализ возможен с помощью газовой хроматографии и инфракрасной спектроскопии [195]. Дополнительная очистка эталонного вещества не требуется в том случае, если экспериментально определенные физико-химические константы совпадают с теоретическими значениями и температура кипения вещества, измеренная термометром с ценой деления 1Л0 °С, имеет отклонение, не превышающее 0,1 °С с учетом влияния колебаний атмосферного давления. Большинство веществ нуждается в химической очистке от сопутствующих примесей [210—212] и в последующей четкой ректификации при высоком флегмовом числе. При использовании недостаточно очищенных веществ возможно смещение калибровочной кривой По — содержание % (масс.), а также концентрирование сопутствующих примесей в головке колонны или кубе при испытаниях. Это может привести к искажению результатов измерения разделяющей способности колонн. [c.156]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Поскольку все эти реакции протекают как 1,4-присоединение, они показывают, что циклопропановое кольцо образует со смежной карбонильной группой сопряженную систему. Это подтверждается и данными ультрафиолетовой спектроскопии вещества, имеющие циклопропил-этиленовую группу, поглощают при 210 ммк, т. е. близко к величине, характерной для бутадиена (220 ммк). Псевдоконъюгация трехчленного цикла, о которой свидетельствуют также динольные моменты и другие физические данные, показывает, что электроны С—С связи здесь более подвижны, чем обычные ст-электроны, и обладают характеристиками, присущими зх-электронам. Это представление позволяет объяснить направление реакции присоединения бромистого водорода (промежуточный я-комплекс, как в случае олефина) и тот факт, что циклопропан образует желтый я-комплекс с тетранитрометаном. [c.12]

    Днттер и Шапиро [64] провели подробное исследование частичного окисления пентаборана-9, выделили промежуточный продукт состава В2Н2О3, идентифицировав его с помощью изотопных замещений в сочетании с ИК-, ЯМР- и масс-спектроскопией. Вещество представляет собой тригональную бипирамиду, образованную атомами бора и кислорода с концевыми атомами водорода при каждом атоме бора. Ли и сотр. [65] установили образование при взрывном окислении пентаборана еще одного соединения, В3Н3О3, идентичного бороксину [66]. [c.352]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    Масс-спектроскопия основана на разделении заряженных частиц переменной массы способами электрического и магнитного полей. Основными частями масс-спектрометра являются ионизационная камера (ионы в ней образуются при электронной бомбардировке газообразных веществ), электрический потенциал для того, чтобы ускорить движение ионов, и магнитное поле, которое индуцирует угловое отклонение. Если изменить силу либо электрического, либо магнитного полей, то ионы могут быть соответственно разделены и собраны на основе отношения массы к заряду. Углеводороды ионизируют для того, чтобы получить определенные обрывы цепей. Так как такие обрывы характерны для углеводородного ряда, то поэтому возможны типовые анализы узкокипящих фракций в газообразных нефтепродуктах, смазочных маслах и парафинах однако [219—220] могут встречаться и смешанные структуры [222]. Необходимо использовать стандарты для калибровки спектрометра. [c.191]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Метод инфракрасной спектроскопии заключается в том, что пучок инфракрасного излучения, длина волны которого X изменяется от 2,5 до 15 мкм (что соответствует значениям волнового числахэт 4000 до 667 см ), пропускают через образец исследуемого вещества (рис. 13-33). Часто этот образец предварительно прессуют, превращая его в тонкую таблетку, которую погружают в прозрачную для инфракрасного излучения среду-держатель из хлорида натрия. (Хлорид натрия приходится исполь- [c.587]

    Мёссбауэровская спектроскопия [1], которая в тексте сокращенно называется МБ-спектроскопией, регистрирует переходы, обусловленные поглощением у-лучей веществом. Эти переходы характеризуются изменением ядерного спинового квантового числа I. Условия поглощения зависят от электронной плотности вокруг ядра, а число наблюдаемых спектральных полос связано с симметрией соединения. В результате этого можно получить структурную информацию. Многие из идей и символов, используемых в данной главе, были описаны в гл. 14. [c.285]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Принципиально новые возможности открылись в химии с появлением мощных инфракрасных лазеров. Это область селективного воздействия лазерного излучения на вещество, названная мощной инфракрасной лазерохимией [13]. Ряд исследователей [14] оценили достижения в этой области, назвав их лазерной революцией в химии . Хотя попытки селективного действия света относятся к 1922 г., существенный скачок был сделан Павловым с сотр. в 1966 г. и Майером и др. в 1970 г. Значительный объем работ по лазерной селективной фотофизике и фотохимии был выполнен в Институте спектроскопии АН СССР [15]. [c.178]

    Наиболее хорошо разработанными системами, в которых органично связаны аспекты моделирования и экспериментальных исследований, являются АСНИ для анализа молекулярных структур [8]. Научной основой разработки таких систем являются работы в области квантовой химии и спектроскопии. Стратегия исследования молекулярных структур новых веществ в АСНИ построена следуюпцтм образом. Из первоначального эксперимента определяется брутто-формула и наличие характерных групп атомов (на основе спектроструктурных корреляций) в исследуемом химическом соединении. Затем но этим данным на ЭВМ производится автоматический синтез вариантов гипотетических молекулярных образований с использованием ряда аксиом о запрещенных сочетаниях атомов (правил валентности). Для синтезированных вариант молекул, в которых встречаются обнаруженные экспериментально характерные группы, на основе квантовохимических моделей производится расчет (моделирование) колебательных спектров гипотетических синтезированных молекул. Сравнением рассчитанных и измеренных спектров выбираются наиболее вероятные структуры. По выбранным структурам после более тщательного моделирования спектров с учетом вариантов пространственного расположения атомов и дополнительного экспериментального исследования уточняется пространственное расположение атомов в молекуле. [c.61]

    Нужно, одпако, сказать, что потери при отражении света от зеркал приводят к ограпичсиию длины оптического пути. Этот недостаток отсутствует в методе внутрирезонаторной лазерной спектроскопии, в котором исследуемое вещество помещается внутри резонатора лазера с широким контуром генерации (например, лазеры на oj)raHH4e KHX красителях). [c.26]

    Непосредственное наблюдение носледовательпостя рассмотренных выше элементарных процессов во временной шкале осуп1,ествляется при исполь-зовалии метода импульсного радиолиза [404]. Основным методом наблюдения активных веществ в методе импульсного радиолиза до настоящего времени является оптическая спектроскопия. В работах по исследованию процессов в газах применялись ускорители электронов, дающие в импульсе длительностью 10 —10 сек токи порядка 10 —10 а [4041. [c.196]

    МР-спектроскопия с импульсным фадиентом магнитного поля является чрезвычайно мощным инструментальным методом исследования динамических характеристик систем. К сожалению, несмотря на свои широкие возможности, он продолжает оставаться малодоступным по причине высокой стоимости и относительной уникальности оборудования. Метод импульсной ЯМ является одним из ответвлений классической ЯМР-спектроскопии. Ег о типичным применением является определение коэффициентов самодиффузии однокомпонентных чистых веществ и бинарных смесей. Долгое время считалось, что использование этого метода для таких сложных многокомпонентных смесей, как НДС, является малоинформативным и нецелесообразным. Однако пионерские исследования, проведенные в работе [17], на примере гудронов и битумов показали применимость этого метода для изучения высокомолекулярных НДС. Вы- [c.11]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]


Смотреть страницы где упоминается термин ЯМР-спектроскопия вещества: [c.97]    [c.56]    [c.41]    [c.215]    [c.276]    [c.183]    [c.94]    [c.26]    [c.166]    [c.4]    [c.4]    [c.6]    [c.24]   
Аналитическая химия синтетических красителей (1979) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая спектроскопия биологических веществ

Использование инфракрасной спектроскопии при исследовании строения высокомолекулярных веществ

Коробков. Исследование водородной связи методами инфракрасной спектроскопии. II. Внутримолекулярная водородная связь в кристаллическом состоянии вещества

Определение лекарственного вещества в однокомпонентной лекарственной форме методом УФ-спектроскопии

Определение строения неизвестного органического вещества методом И К спектроскопии

Определение структуры высокомолекулярных веществ методом инфракрасной спектроскопии

Основы ЯМР-спектроскопии Магнитные свойства вещества. Ядерные моменты. Ядерный резонанс

Применение инфракрасной спектроскопии для идентификации разделенных веществ

Применение спектроскопии для строения и свойств конденсированных веществ

Проба концентрация вещества для ЯМР-спектроскопии

Спектроскопия абсорбционная, идентификация веществ

Спектроскопия в твердых веществах

Спектроскопия водородной связи I . 13.5. Факторы, обусловливающие уширение колебательных полос в жидкой фазе вещества

Спектроскопия ядерного магнитного резонанса парамагнитных веществ

ЭМИССИОННАЯ СПЕКТРОСКОПИЯ и СОСТАВ ВЕЩЕСТВА Физические процессы в плазме и на электродах Преображенский. Новый обобщенный метод добавок

Электронная спектроскопия хемосорбированных молекул органических веществ

спектроскопии высокочистых веществах

спектроскопия вещества в реакторе



© 2025 chem21.info Реклама на сайте