Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфология аморфных полимеров

    Морфология аморфных полимеров [c.67]

    Таким образом, на ряде примеров установлено, что поверхность наполнителя влияет на морфологию аморфных полимеров в поверхностных слоях. Однако поскольку в настоящее время еще нет возможности связать количественно морфологию с механическими свойствами даже для ненаполненных полимеров, то тем более не установлена связь для композиционных материалов, и исследования в этой области только начаты. [c.52]


    МОРФОЛОГИЯ АМОРФНЫХ ПОЛИМЕРОВ [c.5]

    За исключением ПК, у неориентированных аморфных полимеров в процессе вынужденной эластичности при растяжении не зафиксирован рост числа разорванных цепей. Данное поведение является результатом различий морфологии цеией. В отсутствие кристаллитов большие осевые усилия, вызывающие разрыв цепей, могут быть получены лишь при наличии трения между проскальзывающими сегментами цепей. Расчетная объемная концентрация разрывов цепей (из-за большого числа проскальзывающих сегментов) намного меньше, чем в частично кристаллических полимерах. Кроме того (ввиду отсутствия эффекта выравнивания микрофибриллярной подструктуры), макроскопическое ослабление материала при растяжении происходит прежде, чем достигаются значения напряжений и деформаций, достаточные для равномерного распределения разрывов цепей. [c.309]

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]


    При работе с растровым микроскопом исключается длительная и кропотливая работа по подготовке препарата (реплики, ультра-тонкие срезы и т.п.). Вся процедура подготовки полимерного образца сводится к напылению на его поверхность слоя токопроводящего металла толщиной 2,5 нм и выше. Большие размеры образца, возможность вращения и перемещения его в камере микроскопа на значительные расстояния (до 5 см) делают РЭМ незаменимым инструментом для исследования поверхностей, изучения морфологии надмолекулярных образований в кристаллических и аморфных полимерах [11]. [c.357]

    История вопроса достаточно полно освещена в [4]. Ясно, что при одной н той же кристаллической ячейке и одной и той же решетке вообще, морфология кристалло-аморфных полимеров и даже монокристаллов будет предопределяться степенью свернутости р (точнее распределением по р), которая предшествовала кристаллизации в исходном расплаве или растворе. Естественно, что жесткоцепные макромолекулы могут кристал-94 [c.94]

    Изложенный подход показывает, что объективно трудно выработать критерии для систематизации морфологических структур в аморфных полимерах. Это связано прежде всего с тем, что наряду с описанием морфологии структурных образований необходимо учитывать подвижность соответствующих структурных элементов [90, с. 47] и классифицировать их по стабильности. [c.50]

    Имеющиеся экспериментальные данные, по-видимому, не позволяют однозначно судить о морфологии полимерных цепей в аморфном состоянии. В связи с этим для объяснения надмолекулярной организации аморфных полимеров была предложена кластерная модель 36]. Под кластерами в дальнейшем будем понимать области, в которых имеет место более плотная упаковка молекул или их частей и (или) более упорядоченное их расположение по сравнению с основной, более рыхлой и разупорядоченной массой вещества. Естественно, что плотность кластера должна несколько превышать среднюю плотность полимера. В то же время кластеры являются менее упорядоченными и менее плотно упакованными областями, чем кристаллиты. [c.67]

    Характер морфологии цепей в кластерах очевидно определяется химическим строением полимера, его молекулярной массой и в значительной степени параметрами сетки зацеплений [37]. Если расстояние между соседними узлами сетки зацеплений достаточно велико и соответствует длине нескольких десятков (или больше) мономерных звеньев (у атактического полистирола, например, 45—60), то очевидно, что наиболее вероятной внутри кластера будет складчатая конформация цепи. Такая картина, по-видимому, должна наблюдаться для многих не слишком жесткоцепных полимеров. Если расстояние между соседними узлами сетки зацеплений включает несколько повторяющихся звеньев, то очевидно, что наиболее вероятной внутри кластера будет конформация, соответствующая развернутой цепи. В рамках такой модели становится понятным, что максимально возможная для данного аморфного полимера объемная концентрация ф1 кластеров (как и максимальная степень кристалличности у, у кристаллического полимера) задается параметрами сетки зацеплений. Кластерная модель устанав- [c.69]

    Существенное влияние на процесс переноса веществ в полимерах оказывают наличие кристаллических областей в полимере и структура аморфных областей, связанных с морфологией кристаллических образований. Показано, что проницаемость частично кристаллизующихся полимеров меньше, чем соответствующих аморфных полимеров [3—5], причем зависимость проницаемости от степени кристалличности носит нелинейный характер. В ряде работ [58—60] рассмотрено влияние структуры аморфных [c.35]

    Области применения оптической микроскопии. С помощью поляризационной О. м. можно прежде всего найти линейные и угловые размеры структурных элементов, поскольку величина Дга непосредственно связана с толщиной объекта 6, (см. вышеприведенную ф-лу). Помимо этого, метод позволяет определять важные оптич. характеристики (показатели преломления, знак двулучепреломления) как структурных элементов, так и полимерных систем в целом. Установление знака А в элементе надмолекулярной структуры весьма существенно, ибо позволяет определить ориентацию молекулярных цепей в нем. В свою очередь (напр., при появлении положительных, отрицательных и аномальных сферолитов в полиэтилентерефталате), знание ориентации цепей позволяет сделать важные выводы о кинетике и морфологии кристаллизации в разных режимах. Не менее важные выводы на основе изменений знака Ап, сопровождающих деформацию сферолитов в растягиваемых волокнах или пленках, м. б. сделаны о кинетике и морфологии ориентационных процессов. По поводу значимости определения Аи в аморфных полимерах см. Фотоупругость. [c.240]

    От обычных, низкомолекулярных соединений твердые полимеры отличаются физическим состоянием или морфологией. Большинство полимеров проявляют свойства твердых кристаллических веществ и высоковязких жидкостей [10, 11]. На рентгено-и электронограммах полимеров обнаруживаются четкие рефлексы, характерные для пространственно упорядоченных, кристаллических веществ, а также диффузные картины, типичные для жидкостей. Для обозначения упорядоченных и неупорядоченных областей в полимере применяются соответственно термины кристаллический и аморфный. Степень кристалличности разных полимеров весьма различна. Хотя отдельные полнмеры могут быть полностью аморфными или целиком кристаллическими, большинство из них характеризуется частичной кристалличностью, т. е. они являются полукристаллическими. [c.31]


    Возможность реализации у полимера одного или обоих тепловых переходов зависит от его морфологии. Полностью аморфные полимеры характеризуются только Гст> тогда как полностью кристаллические полимеры имеют только Гцд. Большинство же полимеров при Гдл подвергается кристаллизации лишь частично, подобные полукристаллические полимеры характеризуются температурой плавления и температурой стеклования. Тепловые переходы легко измерить по изменению таких свойств, как удельный объем, теплоемкость. На рис. 1.5 приведена зависимость удель- [c.35]

    Закономерности изменения структуры и свойств кристаллических полимеров при охлаждении (степень кристалличности, величина кристаллов, размер и морфология надмолекулярных структур) носят более сложный характер, чем у аморфных полимеров. [c.87]

    В настоящее время наука о полимерах претерпевает существенные изменения. Это обусловлено увеличением доли исследований физических свойств полимеров, фронт которых довольно широк. Это и детальное структурное исследование кристаллических и аморфных полимеров, и установление связи механических свойств полимеров с их морфологией, и дальнейшее развитие методов конформационного анализа полимеров и др. Особое внимание в последнее время уделяется изучению молекулярной подвижности твердых полимеров, поскольку это позволяет глубже понять молекулярную природу многих физических процессов. [c.5]

    Необычный температурный эффект, наблюдающийся для сажевых композиций полиэтилена, приписывают морфологии полукристаллического полимера. Упорядоченные (кристаллические) области полиэтилена и полипропилена недоступны для кислорода, поэтому реакции окисления происходят в основном в неупорядоченных (аморфных) областях Введение до 10% сажи не сказывается на общей кристалличности полимера, что было подтверждено рентгеновским и дилатометрическим методами. Таким образом, в твердом состоянии около 60% разветвленного полиэтилена устойчиво к действию окисления, а в остающихся 40% аморфного полимера эффективная концентрация сажи примерно в 2 раза выше, чем в расплавленном (полностью неупорядоченном) образце. Иными словами, среднее расстояние, которое полимерный радикал должен пройти до поверхности частицы, в расплаве почти в 2 раза больше, чем в твердом полимере. Хотя несколько процентов сажи не уменьшают общую кристалличность полимера, неупорядоченные области могут концентрироваться вблизи поверхности частиц сажи, где процесс кристаллизации должен быть несколько заторможен. Возможно также, что при пониженных температурах преобладает гетеролитический распад перекисей до инертных продуктов. Однако показанное выше изменение характера зависимости устойчивости от обратной температуры, происходящее вблизи точки плавления, подтверждает основную роль морфологии полимера. [c.482]

    Введение наполнителей в аморфные полимеры сопровождается изменением всего комплекса свойств полимера. Это является результатом межфазных взаимодействий на границе раздела полимер - твердое тело, к которым прежде всего относятся адсорбционные или молекулярные взаимодействия. Они являются ответственными за адгезию на межфазной границе, физические, механические и другие свойства наполненных систем. Межфазные взаимодействия приводят к образованию межфазных слоев (граничных или поверхностных, см. гл. 3), отличающихся по свойствам от объема матрицы. Межфазные взаимодействия определяют особенности структуры граничного слоя, характер молекулярной упаковки, молекулярную подвижность, морфологию и другие его свойства. [c.120]

    Существуют два класса полимеров полностью аморфные и частично-кристаллические. Аморфные полимеры состоят из неупорядоченно-упакованных цепей, состояние которых характеризуется температурой стеклования, выше которой они превращаются из хрупких стеклообразных тел в резиноподобные эластичные вещества. Ниже температуры стеклования статистические молекулярные клубки лишены гибкости, в то время как выше температуры стеклования они становятся гибкими. Частично-кристаллические полимеры ниже температуры плавления состоят из аморфных и кристаллических участков. Аморфные участки реагируют на изменение температуры так, как было указано выше. Кристаллические участки представляют собой кристаллиты, образованные из складчатых цепей. Обычно кристаллические участки имеют морфологию сферо-литов. [c.40]

    Приведенные экспериментальные данные и результаты теоретических оценок касались ПЭВП, который является наиболее гибким и поэтому легче всего поддается ориентации по сравнению с другими полимерами. Однако аналогичные эффекты, как этого и следовало ожидать, наблюдались и для остальных полимеров. Для понимания причин, вызывающих изменение свойств, достигаемое регулируемым формированием структур, необходим детальный анализ деформационных и температурных воздействий, которым подвергается полимер в процессе переработки. Такой анализ стал проводиться лишь сравнительно недавно, хотя в течение последних 30 лет исследовалась роль надмолекулярных структур, морфологии и порядка в кристаллических и аморфных полимерах в равновесных условиях. Понимание характера равновесной морфологии позволяет правильно оценить потенциальные возможности, которые дает регулирование структур. [c.47]

    Сканирующая электроЕ1ная микроскопия (СЭМ) позволяет получить изображение микроскопической поверхностной области образца, причем воз-можно получение трехмерного изображения. СЭМ дает увеличение 20— 100 000 раз (чаще всего 20 000—50 000). Разрешающая способность СЭЛ1 несколько меньше ПЭ.М и составляет С 10 нм. Поскольку для СЭЛ не требуется специально готовить образцы, этот метод находит все более широкое применение для изучения морфологии надмолекулярных образований кристаллических и аморфных полимеров. [c.86]

    Рассмотрим теперь структуры, возникающие в ориентированных кристалло-аморфных полимерах. Наиболее характерной из них является структура с морфологией типа шиш-кебаб, впервые обнаруженная при кристаллизации полимеров в текущем растворе, а затем наблюдавшаяся при кристаллизацип в самых разных условиях с обязательным, однако, условием наличия факторов, вызывающих одноосную молекулярную ориентацию полимерных цепей. Эта структура, четко обнаруживаемая с помощью электронной микроскопии (рис. XVI. 1), характеризуется наличием центральной области — фибриллярной нити, на которой имеются своеобразные наросты. Сначала думали, что центральная нить представляет собой однородное образование, фибриллярный зародыш типа КВЦ, но затем Келлер обнаружил, что она сама может иметь структуру типа шиш-кебаб и состоять из более тонкой нити КВЦ, окру- [c.368]

    Влияние морфологии кристаллизующихся полимеров на их ст руктурирование и деструкцию под действием ионизирующего излучения исследовали в работе (30]. Во всех случаях наблюдали разницу в скорости структурирования и деструкции макромолекул кристаллической и аморфной фаз. [c.228]

    Клемент и Джейл [38] на основании измерения размеров зерен принимают, что первичные домены могут собраться в рой с образованием структурных единиц большого размера (250—500 А). В модели Аржакова, Бакеева и Кабанова [39] также предполагается существование упорядоченных доменов со складчатыми цепями, но в отличие от Ии и Клемента и Джейла, которые предпол1агают изотропное расположение доменов, соединенных проходными цепями в однородную трехмерную сетку, Аржаков, Бакеев и Кабанов принимают, что модель должна иметь анизотропное строение. Если первые рассматривают в качестве исходной единицы зерно, то последние принимают, что аморфный полимер построен из фибрилл, со складчатыми доменами, которые соединены проходными цепями. Имеющиеся в литературе данные противоречат представлению о фибрилле, как основной морфологи- [c.82]

    Поскольку свойства композиции определяются несовместимостью компонентов, то на примере изучения морфологии двухкомпонентных смесей была предпринята попытка обосновать морфологический критерий совместимости, принимая за него отсутствие четкого оптического контраста между структурными (на надмолекулярном уровне) составляющими смесей на основе кристаллизующихся и аморфных полимеров [430]. Таким методом были изучены смеси полиэтилена низкой плотности и блок-сополимера стирола с бутадиеновым каучуком, содержащим 30% стирола, а также ПЭНП и ПЭВН с полиамидом и полистиролом. [c.215]

    Как видно из приведенной серии морфологических картин, имеется возможность разделения областей преимущественно кристаллического или аморфного компонентов смеси. Как и в случае смеси полиамида с полистиролом, по морфологии неориентированной смеси ПЭНП с ПС (рис. V. 14, а) нельзя достаточно четко судить о распределении компонентов. При ориентационной вытяжке этой смеси четко становятся видны области преимущественно кристаллического или аморфного компонента. Введение аморфного полимера, как видно из рисунка, оказывает существенное влияние на ламелярную слоевую структуру, характерную для ориентированного состояния чистого полиэтилена. С увеличением содержания аморфного компонента смеси происходит сглаживЗ)Ние оптиче- [c.216]

    Каргин, Слонимский и Китайгородский полагали, что пачки существуют не только в стеклообразном и высокоэластическом, но и в вязкотекучем состоянии. Считалось, что пачки в известной степени аналогичны областям ближнего порядка в жидкостях и имеют флуктуацион-ный характер. Прн этом подчеркивалось, что длительность жизни пачки полимерных цепей очень велика, а в стеклообразном состоянии пачка остается практически неизменной. Выдвинув пачечную модель структуры аморфного полимера, Каргин, Слонимский и Китайгородский пересмотрели представления о морфологии цепей в кристаллических полимерах. В 1957 г. они утверждали [26] Широко распространенная в настоящее время картина строения кристаллического полимера в виде системы небольших упорядоченных областей, объединенных общими цепями, проходящими последовательно через области упорядоченно уложенных и спутанных участков цепей, не может быть справедливой в той форме, как она обычно излагается. Это вытекает хотя бы из чисто геометрических соображений имея в виду достаточно хорощо известные размеры областей порядка и расстояния между ними, невозможно построить модель полимера, в которой цепи выходили бы из области порядка, перепутывались и затем опять образовывали области порядка. Несомненно, что одна и та же цепь проходит через несколько областей порядка и беспорядка. Однако при этом цепь не выходит за пределы пачки и по всей своей длине в основном сохраняет своих соседей . [c.64]

    Наблюдается интересная закономерность чем уже интервал температур, в котором осуществляется переход нз стеклообразного в высо Коэластнческое состояние, тем больше пик механических потерь, связанный с этим релаксационным процессом. Таким образом, характер сетки зацеплений (т. е. значения величин Мс и п) как бы задает морфологию цепей в аморфном полимере и тем самым определяет степень кооперативности сегментального движения при переходе из стеклообразного состояния в высокоэластическое. [c.281]

    В первом разделе помегцены оригинальные работы по исследованию структуры полимеров на молекулярном уровне с помощью рентгенографического II электронографического методов, начиная с первой работы, опубликованной еще в 1937 г. по структуре тринитрата целлюлозы, и кончая более поздними работами по структуре расплавов полимеров. Из этих работ представляют несомненную и практическую ценность исследования по структуре полимеров в ориентированном состоянии, изучение плотности упаковки макромолекул различных полимеров, а также исследование начальных процессов явления структурообразования. В этом цикле работ принципиальное значение для развития представлений о структуре аморфных полимеров приобрела работа но строению линейных полимеров, опубликованная в 1957 г. Друго]1 цикл работ В. А. Каргинаг, помещенный в этом разделе, относится к изучению кристаллического сдстояния полимеров, морфологии кристаллических структур и процессам кристаллизации. [c.3]

    Физическую структуру различных типов кристаллических или час-гичнокристадличеоких сополимеров лучше всего удается охарактеризовать в тех случаях, когда известны макрококформация молекулярной цепи, а также структура и морфология кристаллических областей. Возможны три предельных варианта макрококформации цепи аморфного полимера, складчатые цепи и вытянутые цепи (разд. 3.2, рис. 3.5, [c.359]

    По этим причинам в нашей лаборатории была осуществлена обширная программа исследования конструкционных пластмасс с целью охарактеризовать скорости РУТ как функцию условий нагружения. Выполнение подобной программы способствовало бы идентификации микромеханизмов разрушения и выяснению роли химической природы полимера и его морфологии [3—10]. Интересно отметить, что группа кристаллических полимеров (особенно найлон-6,6, полиформальдегид и поливини-лиденфторид) обладают большей способностью накапливать энергию при разрушении и имеет более высокие скорости РУТ, чем аморфные полимеры с низкой степенью кристалличности. После детального исследования поведения аморфных полимеров было решено изучить влияние структурных и морфологических факторов на РУТ в найлоне-6,6, полиформальдегиде и поливинилиденфториде. Настоящая статья дополняет предшествующие публикации по найлону-6,6. (Относительно других исследований кристаллических полимеров см. работы 1[3, 7— 12].) [c.493]

    С чем может быть связано обнаруживаемое влияние термической предыстории на процесс кристаллизации Для этого кратко рассмотрим современные представления о структуре полимеров в аморфном состоянии. Вопреки существовавшему ранее взгляду на структуру аморфных полимеров как систему беспорядочно расположенных статистических клубков, в последние годы было показано, что полимеры уже в аморфном состоянии представляют собой упорядоченные системы . Это упорядочение проявляется в образовании агрегатов макромолекул в виде пачек цепей. Такие лачки удается наблюдать не только в твердых стеклообразных ттолимера.х , но и в каучуках и, как показали последние исследования, упорядоченное расположение цепей удается обнаружить и в расплавах при температурах, намного превышающих температуру плавления полимеров 2 Детально процессы агрегации и морфология агрегатов макромолекул были изучены при исследо- [c.53]

    Многие полимеры по разным причинам или вообще не могут кристаллизоваться, или кристаллизуются частично и с грудом. Морфология некристаллических твердых полимеров, которые обычно называют аморфными, изучена недостаточно подробно. Прямые способы наблюдения, такие, как электронная микроскопия (которая играла важнейшую роль при исследовании морфологии кристаллических полимеров) и дифракция рентгеновских [c.17]

    Морфология сшитых полимеров зависит от ряда факторов, таких как степень поперечного сшивания, структура полимера, подвергавшегося сшиванию (кристалл, аморфное твердое тело, жидкость), последующая термическая и механическая обработка образца. Теория каучукоподобной эластичности базируется на предположении, что любое взаимодействие между соседними цепями незначительно влияет на статистическую природу упругих свойств полимеров. Однако, как отметил Джи некоторые расхождения между теорией и экспериментом, вероятно, связаны именно со взаимодействием упорядоченно расположенных молекул. Если бы это объяснение оказалось правильным, можно было бы предположить, что полимеры, которые сшиваются в аморфном твердом или жидком состоянии, сохраняют до некоторой степени пачечную структуру. При сшивании твердых полимеров в кристаллическом состоянии образуются (как свидетельствуют последние результаты Сэлови и Келлера ) первичные связи между складками молекул в полимерных кристаллах. Показано что молекулярная ориентация в сшитых кристаллизующихся полимерах при температурах выше точки плавления несшитого полимера возможна лишь при небольших степенях сшивания. [c.22]

    В этой главе рассматривалась структура полимеров в том виде, в каком она наблюдается при изучении элементарных ячеек микроскопическими методами. Морфология частично или полностью кристаллических полимеров в пЬследнее время изучалась весьма интенсивно, но о микроструктуре аморфных полимеров известно сравнительно мало. Полагают, что в этих полимерах соседние молекулы образуют пачки, в которых макромолекулы более или менее выровнены. Эти пачки устойчивы при температурах ниже Tg вследствие недостаточной подвижности сегментов и до некоторой степени устойчивы при температурах выше Tg (в недеформированном состоянии), но неустойчивы при достаточно высоких температурах. [c.36]

    Добавление структурноактивных наполнителей в кристаллизующиеся полимеры сопровождается немонотонным изменением степени кристалличности. Увеличение концентрации добавок сопровождается аморфиза-цней полимера. Естественно, что наблюдаемые изменения морфологии кристаллических образований и степени кристалличности сопровождаются существенным изменением механических, теплофизических и диэлектрических свойств. Введение структурноактивных наполнителей, как правило, сопровождается значительным увеличением твердости и плотности упаковки в сферолитах. Иногда наблюдают значительное увеличение твердости аморфного полимера также при введении в него малых количеств дисперсного наполнителя. Полагают что в этих случаях частицы наполнителя взаимодействуют ие с отдельными макромолекулами, а с их агрегатами. При этом достаточно небольших добавок наполнителя, чтобы его частицы оказали существенное упорядочивающее влияние на весь объем полимера. [c.10]

    Уменьшение плотности упаковки макромолекул в расплаве при повышении ММ до Мег свидетельствует о возникновении специфических дефектов упаковки, в результате внутримолекулярного конформационного перехода. Такими дефектами упаковки могут быть либо петли, образовавшиеся в результате перехода фрагментов макромолекулы в складчатую конформацию, или же межмолекуляр-ные зацепления, возникновение которых обусловлено взаимным проникновением макромолекулярных клубков. Второе предположение, по-видимому, является менее вероятным ввиду того, что образование сетки зацеплений обычно происходит при существенно более высоких значениях ММ (более подробно об этом см. гл. IV). В то же время, в пользу модели ССМ говорят результаты исследования морфологии полимерных кристаллов, полученных из расплава, согласно которым в этой области ММ возникает переход от кристаллизации с выпрямленными цепями к кристаллизации, протекающей по механизму складывания цепей. Наконец, представление о том, что упорядоченность аморфных полимеров имеет скорее внутримолекулярное (модель ССМ), чем межмолекулярное (модель ПСК) происхождепие, позволило количественно описать зависимость степени упорядоченности, выражаемой отношением удельных объемрв полимера в кристаллическом и аморфном состояниях, от отношения толщины макромолекулы к параметру ее равновесной жесткости. [c.50]

    Структура покрытий из кристаллических полимеров. Закономерности изменения структуры кристаллических полимеров (степень кристалличности, параметры кристаллической решетки, размер и морфология надмолекулярных образований) при лленкообразовании имеют более сложный характер, чем в случае аморфных полимеров. [c.64]


Смотреть страницы где упоминается термин Морфология аморфных полимеров: [c.18]    [c.6]    [c.86]    [c.92]    [c.242]    [c.308]    [c.80]    [c.21]    [c.230]    [c.46]   
Смотреть главы в:

Теоретические основы переработки полимеров -> Морфология аморфных полимеров

Химическая физика старения и стабилизации полимеров -> Морфология аморфных полимеров


Разрушение твердых полимеров (1971) -- [ c.20 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры

Морфология

Морфология полимеров



© 2025 chem21.info Реклама на сайте