Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экструдер привод

    В табл. 65 приводится техническая характеристика наиболее распространенных одношнековых экструдеров (90 мм). [c.181]

    Дальнейшее исследование полученных поперечных срезов показало, что расплав может проникать под слой твердого полимера и время от времени полностью охватывать его часто сплошность твер -дого слоя нарушается, и расплав заполняет образовавшиеся полости (см., например, разд. 15.5). Такое нарушение сплошности твердого слоя, как оказалось, происходит в конусной части червяка п является причиной колебаний производительности экструдера (т. е. приводит к появлению флуктуаций температуры, давления и расхода во времени), а также причиной появления в экструдате некоторого количества воздушных пузырей. [c.430]


    Обычно скорости вращения червяков составляют 10—200 об мин для одночервячных и 5—30 об/мин для многочервячных машин. Большинство экструдеров приводится от электродвигателей, имеющих скорость вращения 1000 об мин или выше. Поэтому между электродвигателем и червяком устанавливают редуктор. Для экструдеров диаметром до 100 мм применяют червячные редукторы они обеспечивают необходимое передаточное число, а их система смазки не нуждается в по стоянном внимании и обеспечивает нормальную работу в течение нескольких лет при минимальном уходе. [c.135]

    Основные элементы конструкции одночервячных экструдеров привод, опорный узел червяка и цилиндра, включая редуктор, пластицирующий цилиндр с обогревом и охлаждением, червяк, формующая головка и загрузочная воронка. Основные элементы все чаще выпускают в форме сменных узлов. [c.204]

    Полые изделия выталкиваются из раскрытой формы устройством 5. Выдувной ниппель 4 перемещается устройством 3. Для синхронизации движения подвижных узлов и деталей агрегата установлен специальный механизм 1. Электродвигатели и аппаратура гидравлического привода расположены в нижней части станины агрегата. Экструдер, привод червяка и редуктор рассчитаны на переработку полиэтилена с высокой молекулярной массой. Большой крутящий момент передается червяку двумя гидравличе- [c.244]

    При увеличении давления на полимер в капиллярном вискозиметре наступает момент, когда гладкая цилиндрическая струя полимера, выходящая из отверстия капилляра, становится шероховатой, затем с повышением давления искривляется и становится наконец винтообразной. В промышленности такое искривление формы струи, выходящей из головки экструдера, приводит к браку и к необходимости уменьшать скорость экструзии. Искажение струи происходит при скоростях течения, значительно меньших, чем те, которые бы обусловили появление турбулентности в неэластичной жидкости. Критерий Рейнольдса, рассчитанный для струи полимера, значительно меньше его критического значения. [c.176]

    Вспененные термопластичные материалы получают, вводя в полимер вспенивающий агент. Существуют химические вспениватели, которые находятся внутри гранул, и физические, испаряющиеся вспениватели, которые впрыскиваются в расплав полимера. Высокое давление в экструдере препятствует вспениванию в машине, но, как только расплав выходит за пределы формующей матрицы, процесс вспенивания немедленно начинается. Расширяющиеся пузырьки приводят к возникновению локальной ориентации в полимере. Дополнительная ориентация может быть создана за счет продольной вытяжки. В зависимости от типа полимера, плотности готового изделия и вида вспенивателя переработка производится на одном одночервячном экструдере, на двух установленных друг за другом одночервячных экструдерах или на двухчервячных экструдерах. [c.19]


    Очевидно, что величина временных флуктуаций концентрации на выходе зависит как от условий входа, так и от характера РВП, и в особенности от их взаимодействия (см. Задачу 7.15). Только исключительный случай пробкового течения не приводит к уменьшению флуктуаций концентрации. Такие условия течения можно наблюдать при использовании различных видов перерабатывающего оборудования, например одно- и двухчервячных экструдеров. Этот вид оборудования обеспечивает очень узкое РВП, что во многих отношениях является большим преимуществом. Однако в отношении выравнивания флуктуаций в составе композиций, подаваемых в питатель экструдера, возможности экструзионных машин ограничены. Поэтому необходимо тщательно следить за дозированием отдельных элементов композиции, подаваемых на вход в экструдер. [c.215]

    Вязкостный динамический метод создания давления не является единственным методом, основанным на использовании величины [V-t]. Из уравнения (6.3-5) видно, что существование первоначальных разностей нормальных напряжений в расплаве полимера может также приводить к ненулевому значению величины [V-т]. Анализ с помощью этого уравнения работы дискового экструдера Вайссенберга показывает, что этот член обусловливает появление избыточ- [c.305]

    Кроме того, червячная конструкция имеет еще целый ряд допол -нительных преимуществ неподвижный корпус можно при необходимости нагревать или охлаждать червяк может быть полым, что позволяет осуществлять его подогрев или охлаждение подвод механической энергии достигается путем вращения вала червяка через редуктор от электродвигателя винтовой канал создает составляющую скорости, перпендикулярно гребню, что приводит к вращению потока и обеспечивает хорошее перемешивание расплава результирующий профиль скоростей позволяет получить узкий интервал распределения времен пребывания отдельных частиц в кана-ле,что делает червячный экструдер [c.320]

    Принцип действия шестеренчатого насоса очень прост. Обратимся к рис. 10.32, в. Подаваемая жидкость забирается в полости, возникающие между расходящимися смежными зубьями шестерни. При вращении шестерни жидкость транспортируется из зоны входа в зону выхода. В это время жидкость заперта между смежными зубьями и корпусом, при этом происходит небольшая утечка жидкости через зазоры. Относительное движение шестерни и корпуса вызывает циркуляционное течение, подобное циркуляционному потоку, возникающему в нормальном сечении канала червячного экструдера, рассмотренного в разд. 10.3. Вход и выход насоса отделены друг от друга сцепленными зубьями шестерен. Входящие в зацепление зубья выдавливают расплав из впадины между зубьями. Колебания давления на выходе и величины объемного расхода возникают каждый раз, когда следующая пара зубьев достигает зоны выхода Зубья шестерен обычно имеют эвольвентный профиль (рис. 10.36). В прямозубых шестернях жидкость может быть заперта между зацепляющимися зубьями, что приводит к возникновению утечек, чрезмерному шуму и износу. Для масел с малой вязкостью эта проблема в некоторой степени решается применением разгрузочных канавок переменной конфигурации. Так как это не дает результата для высоковязких расплавов, то используют шестерни с шеврон- [c.353]

    В разд. 10.3 мы, отталкиваясь от плоскопараллельных пластин, последовательно переходим к конструкции одночервячного экструдера. Напомним, что последний шаг в этом дедуктивном процессе состоял в навивке спирального канала на внутреннюю поверхность вращающегося корпуса. Причем шаг спирали выбирался таким, чтобы за один оборот корпуса осевое смещение канала равнялось ширине (см. рис. 10.10). Мы уже отмечали, что такая конструкция обеспечивает циркуляционное движение полимера в канале, которое приводит к хорошему ламинарному смешению и узкому распределению времен пребывания. Наличие узкого распределения времен пребывания требует исключения временных флуктуаций состава композиции на входе, поскольку экструдер не обеспечивает сглаживания флуктуаций состава (см. разд. 7.13). [c.406]

    Для головки с большим сопротивлением уменьшение глубины винтового канала приводит к увеличению производительности (рабочая точка перемещается из положения А в Л ), в то время как для головки с малым сопротивлением это приводит к снижению производительности (рабочая точка смещается из положения С в положение С см. рис. 12.3). Анализ системы экструдер — головка основан на простой модели, тем не менее он применим для качественного описания любого сочетания экструдер—головка. [c.422]

    Вязкое уплотнение. Вертикальные экструдеры, в которых питающая зона червяка выступает наверх в загрузочный бункер и привод которых связан с зоной дозирования червяка в нижней части, имеют много преимуществ (например, эффективное питание и высокий коэффициент использования крутящего момента). Однако при этом возникают проблемы, связанные с высоким давлением расплава у нижнего конца червяка, который одновременно играет роль приводного вала. Вал вращается в подшипниках скольжения. В зазоре между валом и подшипником может происходить утечка полимера. Одним из способов уменьшения или полного устранения утечки является нарезка на валу витков обратной резьбы, которая возвращает поступающий в зазор расплав обратно в экструдер в зону высокого давления. Этот способ уплотнения зазора в подшипнике скольжения называется вязким динамически уплотнением. Такую конструкцию можно представить в виде двух экструдеров, соединенных голова к голове . Главный экструдер имеет определенную пропускную способность и создает давление Р в то же время динамическое [c.458]


    Поскольку полистирол и полибутадиен относятся к категории термодинамически несовместимых, полимеров, термодинамическая поправка связана здесь с сегрегационным параметром хав (А и В обозначают блоки, которые в свободном состоянии разделились бы на макрофазы), величина которого столь высока, что можно принять эффективную энергию излома бесконечной, т. е. считать для полистирольных блоков /" = 0. Это приводит к полному их распрямлению вот здесь-то обходным путем удается реализовать структуру, которая возникла бы при низкотемпературном переходе второго рода, если бы его осуществлению не мешало структурное стеклование иными словами, этот переход действительно реализуется в результате сегрегации (количественно характеризуемой параметром хав) и воздействия относительно малого продольного градиента скорости у входа в канал экструдера. Впрочем, можно показать, что тот же эффект в других условиях достигается за счет одной лишь сегрегации (28]. [c.223]

    Протекание химических реакций в полимерах при действии механических напряжений характерно для условий переработки полимеров. Действительно, если механически перемешивать воду или бензол в какой-либо емкости, то никаких химических изменений в них не происходит. Ускоряется лишь перемещение их молекул друг относительно друга. При механическом же перемешивании полимеров (на вальцах, в смесителях, в экструдерах и др.) происходит разрыв химических связей в макромолекулах и в результате инициируются химические реакции. Механические воздействия на низкомолекулярное вещество или олигомер приводят к разрушению слабых физических взаимодействий между его молекулами, которые легко преодолеваются механическими силами. Если же молекулы той же химической природы велики (макромолекулы полимеров), то суммарная энергия слабых физических взаимодействий между звеньями макромолекул становится больше энергии химической связи в главной цепи. И тогда механическое напряжение, приложенное к полимеру, вызовет разрыв более слабой связи, которой в данном случае окажется химическая связь в цепи макромолекулы. Так произойдет химический разрыв макромолекулы под влиянием механического воздействия. Очевидно, механодеструкция будет проходить до тех пор, пока сум- [c.249]

    Для расчета абсолютного уровня температурных полей в случае применения степенного закона необходима, по нашему мнению, количественная оценка соотношения вязкой (необратимой, диссипативной) и упругой составляющих энергии, затрачиваемой на деформацию полимера. Это можно выполнить, если исходить из соотношения между средним временем релаксации и временем переработки полимера. Тогда решение системы (2)—(4) с учетом уравнения (6) возможно во всех случаях, кроме тех, когда вязкоупругость полимеров приводит к значительной аномалии гидродинамической обстановки процесса, как это бывает, например, в дисковых и комбинированных экструдерах. Тогда система уравнений (2)—(4) должна решаться совместно с уравнением состояния (7) или ему подобным. [c.99]

    На основании уравнения (10) легко перейти к определению мощности привода и крутящего момента. Подобные уравнения получены для течения полимера в винтовых каналах червячных машин и в рабочих зазорах дисковых экструдеров. [c.101]

    Червячные машины с одним или несколькими червяками являклся машинами непрерывного действия. Бесспорными преимуществами червячных экструдеров являются в1)Гсокая производительность, стабильность процесса переработки и возможность создания необходимого давления экструзий. Однако сравнительно невысокое качество смеик ния при переработке композиций и Относительно большая длительность иро]де-, сп при необходимости поддержания высоких температур формования отрицлчель-по сказываются на термочувствительных композициях, особенно с исс.оль-зованием вторичного сырья, что зачастую делает непригодным такое оборудование для их переработки. Стремление улучшить показатели работы экструдера приводит к усложнению его конструкции за счет применения сложных в изготовлении и ремонте специальных смесительных элементов, удлинения червяков до /./0 = 30 40 и увеличения их числа. [c.37]

    С 1400 представляет собой самую крупную машину этого типа с двухгнездной формой производительностью до 1400 бутылейДвс. Емкость одной бутыли 1,13 л. машина снабжена 1 экструдером диаметром 45 мм с девятью обогревающими элементами - шесть для цилиндра и 3 для экструзионных головок. Для изготовления бутылей разных размеров на обеих формах машины можно использовать различные экструзионные головки. Формы приводятся в движение гидравлически, сила замыкания равна трем тоннам. Бутыли выталкиваются из машины сжатым воздухом. Экструдер приводится в действие электродвигателем мощностью 125 л.с. [c.60]

    Недостатками экструзионного метода формования изделий из пенополистирола являются невозможность получения разнотолщинн-ых элементов, а также необходимость применения дополнительного сложного оборудования (вакуумформовочных машин) для придания формы полученному листовому материалу. Кроме того, увеличение мощности экструдеров приводит к увеличению расхода электроэнергии. [c.199]

    На современных экструдерах применяется независимая система нагрева, охлаждения и регулирования температуры для каждой зоны цилиндра. Количество зон в зависимости от типа машины можеп меняться от 2 до 12. На экструдерах, выпускаемых в США, применяются различные системы нагрева паровая, электрическая, масляная, индукционная. Наиболее перспективным является индукционный нагрев. Применяются системы принудительного воздушного и водяного охлаждения. Интенсивность охлаждения внутренней полости шнека эквивалентна уменьшению глубины его канала, а следовательно, также может использоваться в качестве переменного параметра при переработке различных материалов. Для регулирования температуры-головки и стенки цилиндра применяют термометры безконтактного типа, точность показаний которых может составлять 0,5° С. В современных экструди-онных машинах США применяются три типа приводов, которые по мере возрастания стоимости могут быть перечислены в следующей последовательности  [c.180]

    Увеличение производительности шнековых машин может быть достигнуто путем увеличения числа оборотов, исиользования более крупных HjneKOB и конструирования специальных шнеков. Длина и скорость ишека лимитируются мощностью привода, нагрузкой шнека и его под-шипииков, а также теплостойкостью материала. Все типы экструдеров в зависимости от назначения комплектуются различными оформляющими головками, а также приемными, тянущими, охлаждающими [c.182]

    В последние годы получили развитие различные модификации процесса питания экструдера. Уделяется много внимания загрузочной зоне экструдера считают, что длина этой зоны должна составлять 10 диаметров. Для обеспечения равномерной загрузки применяют экструдер, в котором ось загрузочного шнека расположена горизонтально и выше основного шнека. Известны конструкции с применением в загрузочной зоне двойных конических шнеков и двух концентрических шнеков, работающих от одного привода. Такие конструкции известны под назвайием телескопический экструдер . [c.183]

    В США па1пел широкое примепеппе экструдер с вертикально расположенным шнеком загрузка осуществляется сверху, а привод шнека расположен снизу. Однако в этой конструкции трудно осуществить уплотнение вала. [c.183]

    Привод.<1тсл результаты исследований сравнительной а ективно-сти применения диспергирующих алементов в одношнековом экструдере. 70 времеви пребывания перерабатываемого материала в зоне работ дисп ргир )ТС1щего элемента. [c.179]

    Литьевая машина (рис. 1,6) состоит из двух основных частей пластнкатора и механизма смыкания. Пластикатор предназначен для приготовления расплава и нагнетания его в форму. Механизм смыкания автоматически открывает и закрывает форму и удерживает ее в закрытом состоянии во время впрыска, а также выталкивает из формы готовое изделие. Почти все современные литьевые машины снабжены червячными пластикаторамн с возвратно-поступательно движуш,имся червяком. При враш,енпи он работает подобно червяку экструдера, который плавит и нагнетает полимер. При поступательном перемещении он действует как литьевой плунжер. Обычно червяк приводится во вращение гидромотором. Его осевое перемещение осуществляется и регулируется гидравлической системой. [c.21]

    Фактическая производительность оказывается меньше теоретической вследствие наличия потока утечек между соседними камерами. Как установлено ранее, существуют потоки утечек между гребнями червяков и корпусом, между краем гребня одного червяка и основанием другого и между боковыми поверхностями гребней. Уравнения для этих потоков утечек были получены Добозским [39] и Янсеном с сотр. [38], которые также выполнили эксперименты с ньютоновскими жидкостями, подтверждающие их теоретические результаты. Расчет потребления энергии в случае двухчервячной геометрии дан Шенкелем [40], который также приводит подробную информацию о различных двухчервячных экструдерах, сопоставляя их эффективность с эффективностью одночервячных экструдеров. [c.358]

    Фламерфельт [24] исследовал влияние эластичности непрерывной вязкоэластичной фазы на деформацию и дробление ньютоновской диспергируемой фазы. В качестве непрерывной фазы он использовал водный раствор полиакриламида, а в качестве диспергируемой фазы — раствор низкомолекулярного полистирола в дибутил-фталате. Было показано, что существует минимальный размер капли соответствующий данной жидкой системе, по достижении которого дробление прекращается. Увеличение эластичности непрерывной фазы приводит к возрастанию минимального размера капель и критической скорости сдвига, при которой происходит дробление капель, поскольку конечное значение напряжения сдвига зависит от величины У- В соответствии с полученными ранее результатами увеличение вязкости непрерывной фазы приводит к обратному эффекту. Фламерфельт обнаружил также интересное явление в условиях неустановившегося сдвигового течения (ступенч тое изменение прикладываемого напряжения) минимальный размер капли и критическая скорость сдвига значительно меньше получаемых при постоянном напряжении сдвига. Поэтому он предположил, что диспергирование в вязкоэластичной среде должно протекать более полно при переменных условиях сдвига. Действительно, именно такие переменные условия сдвига реализуются в узком зазоре между гребнем ротора и стенкой смесительной камеры, а также в экструдере, снабженном смесительным устройством барьерного типа . [c.390]

    Этот метод пригоден также для анализа пластицирующего экструдера. Результаты таких расчетов приведены на рис. 11.28. При больших скоростях вращения червяка происходит быстрое плавление полимера, и распределение деформаций оказывается подобным тому, какое наблюдается в экструзионном насосе. Увеличение скорости вращения червяка при постоянном объемном расходе приводит к увеличению противодавления. При этом происходит заметный сдвиг функции распределения деформаций в область более высоких значений деформации. И снова мы видим, что распределение деформаций в червячном экструдере довольно узкое. Следовательно, среднее значение деформации у [46] может служить критерием смесительного воздействия. Средняя деформация пропорциональна величинам ПН, QpIQd и 6. Рис. 11.29 иллюстрирует зависимость Y от угла винтовой нарезки червяка при различных значениях Qp/Qd- Пропорциональность средней деформации величине 1/Н установлена экспериментально, как было показано нами ранее при рассмотрении ФРД для случая течения между параллельными пластинами. Точно так же экспериментально было установлено, что средняя деформация возрастает при увеличении противодавления. Аналогичным образом установлены предельные значения угла нарезки червяка, [c.413]

    В результате экспериментов установлено, что на большей части червяка экструдера сосуш,ествуют твердая и жидкая фазы, однако разделение их приводит к образованию слоя расплава у толкающего гребня червяка и твердой полимерной пробки у тянущего гребня. Ширина слоя расплава постепенно увеличивается в направлении вдоль винтового канала, в то время как ширина твердой пробки умень -шается. Твердая пробка, имеющая форму непрерывной винтовой ленты изменяющейся ширины и высоты, медленно движется по каналу (аналогично гайке по червяку), скользя по направлению к выходу и постепенно расплавляясь. Все поперечное сечение канала червяка от точки начала плавления до загрузочной воронки заполнено нерасплавленным полимером, который по мере приближения к загрузочному отверстию становится все более рыхлым. Уплотнение твердого полимера позволяет получать экструдат, не содержащий воздушных включений пустоты между частицами (гранулами) твердого полимера обеспечивают беспрепятственный проход воздушных пузырьков из глубины экструдера к загрузочной воронке. Причем частицы твердого полимера движутся по каналу червяка к головке, а воздушные пузырьки остаются неподвижными. Хотя описанное выше поведение расплава в экструдерах является достаточно общим как для аморфных, так и для кристаллических полимеров, малых и больших экструдеров и разнообразных условий работы, оказалось, что при переработке некоторых композиционных материалов на основе ПВХ слой расплава скапливается у передней стенки канала червяка [12]. Кроме того, в больших экструдерах отсутствует отдельный слой расплава на боковой поверхности канала червяка, чаще наблюдается увеличение толщины слоя расплава на поверхности цилиндра [131. Как отмечалось в разд. 9.10, диссипативное плавление — смешение возможно в червячных экструдерах в условиях, которые приводят к возникновению высокого давления в зоне питания. В данном разделе будет рассмотрен процесс плавления, протекающий по обычному механизму. Отметим, что на большей части длины экструдера [c.429]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Внешняя характеристика червяка пластицируюш,его экструдера обычно имеет нелинейную форму (вид внешней характеристики червяка, нерекачиваюш,его расплав, обсуждался в предыдущем разделе). Пластицирующий червяк выполняет ряд функций, и все реализуемые в нем элементарные стадии, кроме перекачивания и смешения расплава, протекают в изменяющихся условиях. Так, по достижении определенного расхода производительность зоны питания может оказаться недостаточной, что приводит к работе в режиме голодного питания. Изменение расхода вызывает изменение длины зоны плавления следовательно, вдоль кривой внешней характеристики червяка меняется не только температура расплава, как это имело место для экструдера, перекачивающего расплав (см, рис. 12.6), но в экструдате могут появиться нерасплавленные частицы. Более того, средняя температура расплава определяется при этом не только теплом, передаваемым потоку расплава от стенок и за счет вязкого трения в самом расплаве, но также и интенсивностью плавления (т. е. условиями транспортировки расплава из тонкой пленки к слою расплавленного полимера). Наконец, могут изменяться расположение и длина зоны запаздывания, оказывая влияние на положение и длину зон и дозирование. [c.433]

    По этим причинам каждая листовальиая головка оборудуется приспособлениями для тонкой регулировки зазора между губками щели. Обычно эта регулировка производится вручную. Однако в связи с высокой производительностью листовальных агрегатов ручная регулировка приводит к потерям материала. Поэтому в настоящее время применяют системы автоматической регулировки зазора. Для питания очень широких головок можно использовать несколько экструдеров, можно также установить червяк в коллектор Т-образной головки. [c.486]

    Искажение формы струи, выходящей из капилляра вискозиметра или из головки экструдера, как уже было показано, является следствием развития больших (до 500%) высокоэластическнх деформаций, что в конечном итоге приводит к скольжению полимера но стенкам капилляра и срыву струи. [c.170]

    Эластические деформации, накапливающиеся при течении, релаксируют при выходе из капилляра. Это приводит к сокращению струи. Если струя длинная (как, например, при непрерывном про-давливании полимера через экструдер), то сокращение ее длины незаметно однако оно проявляется в разбухании струи, увеличении ее поперечного сечения по сравнению с сечением капилляра, как это показано на рис. 11.4. Чем выше эластичность расплава, тем больше увеличивается диаметр струи. Это явление приводит к неоо-ходимОсти сложных (и неточных) расчетов диаметра отверстия, которое обеспечит получение профиля экструдата необходимого диаметра и формы. [c.170]

    В загрузочную воронку 4 экструдера загружают гранулы присадочного материала, прогревают экструдер до необходимой температуры и включают привод. Шнек, вращаясь внутри трубы, захватывает гранулы присадочного материала, которые, перемещаясь к головке 9 экструдера, расплавляются и выдавливаются Ш неком через калиброванную фильеру к месту сварки полимерного материала. [c.100]

    Перерабатывают П. на обьином оборудовании резиновой пром-сти (напр., вальцы, каландры, экструдеры, прессы) при 140-200 °С при этом его мол. масса почти ие изменяется. Длительная мех. обработка при т-рах ниже 100 С приводит к деструкции. П. совмещается с НК и СК, пластиками, синтетич. смолами, парафином, битумом, минер. напол1ш-телями и пигментами. Наполнители снижают хладотекучесть, повышают прочность и твердость П. Его технол. св-Еа значительно улучшаются при введении наполнителей и повышении т-ры переработки. Для ненаполненного П. [c.626]


Смотреть страницы где упоминается термин Экструдер привод: [c.29]    [c.253]    [c.181]    [c.182]    [c.184]    [c.186]    [c.114]    [c.438]    [c.170]    [c.100]    [c.695]    [c.258]   
Оборудование предприятий по переработке пластмасс (1972) -- [ c.214 , c.243 ]




ПОИСК







© 2025 chem21.info Реклама на сайте