Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы для дегидрирования металлы

    Третья возможность основана на избирательном промотировании каталитических центров целевой реакции или отравления центров реакции уплотнения, т. е. воздействии на определяющую стадию реакции. В качестве примера может служить промотирование алюмоплатинового катализатора дегидрирования парафиновых углеводородов. Введение в состав катализатора щелочных металлов приводит к снижению кислотности алюмоплатинового катализатора и обуславливает подавление в процессе дегидрирования парафиновых углеводородов реакций крекинга, изомеризации и коксообразования, идущих с участием кислотных центров, что, однако, не приводит к сохранению стабильности из-за одновременного уменьшения поверхности платины [63]. [c.41]


    Соли тяжелых металлов. Катализаторы, как синтетические, так и природные, существенно изменяют избирательность при переработке сырья с высоким содержанием тяжелых металлов, главным образом никеля, меди и ванадия. Эти металлы, отлагаясь на поверхности катализатора, превращаются в каталитически активные окислы и ведут себя как катализаторы дегидрирования увеличивается выход кокса и малополезных газов, снижается выход бензина и легкого крекинг-газойля. Снижение активности является результатом спекания катализатора вследствие огромного выделения тепла в зоне вокруг адсорбированного металла во время регенерации и уменьшения удельной поверхности по мере закрытия пор. [c.21]

    Металлорганические соединения свинца, меди, мышьяка, попадающие с сырьем, гидрируются до металлов, которые, отлагаясь на поверхности катализатора, отравляют металлические центры, что приводит к подавлению реакций дегидрирования и гидрирования и к закоксовыванию катализатора. Отравление металлами необратимо, катализатор требует замены. [c.123]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    Оксиды несходных металлов подгруппы железа и хрома. В состав катализаторов дегидрирования, гидрообессеривания, риформинга и ряда других входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в окислительно-восстано-вительных реакциях [93]. Поэтому естественно, что уже в ранних работах, посвященных изучению закономерностей окислительной регенерации катализаторов, содержащих переходные металлы, наблюдали более высокие скорости окисления кокса по сравнению с Таковыми для некаталитического окисления углерода [3, 75]. Однако только в цикле работ сотрудников Института катализа СО АН СССР детально изучены закономерности каталитического окисления кокса на оксидах чистых переходных металлов, а также промотированных щелочными металлами [104-108]. [c.40]


    Реагируя с аммиаком в паровой фазе при 400—650° над смешанными катализаторами (окисью алюминия с металлами, катализаторами дегидрирования), изофорон превращается в 1,3,5-ксилидин [13]  [c.320]

    Механизм процесса каталитического дегидрирования парафинов основан на взаимодействии молекулы углеводорода с активными центрами К (окислами металлов) алюмохромового катализатора. Дегидрирование предпочтительно идет через акты образования и гибели адсорбированного на поверхности радикала  [c.120]

    Энергетическая выгодность плоскостной секстетной адсорбции циклогексанового кольца особенно отчетливо проявляется при сопоставлении условий процесса на металлах и окислах. Если на металлах процесс осуществляется при температурах около 300° С и с энергией активации 55—75 кДж/моль, то на окислах реакция идет при температуре 500—600° С с энергией активации 80— 160 кДж/моль. Наличие реберной и плоскостной ориентации доказывается на примерах циклогексана и декалина. На никеле, где осуществляется плоскостная адсорбция обоих углеводородов, циклогексан дегидрируется быстрее декалина, хотя энергия активации одинакова и составляет 52,25 кДж/моль это доказывает плоскостную ориентацию колец на никеле. На окиси хрома, где процесс осуществляется по дублетной схеме, циклогексан и декалин дегидрируются с одинаковыми скоростями и с одинаковой энергией активации 108,7 кДж/моль. Реберная ориентация углеводородов на окислах обусловливает возможность дегидрогенизации пяти- и семичленных циклов и дегидрогенизацию парафиновых углеводородов. Окись хрома — один из лучших катализаторов дегидрирования углеводородов. При гидрировании бензола обнаружены промежуточные продукты (циклогексен), что свидетельствует о более широком, чем предполагалось, распространении дублетной схемы. [c.76]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые инициируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, который обладает кислотными свойствами и катализирует реакции изомеризации и крекинга углеводородов. На катализаторах риформинга также протекают реакции дегидроциклизации парафиновых углеводородов. [c.348]

    Трикальцийфосфат употребляется, кроме того, для очистки сахарных сиропов в производстве сахара-рафинада, в производстве керамики и стекла, для изготовления зубных паст и порошков, он входит в состав абразивов для полировки и шлифовки металлов, служит для удаления фтора из воды, для кондиционирования поваренной соли, применяется в медицине и др. Трикальцийфосфат, содержаш.ий диспергированные окислы металлов, используется в качестве катализатора дегидрирования бутана и бутена [c.300]

    Большое распространение приобрело модифицирование серебряного катализатора различными металлами и их оксидами. Так, было выявлено промотирующее действие оксидов цинка, бериллия, циркония, сурьмы(III) и некоторых других. С другой стороны, такие оксиды, как олова(IV), марганца(VI), железа(VI), кальция, натрия, титана (IV) в той или иной степени ингибируют процесс окислительного дегидрирования метанола [134]. Имеется ряд патентов, в которых рекомендуется применять сплавы серебра с медью, теллуром, кадмием [135] и золотом [136, 137]. Если содержание кадмия в сплаве составляет 4—15%, то рекомендуемое соотношение золота с серебром составляет от 0,5 1 до 1 1. В обоих случаях выход повышается на 4—5%. [c.55]

    Мэкстед [45] отметил, что катализаторами, наиболее восприимчивыми к ядам, являются металлы. Окислы и сульфиды, используемые в качестве катализаторов, более стойки, но в разд. 6, В гл. VHI будет показано, что гопкалит, применяемый при окислении окиси углерода, отравляется парами воды и что многие катализаторы дегидрирования отравляются подобным же образом. Катализаторы крекинга, конечно, отравляются щелочами и газами основного характера. Металлические катализаторы отравляются  [c.265]

    Кокс, откладываясь на поверхности контакта, вызывает его дезактивацию, что приводит к необходимости периодической регенерации катализатора, заключающейся в выжигании кокса в токе кислородсодержащего газа.Таким образом, в процессе каталитического дегидрирования катализатор периодически подвергается влиянию восстановительной и окислительной сред. Катализаторы дегидрирования углеводородов содержат, большей частью, окислы металлов переменной валентности. Поэтому следует учитывать, что образующиеся при регенерации высшие окислы должны в условиях восстановительной среды дегидрирования переходить в низшие окислы. [c.149]

    Механизм дегидрирования парафиновых углеводородов в олефины рассматривается обычно в приложении к алюмо-хромовым катализаторам. Однако основные положения этого механизма) могут быть отнесены и к другим катализаторам дегидрирования, содержащим окислы металлов переменной валентности. [c.149]


    Как будет показано ниже, активными катализаторами дегидрирования углеводородов являются окислы металлов переменной валентности, причем в образовании связи между радикалами алифатического углеводорода и катионом активных окисных катализаторов большая роль отводится подвижным с/-электронам. Поэтому в рассматриваемом случае, по-видимому, более вероятен гомолитический механизм хемосорбции углеводорода. [c.150]

    Индивидуальные окислы щелочноземельных металлов проявляют способность к дегидрированию — они известны как катализаторы дегидрирования спиртов (см., например, [54]) их дегидрирующие свойства растут от ВеО к ВаО. [c.159]

    Опыт подтверждает, что указываемые А. А. Баландиным металлы являются катализаторами дегидрирования циклогексана. В частности, недавно было показано, что катализаторами данной реакции являются рений [915] и медь 1916, 933]. Как отмечает А. А. Баландин [909], оптимальной кристаллической структурой для реакции гидрирования олефинов обладает родий, а для гидрирования связи >С = 0 — рутений, что согласуется с опытом [85, 917]. [c.449]

    Комбинированные реакции дегидратации и дегидрирования. Наиболее пригодными катализаторами являются в первую очередь дегидратирующие агенты в сочетании с умеренными по силе катализаторами дегидрирования. В этот класс можно включить фосфорную кислоту, магнийсиликаты, алюмосиликаты, глинозем (полученный из хлористого алюминия) и различные окислы металлов. [c.313]

    НИИ и температуре свыше 300° С. Обычно применяются температуры порядка 450—550° С. В качестве катализаторов используются металлы и окиси металлов IV, V и VI групп периодической таблицы, чаще всего базирующиеся на алюминии. Наиболее эффективны окиси хрома и ванадия, окись церия несколько уступает им, а окись тория хотя и проводит дегидрирование, но ароматизирует уже слабо [278, 283]. Были опробованы также никель на алюминии [275], нлатинизированный углерод [284, 285], окиси цинка, титана и молибдена, сульфид молибдена, активированный древесный уголь [279] и хлорид алюминия (металлический алюминий плюс хлористый водород) [286]. [c.103]

    Наиболее интересные результаты дает применение принципа геометрического соответствия к дегидрированию циклопарафинов. Типичными дегидрирующими катализаторами являются металлы, кристаллизующиеся в гранецентрированных и гексагональных рещетках, так как только на октаэдрических гра тГйх первой и на базоПинакондах второй встречается соответствующее строению шестичленных циклов расположение атомов решетки. Однако катализаторами являются только те металлы, в которых расстояние между центрами атомов в решёТКЕ ТГе-жит в пределах от 2,77 Ю" см (Р1) до 2,48- 10 см (N1). Так, каталитически активны гранецентрированные решетки Рс1 (2,74-10-8 см), 1г (2,70-10- см), КЬ (2,68-10- см), Си (2,56х Х10- см), а кристаллографически аналогично построенные решетки ТЬ (3,60-10- см), РЬ (3,50-10- см), Аи и А (2,88) X ХЮ- см) при дегидрировании шестичленных колец каталитически неактивны. [c.344]

    Катализаторы дегидрирования парафинов должны быть активными I отношении основной редкции, но по возможности не ускорять процессов крекинга, изомеризации и закоксовывания. Лучшими являются оксидные алюмо-хромовые катализаторы на основе А Оз, содержащие 10—40% СггОз и 2—10% оксидов щелочных металлов (МагО, КгО, ВеО) последние служат для нейтрализации кислотных центров АЬОз, вызывающих крекинг и изомеризацию. 5)ти катализаторы очень чувствительны к влаге, поэтому ис-ходньи фракции С4 и С5 не должны содержать более 1 мг водяных паров в 1 м . [c.491]

    Циклогексан — легко транспортируемая неядовитая жидкость, поэтому понятен интерес к нему как идеальному донору водорода со стороны специалистов, разрабатывающих экономичную водородно-топливную систему. Дегидрирование циклогексана в бензол с выделением водорода осуществляют при температуре 450—500 °С над серебряным или медным катализатором в виде сетки или дисперсного металла на носителе с низкой удельной поверхностью. Реактор представлен на рис. 2. Полного дегидрирования не происходит, и циклогексан частично попадает в ка-тализат. Обычно это не опасно, но если бензол — целевой продукт, то для его очистки требуется специальная дистилляция. Кроме упомянутых выше серебра и меди катализаторами дегидрирования циклогексана являются платина и палладий. [c.151]

    Оксид хрома(1П) в условиях, характерных для работы промыщ-ленных катализаторов дегидрирования, не восстанавливается до металла, а происходит лищь частичное восстановление поверхности, что и объясняет особенности окисления кокса на нем. [c.45]

    Многочисленные экспериментальные и теоретические исследования распшряют и углубляют наши представления о регенерации. Однако несмотря на заметные успехи, на всех уровнях математического моделирования остается ряд важных нерешенных научно-исследовательских задач. На кинетическом уровне требуется доработка и уточнение кинетической модели процесса. Следует также дополнить схему химических превращений стадиями, учитывающими закономерности вьркига коксовых отложений сложного состава, например серосодержащих. Кроме того, в состав катализаторов дегидрирования, риформинга, гидроочистки и других процессов входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в реакциях с участием кислорода. Поэтому факт участия катализатора в процессе окисления также должен быть учтен при создании кинетической модели окислительной регенерации. [c.97]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Опыт показал, что в реакциях дегидрирования циклопарафинов типичными катализаторами являются металлы, обладающие гранецентрированными и гексагональными кристаллическими решетками. При этом расстоянии между атомами должно лежать в пределах от 2,47 10 ° м (N1) до 2,8-10 м (Р1). Кроме N1 и каталитически активны Рс1 (2,74-10 " м), рь (2,68-10 " м), Си (2,56-10 м), решетки которых гране-центрипованы. Но такие металлы, как ТЬ (3,6-10 " м), РЬ (3,5Х Х10 м), Аи и Ag (2,88-10 ° м), которые также имеют гране-центрированные решетки, каталитически неактивны. [c.357]

    Общим для всех катализаторов, предложенных для дегидрирования этилбензола в стирол, является то, что они пригодны для работы в условиях разбавления углеводородов водяным паром, что они содержат одно соединение (окись металла) в качестве главного компонента и небольшие количества других компонентов. В качестве главного компонента рекомендуется применять окиси магния, железа, цинка, бериллия, меди и др. [103], Общим для этих катализаторов является также и то, что они содержат небольшое количество солей калия (например, углекислого калия), присутствие которых в катализаторе ускоряет взаимодействие между водой и углеродом с образованием СО2 (реакция водяного газа), благодаря чему катализаторы дегидрирования этилбензола при применении водяного пара становятся саморегенерирующимися, что позволяет непрерывно осуществлять процесс контактирования этилбензола. Роль калиевых солей в реакции образования водяного газа была исследована В. М. Гриневичем [104]. [c.626]

    При каталитическом дегидрировании исходные вещества в газовой фазе пропускают над катализатором (высококипящие соединения можно дегидрировать и в жидкой фазе). Недостатком каталитического дегидрирования является чувствительность катализаторов— благородных металлов — к отравлению контактными ядами. В некоторых случаях этот недостаток можно преодолеть, применяя нечувствительные к ядам катализаторы, например мо-либдено-никелевые сульфиды. [c.38]

    Опыт показал что в реакциях дегидрирования циклопара финов типичными катализаторами являются металлы, обладаю щие гранецентрированными и гексагональными кристалличе скими решетками При этом расстоянии между атомами должно лежать в пределах от 2 47 Ю м (N1) до 2 8 10 м (Р1) Кроме N1 и каталитически активны Рс1 (2 74 10 м) НИ (2 68 10 м), Си (2 56 10 м) решетки которых гране центрированы Но такие металлы как ТЬ (3 6 10 м) РЬ (3,5Х ХЮ м) Аи и Ag (2 88 10 " м) которые также имеют гране центрированные решетки каталитически неактивны [c.357]

    В качестве катализаторов дегидрирования циклогексанола изучались также рений, платина, торий, нео1Дим, самарий и другие металлы. Однако наибольшее распространение в промышленности получили катализаторы на основе цинка и меди. [c.106]

    В каталитическом риформинге применяют гетерогенные бифункциональные катализаторы. Эти катализаторы содержат металлы (платину, платину и рений, платину и иридий), которые катализируют реакции дегидрирования и гидрирования. Носителем катализаторов служит промотированный галогенами оксид алюминия, обладающий кислотными свойствами и катализирующий реакции изомеризации и крекинга углеводородов. На катализаторах риформинга протекают также реакции дегидроциклизации парафиновых углеводородов. В отечественной промышленности используют алюмоплатиновые катализаторы АП-56 и АП-64, которые содержат соответственно 0,65% и 0,64% платины, нанесенной на у-А120з. [c.385]

    Метилформиат с мольным выходом 35—40% за переход может также быть получен димеризационным дегидрированием метанола над восстановленным медным катализатором, промотированным металлами III или IV группы (цирконий, иттрий), причем мольная селективность по метилформиату достигает 957о [398]. [c.63]

    Теперь мы рассмотрим возможность такого электронного переноса между металлом и носителем, который изменяет объемные электронные свойства металлических частиц и вызывает тем самым модифицирование каталитических свойств металла. При этом межфазную поверхность раздела металл—носитель часто описывают как поверхность раздела металл—полупроводник с помощью общепринятой теории объемного заряда [71—73]. Электроны переносятся к металлу или полупроводнику в зависимости от того, где выше работа выхода, и между двумя фазами устанавливается разность потенциалов, численно равная разности работ выхода. В таком случае на поверхности полупроводника возникает объемный заряд соответствующего знака, плотность которого уменьшается по мере удаления от поверхности раздела внутрь носителя, а на поверхности металла индуцируется равный по величине, но противоположный по знаку заряд. Однако количественная оценка явлений с помощью этой теории приводит к весьма серьезным затруднениям, поэтому едва ли ее можно использовать для описания реальных свойств металла. Чтобы подтвердить этот вывод, обратимся к работе Баддура и Дейберта [73], изучавших поведение тонких пленок никеля, напыленных на германиевые подложки, легированные разным количеством добавок п- или / -типа такие пленки использовали как катализаторы дегидрирования муравьиной кислоты. Переносимый заряд пропорционален где п — концентрация носителей заряда в полупроводнике и V — разность потенциалов на новерхности раздела. Наиболее важной переменной является п, изменяющаяся на много порядков в зави- [c.282]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]

    Из соединений элементов этой подгруппы (В, А1, Ga, In, TI) определенной дегидрирующей активностью обладает окись алюминия, причем наиболее употребительны и активны в этом отношении a-AljOg и - --AlaOs. В процессах дегидрирования окись алюминия используется главным образом в составе бинарных и более сложных катализаторов. В более ранних работах исследовалась возможность применения активированной окиси алюминия в качестве самостоятельного катализатора дегидрирования низших парафинов пропана в пропилен [77, 78], бутана в бутилен [78, 79]. Однако в дальнейшем было показано, что окись алюминия, так же как и индивидуальные окислы других металлов (Мо, Сг, Ti, Zn, Мп и др.), имеет малую избирательность, вызывая, например, при дегидрировании бутана, наряду с образованием целевого продукта — бутилена — значительный распад молекул углеводорода. Аналогичным образом проявляет себя и ряд катализаторов из указанных окислов, нанесенных на уголь, кремнезем или окись магния [1]. [c.159]

    В реакциях дегидрирования боковых цепей алкилароматических углеводородов окислы элементов подгруппы титана также используются в основном в составе сложных катализаторов. При этом большей частью их роль не удается установить. Согласно [121], ТЮг и ZrOg относятся к группе добавок, влияющих на активность без существенного изменения избирательности процесса. Сложный циркониевый катализатор дегидрирования олефинов (бутена в бутадиен) [ 119] активен и в реакциях дегидрирования боковых цепей алкилароматических углеводородов. Запатентован также способ дегидрирования ароматических углеводородов с алкильными боковыми цепями, содержащими не менее двух атомов углерода, в присутствии железо-берил-лиевых катализаторов, промотированных окислами щелочных или щелочноземельных металлов и стабилизированных двуокисью тория [122]. [c.164]

    Еще меньше упоминаний в литературе о применении в качестве катализаторов дегидрирования углеводородов других платиновых металлов. В недавно опубликованной работе [169] было найдено, что при дегидрировании н-пентана в присутствии рутения, нанесенного в очень малых концентрациях (от 0,86 до 0,1%) на 7-А120з, основную часть продуктов реакции составляют олефины. Первичной быстрой реакцией является дегидрирование н-пентана в пентен-1, из которого так же быстро образуются диены, тогда как пентен-2 получается путем вторичной, более медленной, стадии изомеризации пентена-1. Была также обнаружена зависимость селективности катализаторов от поверхностной концентрации рутения. Для катализаторов, содержащих от 0,86 до 0,10% Ки, селективность составляет от 62,9 до 96,3%, увеличиваясь с уменьшением концентрации рутения в катализаторе. Величина поверхности катализатора и самого металла, определенная методом БЭТ и адсорбцией СО, для контакта с содержанием 0,30% Ки составляла 182,0 и 26,9 м /г соответственно. [c.170]

    А12О3 даЗЮа г/НаО, гдеМе — металл 16 — УП1 групп периодической системы (в том числе Ag), п— степень окисления этого металла, w и у — число молей 5102 и НаО соотношение Ме А1 равно 0,5—1,0 г-экв на 1 г-атом А1. Конверсию алканов ведут в смеси с низшими олефинами (этилен, пропилен мол. отношение олефин ал-кан = 0,15—1,5) при 120—160° С, 2—13 бар и времени контакта 5—20 сек [177]. В другом патенте [1781 рекомендуется катализатор дегидрирования насыщенных или олефиновых углеводородов, состоящий из смеси соединений щелочного металла (Ы, К, МаХ соединений щелочноземельного металла (Са, 5г, Ва), соединения Ag и (или) соединения редкоземельного элемента. Используются окиси, гидроокиси, карбонаты, сульфаты, бромиды перечисленных металлов. К смеси добавляются также соединения переходных металлов 2г, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Рс1, Си и А отношение щелочной металл переходный металл редкоземельный элемент составляет 4 1 1. Окись серебра (возможно превращение в процессе реакции в металлическое серебро) исследовалась в числе окисей других металлов как катализатор дегидрирования пропана в пропилен. Однако было показано, что Ag20 менее селективна в данном случае, чем иОз [77]. [c.172]

    ZnO, ZnS, dO, dS, HgO и HgS принадлежат к числу активных катализаторов дегидрирования спиртов в карбонильные соединения. Однако для реакций дегидрирования алифатических углеводородов как окись цинка, так и окись кадмия в виде индивидуальных веществ, по-видимому, не имеют практического значения. Эти окислы применяются только в составе сложных катализаторов, играя роль либо промоторов алюмо-хромовых катализаторов (см., например, [57]), либо являясь составной частью сложных контактов дегидрирования олефинов в сопряженные диены.Так, например, запатентован катализатор селективного дегидрирования олефинов в сопряженные диены, состоящий из окислов цинка или кадмия и окислов щелочноземельных металлов (СаО, ВаО или MgO) и AI2O3 [185]. При пропускании над этим катализатором смеси н-бутилена или изоамилена с инертным разбавителем (Na или Аг, 1 7) выход бутадиена -1,3 или изопрена составляет 28—30 и 40—45% соответственно при селективности процесса 90%. Следует отметить, что добавка ZnO к чистой окиси хрома способствует также усилению реакции крекинга олефина в присутствии катализатора СгаОз — ZnO (9,1%) при дегидрировании бутилена уже при сравнительно низких температурах кроме дивинила образуется до 9—10% предельных углеводородов с меньшим числом атомов углерода [73]. [c.173]

    С этой точки зрения интересно рассмотреть данные табл. 37 по влиянию ряда бинарных катализаторов (окиси некоторых металлов на окиси алюминия) на выход продуктов и избирательность реакции дегидрирования н-бутана в бутилен (№ 12— 18). Видно, что наиболее активными в этом случае являются контакты, содержащие V2O3 или СГ2О3, причем алюмо-ванадиевые катализаторы уступают алюмо-хромовым в селективности. Именно поэтому промышленный катализатор дегидрирования парафинов С4—С5, как уже указывалось, разработан на основе Сг Оз — Al Og. [c.175]

    Однако наличие незаполненных d-орбиталей в электронной оболочке металлов или катионов в окислах нельзя считать фактором, однозначно определяющим их активность в процессах дегидрирования по-видимому, не существует простой зависимости между указанными явлениями. Известно, например, что окись цинка является активным и селективным катализатором дегидрирования алкильных боковых цепей ZnO входит в качестве основной составной части в ряд промышленных катализаторов дегидрирования олефинов и алкилароматических соединений, в частности в состав широко распространенного катализатора производства стирола — стирол-контакта. Между тем окись цинка не является соединением переменной валентности в электронную структуру ее входит заполненная орбиталь 3d , соответствующая минимуму активности. В этом случае привлекаются понятия о существовании на поверхности окиси цинка структур, включающих Zn+-HOHbi и металлический цинк [192]. [c.182]


Смотреть страницы где упоминается термин Катализаторы для дегидрирования металлы: [c.353]    [c.143]    [c.305]    [c.17]    [c.143]    [c.23]    [c.166]    [c.168]    [c.198]   
Химия и технология камфары _1961 (1961) -- [ c.47 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрирование катализаторы



© 2025 chem21.info Реклама на сайте