Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорирование углеводородов в жидкой фазе

    Хлорирование. Реакционная способность углеводородов возрастает с увеличением протяженности углеродных цепей. Фотохимическое хлорирование при умеренных температурах более эффективно действует на атомы водорода, связанные с третичным углеродом, так как связи первичного углерода с водородом более стабильны. При 500—600 °С все углеродно-водородные связи достигают примерно одинакового уровня реакционной способности. Ненасыщенные углеводороды в отличие от насыщенных реагируют в жидкой фазе при низких температурах, отсутствии света и катализатора. Пропилен хлорируется значительно быстрее, чем этилен 2-бутен — с такой же скоростью, что и изобутан, но гораздо быстрее, чем 1-бутен и пропилен. Бутан может быть хлорирован при комнатной температуре в темноте, если в нем содержится несколько процентов бутенов, которые облегчают хлору разрушение механизма цепей. [c.41]


    Как правило, реакцию хлорирования алифатических углеводородов проводят в жидкой фазе, пропуская через смесь жидких углеводородов газообразный хлор. Хлор растворяется в жидкости и вступает в реакцию. Образующийся при этом хлороводород отводят из реактора и обрабатывают водой, в результате чего образуется хлороводородная кислота. Хлорированную реакционную массу после соответствующей подготовки подают на алкилирование. В промышленности применяют фотохимический и термический методы хлорирования алканов. Фотохимическое хлорирование жидких алканов проводят в непрерывном режиме в аппаратах колонного типа, футерованных внутри свинцом или винипластом и оснащенных осветительными кварцевыми лампами. Ртутные кварцевые лампы в защищенных трубках помещают внутрь колонны через специальные штуцеры и располагают внутри по всей высоте. Такое расположение ламп создает равномерное освещение всей реакционной массы, благодаря чему достигается высокая скорость реакции с максимальным использованием хлора. [c.46]

    В зависимости от молекулярного веса алканы можно хлорировать непосредственно хлором в газовой и жидкой фазе, ускоряя процесс фотохимически или термически, или используя промоторы (катализаторы). Промышленное значение имеют пока продукты хлорирования алканов —Сз (метана, этана, пропана, бутана, пентана и изопентана) и смесей твердых углеводородов, выделяемых из парафина. [c.267]

    Технологическая схема хлорирования в газовой фазе состоит из тех же стадий, что и при жидкофазном хлорировании. Подготовка ))еагентов заключается в испарении жидкого хлора, предварительном нагревании газообразного хлора, осушке реагентов концентрированной серной кислотой или адсорбентами, смешении реагентов друг с другом и с рециркулятом. В случае синтеза аллил-и металлилхлорида исходные углеводороды испаряют и подогревают до нужной температуры. [c.121]

    До сих пор мы рассматривали гомогенно-каталитическое хлорирование парафиновых углеводородов в газовой фазе с использованием газообразных инициаторов. Однако растворимые катализаторы представляют существенный интерес и при проведении реакции хлорирования в жидкой фазе. [c.82]

    Преимуществом фотохимического метода является отсутствие побочных реакций распада. Однако поскольку фотохимическое хлорирование экономично только для реакции, проходящей в жидкой фазе, для низших парафиновых углеводородов оно не применяется. [c.18]


    Реакции хлорирования парафиновых и олефиновых углеводородов при высокой температуре в газовой фазе, а также реакции хлорирования в жидкой фазе в присутствии инициаторов протекают, как правило, по радикально-цепному механизму. Энергия, необходимая для гомолитического разрыва химической связи, определяется как природой разрываемой связи, так и стабильностью образовавшихся свободных радикалов. Ниже приведены энергии диссоциации связей С—Н и С—С1 (в кДж/моль) в соединениях типа А—X (где Х = Н, С1) [ . [c.7]

    Каталитическое хлорирование можно осуществлять в гомогенной и гетерогенной системах. Гомогенное каталитическое хлорирование используют для переработки газообразных и жидких углеводородов. Для каталитического хлорирования газообразных углеводородов целесообразно применять в качестве растворителя тетрахлорид углерода. При хлорировании в жидкой фазе применяют переносчики хлора — вещества, растворимые в жидких углеводородах, образующие с хлором легко диссоциирующие соединения, которые затем разлагаются с образованием атомов хлора. Наиболее щироко для этих целей используют иод, фосфор, серу, а также хлориды сурьмы, железа и олова. [c.244]

    Следует также отметить роль растворителя в радикальных реакциях глубокие эффекты наблюдались при хлорировании молекулярным хлором. Одно из правил Хасса состоит в том, что относительные скорости хлорирования в жидкой фазе сравнимы с относительными скоростями, полученными при гораздо более высоких температурах в газовой фазе. Отсюда следует, что при одинаковой температуре селективность реакции в жидкой фазе меньше, чем в газовой. Это можно объяснить, предпо.п ожив, что атом хлора, столкнувшийся с любой частью молекулы углеводорода, удерживается растворителем в контакте с этой частью молекулы достаточно долго для того, чтобы могла произойти реакция, даже если в другом месте молекулы имеется более реакционноспособный центр [253] .  [c.486]

    Хлорирование н-пентана и изопентана при температурах ниже 100° С в отсутствие света или катализаторов не идет ни в паровой, ни в жидкой фазе. Однако уже при 200° С нротекает чисто термическое хлорирование этих углеводородов [295]. При гидролизе полученной смеси хлоридов образуется смесь соответствующих амиловых спиртов, за исключением изоамилового. Взаимодействие этой смеси спиртов с уксусной кислотой приводит к образованию соответствующих амилацетатов, являющихся ценными растворителями. [c.583]

    В жидкой фазе при хлорировании углеводородов, как правило, происходит квадратичный обрыв ц пи на свободных радикалах  [c.120]

    Хлорирование проводят как в паровой, так и в жидкой фазе. В большинстве случаев целью технического хлорирования парафиновых углеводородов является получение монохлорпроизводных. При этом одновременно образуются и полихлориды, так как монохлорпроизводные хлорируются почти с такой же скоростью, как и исходные углеводороды. Чтобы помешать, насколько это возможно, образованию полихлоридов, углеводороды, подвергаемые хлорированию, берут всегда в большом избытке. Реакцию проводят в таких условиях, при которых хлор потребляется полностью это позволяет избежать очистки продуктов реакции от свободного галоида. При парофазном хлорировании применение избытка углеводорода, что является важным условием осуществления процесса, вызывает необходимость разработки некоторых технологических операций, а именно выделения монохлорпроизводного, содержащегося в малой концентрации в конечной газовой смеси, а также очистки и рециркуляции газообразного углеводорода с минимальными потерями тепла. Проведение хлорирования под давлением значительно упрощает решение этих вопросов и одновременно имеет ряд других эксплуатационных преимуществ. [c.77]

    Обезжиривание деталей в хлорированных углеводородах производят последовательно в двух фазах паровой и жидкой. Используют также двухфазную систему. Сущность процесса состоит в том, что в установку заливают воду и не смешивающийся с ней органический растворитель. В качестве растворителя для двухфазной системы применяют метиленхлорид и три-хлорэтилен. При обработке деталей в двухфазной системе удаляются не только жировые, но и водорастворимые соединения. [c.211]

    Фотохимическое хлорирование углеводородов осуществляется по цепному механизму с большой скоростью при невысоких температурах в жидкой или паровой фазе, и направление этой реакции часто бывает иное, чем при термическом хлорировании. [c.136]

    Ароматические углеводороды, не содержащие алкильных заместителей, вступают в реакцию присоединения по ароматическому кольцу. Так, хлорированием бензола в жидкой фазе получают гексахлорциклогексан, используемый в качестве инсектицида. [c.300]


    При выделении хлористого водорода из процессов хлорирования углеводородов его обычно отделяют от органической фазы путем частичной конденсации газообразного потока при давлении близком к атмосферному. Это требует сильного охлаждения, в частности использования сжиженных газов, таких как жидкий этилен, при низких температурах, например — 50 —85°С. [c.184]

    Хлорирование парафиновых углеводородов проводят в паровой и в жидкой фазах различными способами нагреванием реакционной смеси термическое хлорирование), в присутствии различных катализаторов каталитическое хлорирование), при специальном освещении компонентов реакции фотохимическое хлорирование). [c.175]

    Каталитическое хлорирование углеводородов проводят чаще всего в жидкой фазе, причем газообразные углеводороды предварительно растворяют в хлорорганических растворителях. Каталитическое хлорирование парафинов протекает при более низких температурах, чем термическое хлорирование. Например, в присутствии катализатора четыреххлористый углерод может быть получен при 250—300 °С, без катализатора—при 460 °С. [c.176]

    Переход в органическую фазу элементарного хлора при экстракции приводил к образованию продуктов хлорирования керосина и ТБФ, что практически не сказывалось на результатах экстракции таллия (III), но приводило к заметному улучшению разделения жидких фаз в операциях. Вследствие этого для технологии целесообразно заменить сравнительно трудоемкую операцию очистки осветительного керосина от непредельных углеводородов более легкой операцией хлорирования его элементарным хлором. [c.288]

    Иначе говоря, скорости параллельных реакций резко разнятся при пониженных температурах. Поэтому типичные параллельные реакции, например хлорирование и окисление углеводородов в жидкой фазе, ведут в таких условиях. Повышение температуры как бы нивелирует реакционные способности реагирующих частиц. [c.22]

    В жирно-ароматических углеводородах хлорирование жирной цепи протекает обычно по цепному механизму с образованием свободных радикалов и атомов хлора, причем наиболее реакционноспособны атомы водорода в а-положении жирной цепи по-видимому, такое направление реакции также обусловлено тем, что при отрыве водорода в а-положении образуется устойчивый свободный радикал— бензил. Интересно, однако, отметить, что при хлорировании смеси толуола и циклогексана в жидкой фазе при 80°С последний хлорируется в 11,2 раза быстрее, чем толуол [35]. Такая закономерность имеется лишь для углеводородов. Так, как показал Д. В. Тищенко, при хлорировании монохлоридов до дихлоридов хлор оказывает большое влияние на порядок замещения водорода вторым атомом хлора [31]. В табл. 91 приведены данные о хлорировании монохлор-производных бутана до дихлорпроизводных, из которых следует, что хлорирование протекает с наибольшей скоростью у вторичных углеродных атомов, причем наличие хлора в соседнем положении снижает скорость реакции. Возможно, что это обусловливается индуктивным влиянием хлора, в результате которого уменьшается эффект сопряжения соответствующих С—Н-связей [35, 36].  [c.873]

    Каталитическое хлорирование можно применять для переработки газообразных и жидких углеводородов. Для каталитического хлорирования газообразных углеводородов в конденсированном состоянии целесообразно применять в качестве растворителя четыреххлористый углерод [21]. Для хлорирования в жидкой фазе широкое применение находят так на з-ываемые носители или передатчики хлора — вещества, [c.148]

    Следов ательно, из парафиновых углеводородов с 12—18 углеродными атомами, важных с точки зрения пронзводства поверхностно-активных веществ, в среднем образуется не более — 20% первичного, т. е. замещенного при концевом атоме хлорида. Таким образом, обнаруживается- весьма важное для последующего рассмотрения вопроса обстоятельство, что при хлорировании высокомолекулярных парафиновых углеводородов образуются в преобладающей степени вторичные хлориды. В то время как- при газофазном хлорировании пропана при 300° еще образуется около 50% хлорида, содержащего хлор при концевом атоме углерода, для триаконтана (СзоНб2) при хлорировании в жидкой фазе, и отношении скоростей замещения первичного и вторичного водородов, равном 1 3,25, образование хлорированного при концевом атоме производного составляет лишь 3% (см. главу Закономерности реакций замещения парафиновых углеводородов , табл. 143, стр. 555). [c.200]

    Гексаны. Методы, применяемые для хлорирования высших парафинов, представляют собой видоизменения классических опытов S borlemmer a по хлорированию гексана. S horlemmer применял Следующие четыре. метода хлорирования 1) хлорирование жидкого углеводорода при охлаждении на рассеянном дневном свету 2) хлорирование в жидкой фазе в присутствии иода 3) пропускание хлора в пары кипящего углеводорода и 4) хлор ирование в парО ВО й фазе [c.797]

    По данным обширной патентной литературы для получения накко-ноля преимущественно применяют тщательно выделенную керосиновую фракцию нефти. Ее подвергают хлорированию в жидкой фазе для получения смеси алкилхлоридов, обычно монохлорпроизводных, которые далее конденсируются с бензолом по реакции Фриделя-Крафтса в присутствии в качестве катализатора хлористого алюминия. Полученный таким образом алкилбензол, не содержащий побочных продуктов и непрореагировавших веществ, подвергается затем сульфированию. Сульфированный продукт нейтрализуют и высушивают. Свойства конечного продукта в сильной степени зависят от природы углеводородов, входящих в состав исходной керосиновой фракции. Необходимо, чтобы они представляли собой насыщенные углеводороды, получаемые из парафинистых нефтей. Применяемый для этой цели технический керосин получается при переработке пенсильванской нефти или нефтей сходного с ней типа и имеет высокую анилиновую точку (указывающую на низкое содержание олефинов и ароматических углеводородов) и выкипает в интервале температур 200—300°. Средний молекулярный [c.125]

    В последнее время Хэсс и его сотрудники исследовали хлорирование пропана, н- и изобутана, а также н- и изопеитаиа в жидкой фазе (в растворе четыреххлористого углерода) при 30° и в газовой фазе при 300° и выше [32], В своих опытах они исходили из того, что никаких изменений в строении углеродной цепи не происходит, если при термическом хлорировании углеводородов удается избежать пиролиза. Поэтому эти, а также другие источники ошибок были тщательно устранены. [c.542]

    В химии имеются примеры чрезвычайно быстрых процессов, протекающих в жидкой фазе, когда скорости химических реакций сравнимы или больше скоростей смешения реагентов, в частности хлорирование, гидрохлорирование, сульфуризация олефинов, алкилирование алканов алкенами, хлорирование ароматических углеводородов, многие процессы ионной и свободнорадикальной полимеризации. Среди весьма быстрых реакций полимеризации наибольшее внимание для теоретического рассмотрения макрокинетических закономерностей процесса в целом в силу общей теоретической ясности и одновременно большой практической важности привлекает катионная (электрофильная) жидкофазная полимеризация ИБ, которую можно рассматривать как классическую модель быстрой химической реакции. [c.112]

    Уже из приведенного выше материала видно, что газофазное нитрование протекает более сложно, чем нитрование в жидкой фазе или хлорирование в газовой и в жидкой фазах. Расшифровку результатов газофазного нитрования особенно затрудняют деструктивные процессы, приводящие к образованию низших нигропарафинов. Поэтому факторы, влияющие на образование нитропарафинов при газофазном нитровании углеводородов, особенно пропана, были в последнее время изучены повторно состав продуктов реакции определяли не ректификацией, а гораздо более быстрым масс-спектроскопическим методом [90]. [c.570]

    ДжагацпанянР. В., КосоротовВ. И.,СтульБ. Я-, Пашу-X и н Ю. В., Теор. основы хим. технол.. 4, 679 (1970). Влияние массопередачи на кинетику радиационного хлорирования парафиновых углеводородов в жидкой фазе. [c.269]

    Каталитическое хлорирование. Каталитическое гомогенное хлорирование углеводородов осуществляется главным образом в жидкой фазе. Для хлорирования газообразных углеводородов в жидкой фазе применяют растворители — четыреххлористый углерод или хлориды и полихлориды хлорируемого углеводорода. В качестве катализаторов используются хлориды металлов, растворяющиеся в реакционной среде и известные как переносчики хлора (СиСЬ, Ь еС1.э, 8пС1.>1 и др.). [c.362]

    Из негорючих органических растворителей для обезжиривания обычно применяют хлорированные углеводороды тетра-хлорэтилен или трихлорэтилен. При обезжиривании деталь последовательно обрабатывают в жидкой (погружением) или паровой фазах при температуре 125 для тетрахлорэтилена и 87 С для трихлорзтилена. Эти процессы проводят в специальном герметизированном оборудовании, так как при высокой температуре хлорированные углеводороды разлагаются с выделением токсичных соединений. Применение бензина и уайт-спи-рита, керосина и других легко воспламеняющихся жидкостей (лвж) должно быть резко сокращено вследствие их большой пожароопасности и дефицитности. [c.276]

    Реакция Шоттен — Баумана между хлорангидридами дикарбоновой кислоты и диаминами может проводиться также путем поликонденсации на границе раздела фаз при комнатной температуре. В этом случае оба исходных компонента растворяют в двух различных растворителях, которые смешиваются либо частично, либо не смешиваются совсем. Затем оба раствора осторожно сливают. При этом поликонденсация может происходить только на границе раздела жидких фаз. Тонкая полиамидная пленка, образующаяся практически мгновенно, препятствует дальнейшей диффузии мономеров друг к другу. Поликонденсация может продолжаться только после удаления этой пленки. Таким образом, этот процесс возможно осуществлять непрерывным способом. Поликонденсация на границе раздела фаз проводится также и в дисперсии. Для этого раствор хлорангидрида дикарбоновой кислоты при энергичном перемешивании диспергируют в водном растворе диамина в присутствии растворимого в воде стабилизатора дисперсии. В этом случае поликонденсация происходит на поверхности мелких капель. В качестве растворителя для диамина применяют воду, а для хлорангидрида кислоты — хлорированные алифатические углеводороды. [c.54]

    В промышленности хлорбензол производится хлорированием бензола как в жидкой фазе (газообразным хлором), так и в паровой (смесью хлористого водорода и воздуха). В качестве примесей МОГУТ присутствовать не столько другие хлорбензолы, сколько продукты хлорирования соединений, содержавшихся в виде загрязнений в исходном бензоле. Помимо других хлорированных соединений, в хлорбензоле могут присутствовать также некоторые неподвергшиеся хлорированию углеводороды, кипящие приблизительно в том же температурном интервале. Хлорбензол поставляется фирмопроизводителями в виде препаратов различной степени чистоты, начиная от технических продуктов и кончая реактивами марки чистый для анализа . [c.387]

    Общим правилом при радикально-цепном хлорировании алкилароматических углеводородов в боковую цепь является то, что хлор преимущественно направляется в а-положение. Так, при хлорировании пропилбензола в жидкой фазе под влиянием света при 25 °С в основном образуется а-хлорпропилбензол. Меньше получается - и еще меньше у-замещенного. Введение в реакционную систему S2 значительно повышает селективйоса% реакции -образуется 81,5 % а-замещенного хлорсодержащего соединения. Однако при освещении и 160°С начинает преобладать вступление хлора в -положеиие - образуется 48,5 % -xлopпpoпилбeнзoлa. [c.301]

    Подобно метану могут подвергаться хлорированию и друтае алканы Хлорирование углеводородов проводится в промышленных масштабах в паровой и жидкой фазах различными способами при нагревании до 400-500 с (термическое хлорирование), в присутствии катштизаторов (каталитическое хлорирование) при специальном освещении реагирующих компонентов (фотохимическое хлорирование). [c.24]

    Изопропилбензол получают алкилированием бензола в паровой или жидкой фазах в присутствии комплекса хлорида алюминия с ароматическими углеводородами, фосфорной кислоты на кизельгуре, H2SO4, BF3, HF, Zn l2-f НС1 и других твердых катализаторов ме-таллсиликатного типа (в основном алюмосиликаты и цеолиты). Первые три катализатора применяют в промышленных установках, а алюмосиликатные катализаторы и цеолиты в процессах алкилирования находятся в стадии освоения. Производство кумола в капиталистических странах (США, Бельгия, Великобритания, Нидерланды, Италия, Франция, ФРГ, Япония) в 1975 г. достигло 3,55 млн. т с получением 2,48 млн. т фенола кумольным методом [1, 2], и ежегодный прирост мощностей составляет в среднем 5%. Возрастание мощностей алкилирования. обусловлено возможностью использования изопропилбензола для синтеза а-метилстирола дегидрированием в присутствии твердых катализаторов, содержащих оксиды алюминия, цинка и других металлов, как добавки к моторным топливам для повышения их октанового числа, для синтеза хлорированных соединений и других продуктов нефтехимического синтеза. [c.5]

    Результаты, полученные при изучении фотохлорирования парафиновых углеводородов, очень сходны с данными, полученными при обычном хлорировании, когда свободные атомы хлора образуются в результате нагревания системы или под действием перекисей. Так, Хасс, Макби и Вебер [327] нашли, что процесс фотохлорирования протекает по тем же правилам, что и низкотемпературное термическое хлорирование. При фотохлорировании образуются все возможные изомерные монохлориды, однако легкость, с которой осуществляется замещение атома водорода, сильно зависит от его положения и возрастает при переходе от первичного атома к вторичному и третичному. Наиболее легко замещаются третичные водороды. Относительное различие в легкости замещения атомов водорода зависит от температуры, а также от того, в какой фазе осуществляется фотохлорирование—в газовой или жидкой. Влияние температуры более заметно в жидкой фазе следовательно, контроль за реакцией лучше может быть осуш,ествлен при жидкофазном фотохлорировании. [c.288]

    Процесс хлорирования углеводородов и хлорутлеводородов в жидкой фазе газообразным хлором описывается системой дифференциальных уравнений  [c.55]


Смотреть страницы где упоминается термин Хлорирование углеводородов в жидкой фазе: [c.145]    [c.790]    [c.60]    [c.353]    [c.137]    [c.185]    [c.184]    [c.184]    [c.184]    [c.623]    [c.867]    [c.387]   
Основные хлорорганические растворители (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2024 chem21.info Реклама на сайте