Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые железом III

    Жирные кислоты каталитическим процессом превращают в кетоны, которые каталитически восстанавливают, как указано выше. Низкомолекулярные жирные кислоты в кетоны целесообразно превращать в паровой фазе над катализатором на основе окиси тория. Для превращения же высокомолекулярных кислот, как миристиновая, пальмитиновая или стеариновая, целесообразно использовать метод получения кетонов по Грюну в присутствии железа в качестве катализатора. При этом достигаются хорошие выходы кетона, содержащего 2п—1 углеродных атома п — число углеродных атомов в исходной кислоте), и карбонильная группа всегда находится точно в середине цепи молекулы. Если же проводить реакцию кетонизации, исходя из карбоновых кислот, содержащих четное и нечетное числа атомов углерода, то образуются кетоны с несимметрично расположенной карбонильной группой  [c.61]


    Биоразложение пролитого масла. В зависимости от химической структуры (ароматические углеводороды, нафтены, парафины), содержания гетероорганических соединений и присадок, молекулярной массы и т д., на минеральные масла по-разному воздействуют кислород и микроорганизмы (бактерии, грибки). В аэробных условиях скорость разложения зависит от содержания минеральных солей и микроэлементов, температуры и величины pH. В случае углеводородов, растворенных в воде, скорость их разложения определяется химической структурой и содержанием кислорода в воде. Олефины и ароматические соединения окисляются до кислородосодержащих соединений (спиртов, кетонов, фенолов, карбоновых кислот) в сравнительно короткий срок. На биологическое разложение углеводородов расходуется кислород с образованием аммиака, сероводорода и соли двухвалентного железа и марганца в сложившихся восстановительных условиях. [c.229]

    Эта реакция протекает при умеренно высоких температурах в присутствии таких катализаторов, как мелкодисперсное серебро или смесь порошкообразного железа и оксида молибдена. Вторая стадия окисления приводит к образованию карбоновых кислот, характеризующихся наличием [c.293]

    Примеси, ускоряющие автоокисление. Распад гидроперекисей может быть вызван повышением температуры, присутствием некоторых металлов переменной валентности, преимущественно Ге, Со, Си, Мн, Зп, и, наконец, некоторыми накопляющимися непосредственно в зоне реакции кислыми продуктами. В углеводородной среде наиболее частыми инициаторами распада гидроперекисей являются железо и его окислы, всегда присутствующие в нефтяных дистиллятах и топливах, а также накапливающиеся соединения с карбоксильной группой, в том числе карбоновые кислоты, оксикислоты. [c.221]

    Пиррол-а-карбоновая кислота хорошо кристаллизуется при нагревании распадается на пиррол и двуокись углерода. Ее водный раствор имеет кислую реакцию при прибавлении хлорного железа краснеет. [c.985]

    Реакции анионов различных карбоновых кислот с катионами мо-ди(П), железа(1П), кобальта(П) и т. д. с образованием окрашенных осадков карбоксилатных комплексов различного состава являются общими групповыми реакциями на карбоксилатную группу и широко используются в фармацевтическом анализе. Проведению реакции мешают фенолы. [c.477]

    Амид хиноксалин-2-карбоновой кислоты получается с выходом 80% из хиноксалина, формамида, серной кислоты в присутствии сульфата железа(II) и грег-бутилгидропероксида. Какова роль последнего в этой ])еакции  [c.231]


    Осуществлять подобное восстановление могут в соответствии-с их положением в ряду напряжения только неблагородные металлы. Щелочные металлы способны восстанавливать даже наиболее инертные карбонильные соединения (например, эфиры карбоновых кислот), в то время как магний или алюминий реагируют только-с альдегидами и кетонами. Цинк и железо способны быть восстановителями только в кислой среде. Однако и другие вещества, например благородные металлы (платина, палладий), могут действовать аналогично, отрывая необходимые для восстановления карбонильного соединения электроны от молекулярного водорода и перенося их на карбонильное соединение (каталитическое гидрирование) (см. также разд. Г. 4.5.2). [c.114]

    Кислоты и фенолы можно отличить друг от друга по реакции с раствором хлорного железа. Прн взаимодействии с фенолами окраска раствора изменяется. Контрольное вещество, ке дающее окраски с раствором хлорного железа и вызывающее выделение двуокиси углерода из раствора карбоната натрия, можно предположительно отнести к классу карбоновых кислот. [c.225]

    Опыт 3. Обнаружение ангидридов карбоновых кислот. Каплю эфирного раствора смешивают с I. .. 2 каплями свежеприготовленного раствора реагента и выпаривают досуха. После охлаждения добавляю несколько капель воды. В зависимости от содержания ангидрида образуется фиолетовое или розовое окрашивание. Для приготовления реагента 0,5%-иый спиртовой раствор хлорида железа (П1) подкисляют несколькими каплями концентрированной соляной кислоты и насыщают при нагревании гидрохлоридом гнд-роксиламина. [c.74]

    Поверхностно-активные вещества, применяемые для улучшения сцепления битумов с минеральными материалами, влияют и на старение битумов. В зависимости от природы ПАВ их влияние различно. Добавки типа солей железа, высших карбоновых кислот и кубовых остатков СЖК ускоряют старение битумов, а катионоактивные добавки (высшие алифатические амины и диамины) замедляют его. [c.88]

    Для создания прочной связи с каменными материалами различных пород зачастую используются анионактивные добавки типа солей (мыл) карбоновых кислот, катионом которых являются тяжелые плп щелочно-земельные металлы железо, свинец, цинк, медь, алюминий, кальций и др. [83], Эти добавки, ориентированно адсорбируясь на поверхности каменных. материалов, улучшают сцепление ее с битумами. [c.195]

    Эффективными смазочными и противоизносными добавками являются карбоновые кислоты, особенно ненасыщенные, с достаточно длинной углеводородной цепью, содержащей не менее 8—12 атомов углерода, образующие мыла при реагировании с окисными пленками на металле. Атомы железа, входящие в состав мыла, продолжают оставаться связанными с поверхностью трения, обусловливая прочное закрепление на ней модифицирующего слоя. Менее эффективны добавки готовых мыл, удерживающиеся на поверхности в основном адсорбционными силами [15]. Это связано также [c.303]

    Методо.м ИКС исследован молекулярный механизм синтеза высокомолекулярной антиокислительной присадки для стабилизации полиметилсилоксановых жидкостей в жестких условиях эксплуатации. Установлено, что в системе полиметилсилоксан — соли карбоновых кислот и железа при 240-260°С и в окислительной атмосфере происходит химическое взаимодействие, приводящее к образованию макромоле- [c.86]

    Основными загрязняющими веществами в составе буровых нефтешламов являются нефть, нефтепродукты, частицы выбуренной породы, химические реагенты различной природы (щелочи, кислоты, синтетические ПАВ, полимеры, спирты, соединения железа, хрома, бария, органические вещества, например углеводороды, фенолы, карбоновые кислоты, асфальтосмолистые вещества, и минерализованные воды). [c.7]

    Аммонийные соли и соли щелочных металлов карбоновых кислот (калия, натрия) растворимы в воде, но не растворимы в неполярных растворителях большинство солей тяжелых металлов (железа, серебра, меди и т. д.) в воде не растворимы. [c.555]

    Наиболее важный из спектрофотометрических методов определения карбоксилсодержащих соединений основан на измерении сильного поглощения, характерного для красных комплексов железа и гидроксамовых кислот. При обработке эфиров карбоновых кислот, хлорангидридов и ангидридов карбоновых кислот гидроксиламином образуются гидроксамовые кислоты [c.122]

    Как показано в работе Черониса и Ма [4], карбоновые кислоты можно определить колориметрическим методом, превратив их в хлорангидриды и измерив поглощение соответствующих комплексов с гидроксаматом железа(1И). [c.126]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]


    В состав всех углей обязательно входит неорганическая, золообразующая часть, которая тонко или дискретно распределена в органической части угля. Она обычно представлена такими минеральными включениями, как силикаты, кварц, карбонаты и др. В углях низких стадий метаморфизма значительная доля неорганических компонентов присутствует в виде катионов натрия, кальция, магния, железа, алюминия, ассоциированных с карбоновыми кислотами. Неорганическая часть углей отличается также многообразием микроэлементов из обнаруженных 84 элементов периодической системы большая часть присутствует в количествах, не превышающих 0,01% (масс.) [65]. [c.64]

    За последние годы наблюдается быстрое развитие представлений о механизме функционирования металлоферментов, а именно удалось установить место и последовательность протекания реакций в активном центре, а также найти ключи к пониманию некоторых механизмов. Важное место занимает гидролиз (или гидратация) субстратов карбонильного и фосфорильного типа, таких, как СО2, эфиры карбоновых кислот, эфиры и ангидриды фосфорной кислоты и пептиды. По-видимому, не вызывает удивления тот факт, что для функционирования большинства таких систем требуется ион двухвалентного металла. Гораздо удивительнее то, что такими ионами обычно оказываются 2п(П) или Мд(11) (в ферментах действующих на ДНК, РНК, сАМР или сОМР). Так, например, цинк по своему содержанию в организмах млекопитающих (в организме человека 2,4 г на 70 кг) уступает лишь железу (5,4 г на 70 кг), и большая часть его необходима для функщганирования ферментов [215]. [c.343]

    Органическая часть сернокислотных отходов состоит из углеводородов, эфиров, спиртов, альдегидов, кетонов сульфо- и карбоновых кислот, сульфонов и других сернистых соединений, солей азотистых оснований, смол, асфальтенов, карбенов и карбоидов [5]. В состав некоторых видов сернокислотных отходов входят также различные металлы (медь, никель, ванадий, железо и др.) в виде продуктов коррозии и металлоорганических соединений. [c.40]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Сложные эфиры карбоновых кислот КСОгН синтезируют также обработкой первичных галогенидов RX алкоголятами К О в присутствии пептакарбонила железа [1298]. Считается, что в этой реакции интермедиатом выступает ион 144. [c.227]

    Карбоновые кислоты можно превратить в симметричные кетоны пиролизом в присутствии оксида тория. Альтернативный метод включает нагревание соли железа (II) карбоновой кислоты [1364]. При нагревании в присутствии оксида тория смеси муравьиной и другой карбоновой кислот получаются альдегиды. Смешанные алкиларилкетоны получены при нагревании соответствующих смесей солей железа (И) [1365]. Если группа R имеет большой стерический объем, вместо кислоты лучше использовать метиловый эфир, который ири нагревании с оксидом тория претерпевает декарбометокснлирование и образуется симметричный кетон. [c.238]

    Когда реагентом служит карбоновая кислота, в качестве катализатора можно использовать протонные кислоты. Смешанные ангидриды карбоновых и сульфоновых кислот R OOSO2 F3 являются чрезвычайно реакционноспособными ацилирующими агентами и могут гладко ацилировать бензол в отсутствие катализатора [240]. В случае реакционноспособных субстратов (например, ариловых простых эфиров, конденсированных циклических систем, тиофенов) ацилирование по Фриделю — Крафтсу можно проводить в присутствии очень малых количеств катализатора, часто достаточно его следов, а иногда реакция идет и в его отсутствие. При проведении реакции таким способом обычно используют катализ хлоридом железа (HI), иодом, хлоридом цинка и железом [241]. [c.356]

    Дикетоциклобутендиол представляет собой белое твердое вещество (разл. около 293°С) и является двухосновной кислотой, почти такой же сильной, как и серная кислота с хлорным железом он дает интенсивное пурпурное окрашивалие и не реагирует с фенилгидразином, так как его карбонильные грунты имеют характер карбоксильных карбонилов. ИК-спе,ктр комплекса с железом указывает на наличие прочных водородных к хелатных связей. Аниону дикетоциклобутендиола отвечает формула IV, в которой все четыре атома кислорода эквивалентны вследствие резонанса, поскольку в инфракрасном спектре дикалиевой соли вместо карбонильного поглощения свободной кислоты при 5,5 мк имеется интенсивная полосе при 6,5—6,75 мк, характерная для коле баний связи С—О в солях карбоновых кислот. [c.510]

    Катализаторы (переносчики). Переносчиками хлора и брома в реак-циях непосредственного галоидирования являются главнъш образом железо, соли железа или сурьмы, алюминий и его соли, хлориды иода и серы. Эти соединения оказывают также ориентирующие влияния на место введения галоидов в молекулу. Роль фосфора в реакциях галоидирования карбоновых кислот описана в связи с галоидированием этих кислот (стр. 176). [c.175]

    Эта реакция происходит при высоком давлении для первичных Спиртов, не имеющих разветвления в а-положении, поскольку промежуточным соединением, получающимся из соответствующего альдоля, является, по-видимому, а,р-ненасыщенный альдегид. В тех случаях, однако, когда в одном из спиртов отсутствует разветвление у а-углеродного атома, может происходить смешанная конденсация Гербе. В результате успешно проведенной реакции из первичного спирта с неразветвленной цепью получают также карбоновую кислоту с тем же числом атомов углерода и исходный спирт. Из-за указанных причин этот метод синтеза находит лишь ограниченное применение. Добавление небольших количеств медной бронзы подавляет окисление спирта в соответствующую кислоту в присутствии алкоголята натрия. В литературе имеются сведения, что добавление примерно 0,5% соли трехвалентного железа более чем вдвое ускоряет реакцию Гербе [261. Однако наиболее эффективны для ускорения реакции катализаторы дегидрирования, такие, как никель Ренея или палладий [27]. Выходы редко превышают 70%, если считать, что 3 моля более низкомолекулярного спирта дают 1 моль более высокомолекулярного спирта [28]. [c.276]

    Совместное воздействие карбоновой кислоты и апкилгалоге1шдов на коррозию железа и нержавеющей стали [c.33]

    Органические кислоты, сложные эфиры, амиды и ангидриды кислот можно легко перевести в гидроксамовые кислоты, которые в слабокислых растворах реагируют с хлоридом железа(III) с образованием внутрикомплексной солн красного или фиолетового цвета. Для каждого типа соединений пользуютсн различными способами проведения реакции. Существуют также специфические реакции иа карбоновые кислоты и нх производные. [c.74]

    Наиболее часто применяется модифицирование поверхности кварцевых каменных материалов гидратной известью, цементом или солями железа, алюминия, цинка [73, 83, 178, 180]. Изменение характера поверхности, получаемое при этом, приводит к возможности хемосорбциоиного взаимодействия с поверхностно-активными веществами, содержащимися в битуме. Наиболее широкое распространение получило введение в битум небольших добавок высших карбоновых кислот, в первую очередь, олеиновой, стеариновой,нафтеновых, продуктов окисления парафина, воска, смол, содержащих [c.194]

    Структурообразующие добавки класса железных солей высокомолекулярных карбоновых кислот, создавая дополнительный коагуляционный каркас, способствуют формированию структуры бптумов всех типов, ускоряя процессы старения. В то же время катион железа, имеющийся в составе поверхностно-активной добавки, каталитически ускоряет процессы окисления углеводородов и слюл битума с образованием асфальтенов и других высокомолекулярных компонентов. [c.221]

    Замещенные карбоновые кислоты дают, кроме того, реакции, характерные для заместителей, например алифатические оксикислоты с хлорным железом — желтое окрашивание, ароматические окспкислогы — фиолетовое или синее. Карбоновые кислоты и их соли обладают действием, зависящим в значительной мере от радикала, связанного с карбоксильной группой. Так, кислоты изостроения часто более активны в физиологическом смысле, нежели кислоты с нормальной цепью углеродных атомов. Кислоты, содержащие непредельные связи, обладают гемолитическим действием некоторые из них токсичны (акриловая кислота). [c.153]

    Комбинированный ввод добавок, вызывающих химическую модификацию основного эмульгатора (получение металлических мыл высших карбоновых кислот) с одновременным образованием свежеосажденной гидроокиси многовалентных металлов (кальция, магния, железа, алюминия и др.), более предпочтителен, чем введение инертных мелкодисперсных наполнителей. Так, обратная эмульсия, стабилизированная эмульталом и MAj -1, имеет термический диапазон практического применения до 75 С. Введение в ее состав окиси кальция расширяет этот диапазон до 100 С. Обратная эмульсия, стабилизированная СМАД-1 и окисью кальция, имеет удовлетворительные значения структурно-реологических свойств и фильтрации до 100 С, а при дополнительном вводе в нее водорастворимых солей железа, способствующих образованию гидроокиси железа коллоидной степени дисперсности и железных мыл карбоновых кислот окисленного петролатума,- до 150 С. [c.66]

    Бензантрон обычно получается нагреванием продукта восстановления антрахинона с серной кислотой и глицерином или с одним из производных глицеринаили с акролеином. Обычно антрахинон восстанавливают в растворе серной кислоты непосредственно перед реакцией с помощью сернокислого анилина железа или меди Однако имеются указания, что одновременно проводимые восстановление и конденсация дают лучший выход Бензантрон был также получен дегидрогенизацией хлористым алюминием или хлорным железом фенил-а-нафтил-кетона, дегидратацией 1-фенилнафталин-8-карбоновой кислоты и нагреванием цин-намалантрона со сплавом хлористого алюминия и хлористого натрия [c.83]

    Подобные соединения дают также карбоновые кислоты с активными группами в орто-положении (И. И. Гинзбург), некоторые комплексоны, протеины и нуклеины (Л. Энсмингер, Д. Гизекинг и др.). Д. Бремнер отмечает связывание этими веществами алюминия и железа, что подтверждает координационный характер образующихся соединений. [c.74]

    Монослои карбоновых кислот также могут накладываться на поверхность кварцевого стекла в два этапа вначале проводится адсорбция многозарядных ионов металла на поверхности кремнезема, а затем обработка образца мыльным щелоком. Используются такие металлы, как кальций, барий или магний [340]. Полученная таким путем поверхность кремнезема гидрофобна, поэтому на нее можно повторно наносить покрытия в процессе флотации добавлением извести с последующим введением стеарата натрия [341]. Гаудин и Фурстенау [342] показали, что в процессе флотации кварца ионы бария, адсорбиро-ваные в слое Штерна, затем адсорбировали лаурат-ионы, которые превращали поверхность кварца в гидрофобную в этом процессе барий получил название активатора . Флотация кремнезема из руд имеет важное промышленное значение. Ионы кальция используются в качестве активатора для флотации кремнезема с добавлением мыльного щелока. Интересно, что стеарат-ионы должны также сообщать железной руде гидрофобный характер, и, таким образом, руда будет всплывать с пеной в процессе флотации. Однако, если вначале добавляется крахмал, то он, адсорбируясь на оксидах железа, сохраняет их гпд-рофильность и, таким образом, может понижать флотируемость руды. Вероятно, поликарбоксильные группы в крахмале (или в окисленном крахмале), присоединенные к поверхности оксида железа в большом числе точек, не могут замещаться стеарат-ионами, которые гидрофобА и несут точно такой же по знаку заряд, что и крахмал, поэтому не способны проникать сквозь толстый гидрофильный анионный слой адсорбированного крахмала [343]. [c.952]


Смотреть страницы где упоминается термин Карбоновые железом III : [c.135]    [c.182]    [c.627]    [c.204]    [c.206]    [c.36]    [c.753]    [c.1253]    [c.294]    [c.173]    [c.316]   
Титриметрические методы анализа органических соединений (1968) -- [ c.64 , c.298 , c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Железа гидрат закиси карбоновых кислот

Железо с пиридин карбоновыми кислотами

Карбоновые кислоты и их ангидриды, определяемые переводом в соли железа (III) гидроксамовых кислот

Карбоновые кислоты, соли, сложные реакция с образованием гидроксамата железа III

Пиридин карбоновая кислота производные, хелатообразующие реагенты на железо III

Пиридин карбоновая кислота фотометрическое определение желез

Сложные эфиры карбоновых кислот, определяемые переводом в соли железа (III) гидроксамовых кислот



© 2025 chem21.info Реклама на сайте