Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез-газ водяной газ применение

    Другим примером такого благоприятствующего отравления является синтез этанола из водяного газа. Пад обычными содержащими щелочь катализаторами под давлением получаются лишь высшие спирты (стр. 716), т. е. конденсация идет очень глубоко. Однако применение СиМп-катализатора, ослабленного добавлением 0,1 г-же oS и повышением объемной скорости с 4000 до 200 ООО, увеличивает выход этанола от 2—3 до 21%. [c.69]


    Наибольший интерес представляет первая реакция—прямой синтез формальдегида из водяного газа. Синтез этот пытались осуществить многие исследователи. Однако применение катализаторов, нагревания, давления, монохроматического света, электроразрядов и пр. не привело к ожидаемым результатам, так как получались лишь следы формальдегида. Так же вели себя смеси СО2+Н2, Oa+HjO, СО2+Н2+Н2О и т. д. Проверка патентных данных, по которым из таких смесей якобы удавалось получать высокие выходы формальдегида, показала, что во всех случаях образуется не более 1% СН О. [c.725]

    Цеолиты, используемые в составе катализаторов, должны иметь высокую активность и селективность в крекинге нефтяных фракций, стабильность при высокотемпературных воздействиях в среде воздуха и водяного пара, необходимые размеры входных окон в полости структуры. Таким требованиям в наибольшей степени соответствуют цеолиты типа X и V в редкоземельной обменной форме или в ультрастабильной форме, и поэтому они находят преимущественное применение при синтезе катализаторов крекинга. Матрица, в качестве которой применяют синтетический аморфный алюмосиликат, природные глины с низкой пористостью и смесь синтетического аморфного алюмосиликата с глиной (полусинтетическая матрица), выполняет в цеолитсодержащих катализаторах ряд важных функций [99, 113]  [c.97]

    Смесь из 20 г 3-нитрокоричной кислоты [284], 75 мл хинолина и 3 г медного порошка нагревают при 185—190° так, чтобы происходило непрерывное выделение углекислоты. После полуторачасового нагревания смесь подкисляют 3 н. соляной кислотой, которой берут 50%-ный избыток, и перегоняют с водяным паром. Дистиллят несколько раз экстрагируют хлороформом и соединенные экстракты сушат безводным сернокислым натрием. После отгонки хлороформа остаток фракционируют из колбы Кляйзена и получают 9,3 г 3-нитростирола с т. кип. 90—96° (3,5 мм)-, п 1,5836 выход равен 60% от теорет. Повторным фракционированием с применением колонки (высота 20 см, диаметр 19 мм) с насадкой из колец Фенске и с регулируемым отбором получают чистый 3-нитростирол. При проведении реакции с большими количествами, чем указано, требуется больше времени для синтеза, а выходы получаются ниже [149]. [c.115]

    Применение. Метан находит широкое применение. Его используют как газообразное, очень калорийное топливо. Кроме того, метан является ценным сырьем для получения производных. Огромные количества метана подвергают конверсии (превращению) в синтез-газ (смесь СО и Нг). Для этого метан либо с парами воды пропускают над никелевым катализатором при 700—800°С (конверсия водяным паром), либо подвергают неполному окислению кислородом при 1400—1500° С (кислородная конверсия)  [c.300]


    Для проведения реакции суспензию безводной однохлористой меди и порошкообразного хлористого алюминия в сухом толуоле механически перемешивают и через зту смесь пропускают в течение нескольких часов ток сухого хлористого водорода и окиси углерода. Реакционную смесь разлагают льдом и затем перегоняют с водяным паром полученный rt-толуиловый альдегид отделяют от непрореагировавшего толуола фракционной перегонкой. Ориентация и границы применения реакции Гаттермана—Коха приблизительно те же, что и при синтезе кетонов по Фриделю—Крафтсу, но выходы ниже. В обычных условиях этого метода (если хлористый алюминий не заменен бромистым алюминием) бензол в реакцию не вступает и даже применяется в качестве растворителя при формилировании других углеводородов. [c.375]

    Реакции (1) и (2) сопровождаются увеличением объема поэтому при низких давлениях глубина превращения больше. Например, при реакции (1) с применением метана как исходного сырья, количество непрореагировавшего метана при любом значении температуры пропорционально квадрату давления. Поскольку водород и содержащий его синтез-газ обычно применяют под повышенным давлением, целесообразно вырабатывать водород под максимальным возмол<ным давлением. Отрицательное влияние давления на реакцию взаимодействия, углеводорода с водяным паром можно устранить повышением рабочего давления или увеличением отношения водяной пар углеводород, так как оба эти фактора приводят к увеличению полноты протекания реакции. [c.169]

    Возможно использовать также генераторы водяного газа с применением кислорода. В зависимости от требуемого соотношения Н2 СО синтез-газ можно получать и взаимодействием метана с двуокисью углерода или окиси углерода с водяным паром. Суммарная реакция получения газа состава 1 1 изображается уравнением [c.262]

    Ртутный затвор состоит из трубки, погруженной примерно на 12 мм в ртуть, налитую в пробирку. Это позволяет вести реакцию под небольшим давлением хлора. Проверявшие синтез нашли, что лучшие результаты дает применение водяного затвора. Трубка для отвода газа была погружена на 18 сл в воду, налитую в стеклянную пробирку. Меледу водяным затвором и реакционной колбой была помещена ловушка (сю/янка для отсасывания емкостью 125 мл), служащая для того, чтобы предотвратить засасывание воды в реакционную смесь. [c.484]

    Очистку, основанную на взаимодействии сероорганических соединений с водяным паром, обычно совмещают с конверсией окиси углерода. Процесс ведут на таких же катализаторах, что и конверсию СО. В связи с широким применением природного газа как технологического сырья для синтеза аммиака этот метод сероочистки используется очень редко. [c.304]

    Дожиг является также основным методом нейтрализации для других источников выбросов оксида углерода и других вредных углеводородов с применением новых, более эффективных катализаторов дожига. Так, разработан гранулированный катализатор НТК-И для низкотемпературной конверсии оксида углерода с водяным паром в производствах аммиака, водорода, синтеза метанола и других процессах. [c.260]

    И растворитель и постепенно, по каплям, приливают галоидопроизводное (или, в случае синтеза несимметричных углеводородов, смесь галоидопроизводных), которое может быть разбавлено растворителем. Смесь энергично перемешивают. Если реакция не начинается, добавляют немного этилацетата. При этом образуется ацетоуксусный эфир и поверхность натрия очиш ается, что благоприятствует началу реакции. Введение галоидного алкила следует регулировать так, чтобы реакция протекала равномерно, без перерывов. В случае, если течение реакции прервется, смесь можно нагреть на электрической плитке или масляной бане (ввиду наличия натрия применение водяной бани недопустимо). Во время реакции натрий покрывается голубовато-серым налетом. По введении всего количества галоидопроизводного смесь нагревают еш е в течение некоторого времени. [c.417]

    В свете этих решений перед азотной промышленностью, вырабатывающей эффективные виды удобрений, поставлены весьма важные и серьезные задачи. Для их выполнения необходимо строительство новых предприятий, расширение и реконструкция на основе прогрессивной технологии действующих заводов, оснащение их высокопроизводительным мощным оборудованием. В связи с этим в производстве аммиака разрабатываются и внедряются новые методы конверсии природного газа с применением повышенного давления создаются более активные катализаторы, работающие при сравнительно низких температурах и обеспечивающие более высокую степень превращения исходных веществ в получаемые продукты применяются более эффективные абсорбенты для удаления из газов двуокиси углерода глубоко используется тепло химических процессов (включая синтез аммиака) для получения водяного пара высокого давления (до 140 ат), перегреваемого до высоких температур (570 °С) в крупных агрегатах синтеза аммиака мощностью 1000—1500 т сутки и более. Энергию получаемого таким путем водяного пара высоких параметров можно использовать в паровых турбинах для привода основных машин аммиачного производства, в частности турбокомпрессоров высокого давления для сжатия азото-водородной смеси до давления процесса синтеза аммиака, воздушных турбокомпрессоров, турбокомпрессоров аммиачно-холодильной установки, центробежных циркуляционный компрессоров совместно с турбокомпрессорами высокого давления. Энергия пара рекуперируется также в турбогенераторе для выработки электроэнергии, потребляемой на приводе насосов. В пу)овых турбинах высокое давление части полученного пара понижается до давления, близкого к давлению процессов конверсии метана и окиси углерода, что позволяет использовать в этих процессах собственный технологический пар. [c.10]


    Недостаток метода состоит в том, что концентрация получаемого хлористого водорода ниже, чем при прямом синтезе кроме того, он содержит примеси водяного пара. В СССР углеродный способ не нашел применения, но частично применяется в Японии. [c.35]

    Синтез-газ (тСО + пНз), получаемый при конверсии метана с водяным паром, служит сырьем для производства многих ценных продуктов метанола на цинк-хромовых или медьсодержащих катализаторах [9, 10], углеводородов для получения синтетического бензина, синтола и моющих средств с применением железных, кобальтовых, никелевых и других сложных катализаторов [5—9], высших спиртов на промотированных железных катализаторах. Применяя разные катализаторы и варьируя параметры технологического режима, из одного и того же сырья получают разнообразные продукты с различными свойствами. [c.14]

    Еще в первых опытах по изучению нового синтеза было показано, что в случае применения восстановленного железного катализатора процесс можно направить в сторону преимущественного образования таких соединений. Однако применение этого катализатора в реакционной среде, насыщенной водяными парами, затруднено вследствие окисления катализатора и потери его активности [4]. [c.182]

    Продукт синтеза на основе окиси углерода и водяного пара на Со- и Ре-катализаторах представляет собой смесь предельных и непредельных углеводородов жирного ряда и кислородных соединений. Метан образуется в незначительном количестве. Жидкая часть продукта выкипает в широких пределах, до 350° С. Анализ продукта синтеза показал, что суммарное содержание в нем кислородных соединений (спирты, кислоты, эфиры) достигает 16%, а остальное составляют углеводороды с открытой цепью. При синтезе на железомедном катализаторе при давлении 1—10 ат содержание непредельных в углеводородной части достигает 60—70 вес. %. В случае применения сплавного катализатора и ведения процесса под давлением 40 аг происходит частичная гидрогенизация непредельных, что приводит к снижению их содержания в продукте синтеза до 40—50 вес.%. [c.184]

    Новый метод синтеза органических соединений из таких простых веществ, как окись углерода и водяной пар, несомненно, найдет в будущем применение в химической промышленности. Существенное значение для развития этого процесса имеет изучение элементарных стадий его. Суждение о них может быть высказано на основе изучения природы продуктов синтеза. [c.184]

    Несмотря на то что гомогенные катализаторы нашли применение примерно в 20 основных промышленных процессах и многочисленных высокоселективных лабораторных синтезах, их широкое использование сталкивается с двумя основными препятствиями, которые необходимо преодолеть. Одно из них заключается в выделении катализатора по окончании реакции. Другое связано с распространением гомогенного катализа на такие технологически важные, многотоннажные процессц как сжижение угля, синтез водяного раза и синтез аммиака, в которых доминирующую роль играют гетерогенные катализаторы. В решении проблемы выделения катализатора сейчас разрабатывается подход, основанный на иммобилизации каталитического комплекса на полимерной или неорганической подложке. В решении второй проблемы надежды возлагаются на использование кластерных соединений, объединяющих два или более атомов металла в одном комплексе. Известно, что на некоторых кластерах протекают, по крайней мере стехиоме-трически, те реакции, которые лежат в основе вышеупомянутых технологически важных процессов. В то же время известно всего лишь несколько кластеров переходных металлов, таких, как Ruji Oj или Ir ( 0)j2, которые действительно катализируют, пусть на уровне лабораторного эксперимента, реакции синтеза водяного газа (HjO + [c.8]

    Одним из важнейших продуктов промышленности органического синтеза является формальдегид, который благодаря своей высокой реакционной способности находит все новые области применения. Несмотря на внедрение новых процессов [50] основным источником получения формальдегида до настоящего времени остается метанол, переработка которого в СНаО весьма сложна и осуществляется в три стадии 1) конверсия метана с водяным паром 2) синтез метанола при высоком давлении (280 —300 атм) из конвертированных газов и 3) последующее превращение метанола в формальдегид. Последняя стадия может осуществляться двумя методами а) частичным окислением — дегидрированием метанола на металлических катализаторах (А , Си) кислородом воздуха и б) неполным окислением метанола кислородом воздуха на окисных (обычно железомолибденовых) катализаторах. [c.160]

    Синтез-газ (тСО + нНг), получаемый при конверсии метана с водяным паром [38], служит сырьем для производства многих ценных продуктов метанола на цинк-хроммедных катализаторах [33, 38], углеводородов для получения синтетического бензина, синтола и моющих средств с применением железных, кобальтовых, никелевых и других сложных катализаторов [17, 18, 19, 21," 26, 41], высших спиртов на нромотированных железных кагализаторах [c.10]

    Смеси окиси углерода с водородом и сам водород в современной химической технологии имеют огромное и разностороннее применение. Например, синтез метанола, высип-1х спиртов, синтина основан на водяном газе синтез аммиака, гидрирование растительных масел, процессы деструктивного гидрирования—па водороде. Необходимы мощные газогенераторы, снабжающие заводы этими газами, и достаточные запасы соответствующего доступного и дешевого сырья. [c.228]

    В круглодонную колбу с пришлифованной капельной воронкой и газоотводной трубкой помещают тетрагидронафталин, к которому добавлено немного чистых железных опилок, и медленно приливают по каплям бром. Перед применением тетрагидронафталин высушивают обезвоженным N32804 и перегоняют (7 кип=207 °С давление паров при 15 °С 40 Па). Поскольку вначале синтез проводят при охлаждении, круглодонную колбу погружают в водяную баню, которую при замедлении реакции можно нагреть до 30—40 С, Образовавшийся газ длЯ очистки от незначительных количеств брома пропускают через промывную склянку, заполненную, тетрагидронафталином (также предварительно высушенным и перегнанным), а для поглот щения оставшихся следов влаги — через ловушку, охлажденную до —60°С. Можно выморозить продукт жидким воздухом в следующей ловушке и по окончании реакции запаять ее в отделить от установки для получения газа. [c.570]

    Важнейшая модификация этой реакции—реакция Дёбнера—заключается в замене аммиака пиридином, который берут в некотором избытке, чтобы он служил одновременно и растворителем, и конденсирующим средством. Смесь нагревают 3 часа на водяной бане, затем охлаждают и подкисляют. Лучшие результаты получаются в том случае, если в начале реакции конденсации, когда выделение углекислоты идет особенно энергично, смесь нагревают на водяной бане, а затем переносят на песчаную баню и нагревают при ПО—120°. Кроме аммиака и пиридина, в качестве конденсирующих средств при синтезе Кневенагеля—Дёбнера применяют пиперидин, а также изохинолин, хинолин и другие третичные основания. По-видимому, наиболее эффективным конденсирующим средством является пиперидин, так как при введении в реакционную смесь даже малого его количества выход значительно повышается. В случае применения для синтеза Кневенагеля некоторых аминов происходит перемещение двойной связи в образующейся непредельной кислоте, в результате чего BMe TQ а,Р-ненасыщенной кислоты образуется р,у-ненасыщенная кис-лота . Такое действие оказывают в особенности диметиланилин и три-этаноламин. [c.595]

    С [о] -1-41,4° (1%-ный р-р в абс. сп.) растворяется в органических р-рителях, плохо — в воде (0,1%) ( сп 50 °С, ниж. КПВ 10,1 г/м . Получение (-(-)-К.— иэ древесины камфорного дерева (отгонка с водяным паром с последующей очисткой), (—)-К.— из эфирного масла сибирской пихты, ( )-К.— синтезом из пинена (через кам фен и изо-борнеол). Техн. К. характеризуется по т-ре начала кристаллизации (не ниже 164 °С), содержанию этерифи-цирующихся в-в (не более 3%) и воды (не более 2%). Применение пластификатор материалов на основе нитратов целлюлозы флегматизатор бездымных порохов для синтеза бромкамфоры репеллент (против моли и комаров). Очищенная прир. К. (содержание осн. в-ва5 97%, т-ра начала кристаллизации > 174 °С) — кардиотонич. и аналептическое средство, компонент камфорного спирта и других местных раздражающих и антисептических препаратов. Мировое проиэ-во ок. 9 тыс. т/год (1980). [c.239]

    Улучшенный способ получения цианистого аллила (нитрила 3-бутеновой кислоты) состоит в следующем. В сухую (промытую абсолютным спиртом и абсолютным эфиром) трехгорлую колбу емкостью 500 мл, снабженную механической мешалкой (стр. 225) и шариковым холодильником высотой 90 см, установлеппым вертикально и защищенным хлоркальциевой трубкой, помещают 85 г сухой цианистой меди (продажной или приготовленной, как было указано ранее , и высушенной в течение 72 час. в сушильном шкафу при 110 непосредственно перед применением), 0,25 г иодистого калия и 72,5 г хлористого аллила (высушенного над хлористым кальцием и свежеперегнанного т. кип. 45—47°). Пускают в ход мешалку и нагревают смесь на водяной бане примерно через 6 час. реакция в основном заканчивается, что можно заметить по прекращению кипения. После этого нагревание продолжают в течение еще 1 часа. Если синтез проводят с большими количествами реагентов, то в случае бурного кипения приходится отставлять водяную баню, чтобы уменьшить интенсивность протекания реакции. Обычно это случается через [c.139]

    Получение каучуков. Для синтеза Б. к. в растворе применяют бутадиен, содержащий > 99% (по массе) основного в-ва и 0,001% влаги. Р-рители - толуол, циклогексан, гексан, гептан, бензин. Мономер полнмеризуют непрерывным способом в батарее последовательно соединенных реакторов, снабженных мешалкой и рубашкой, в к-рой циркулирует хладагент. При 25-30 С продолжительность процесса составляет 4-8 ч, конверсия бутадиена-80-95% в зависимости от типа катализатора (повышение т-ры до 35-40 С, особенно в случае применения титановой каталитич. системы, приводит к заметному увеличению выхода олигомеров, придающих каучуку резкий неприятный запах). Заключительные операции технол. процесса дезактивация катализатора (обычно с использованием соединений, содержащих подвижные атомы водорода) введение антиоксиданта отмывка р-ра полимера от остатков каталитич. комплекса выделение полимера, напр, методом водной дегазации (отгонкой р-рителя и остаточного мономера с водяным паром) отделение крошки каучука от воды сушка каучука, его брикетирование и упаковка. [c.329]

    В лабораторной практике нашел применение метод по- учения о-нитробензальдегида посредством окисления о-ни-тротолуола хромовым ангидридом в среде уксусного ангидрида и последующего гидролиза образующегося о-нитрсбенз-альдиацетата (1, 2]. Согласно имеющимся в литературе прописям, омыление диацетата ведется минеральными кислотами, [Ь 2] или кальцинированной содой [3] получаемый при этом продукт бывает сильно загрязнен смолистыми примесями и для очистки его необходимо перегонять с водяным паром. Эта операция требует громоздкого аппаратурного оформления, отнимает много времени и ограничивает масштабы синтеза. [c.152]

    Аппаратура для синтеза состоит из трехгорлой колбы (750 мл) с мешалкой и водяным холодильником (с трубкой для выхода газа) и трубки с предохранительным клапаном для подачи сухого азота. Пентахлорид фосфора (208 г, 1 моль) и хлорид аммония (17,5 г, 0,33 моля) помещают в колбу вместе с сижж-тетрахлорэтаном (200 мл) и нитробензолом (150 мл). Перед применением оба растворителя осушают дистилляцией с пятиокисью фосфора. Можно добавить к реакционной смеси хлорид натрия ( 10 г) для предотвращения затвердевания хлорида аммония. Реакционную колбу нагревают до 80°, а давление в системе медленно понижают при помощи масляного насоса до начала слабого кипения. Наличие предохранительного клапана для подачи азота предотвращает растрескивание колбы. По истечении 5 час реагирует большая часть пентахлорида фосфора. Затем систему наполняют азотом при атмосферном давлении. Реакционную смесь быстро нагревают до 140° и смесь отфильтровывают через нагретый фильтр. Реакционную колбу и приемник фильтрата в процессе фильтрования соединяют с обычной системой подачи азота. После охлаждения фильтрата получают игольчатые кристаллы [СЬР—К=РСЬ] [РСЬ]", которые отфильтровывают и рекристаллизуют несколько раз из сцжж-тетрахлорэтана. Это соединение сублимируется при 150° и 14 мм рт. ст. и имеет т. пл. 310—315° в вакууме. Дополнительные количества этого вещества можно получить путем уменьшения объема остающегося фильтрата. Выход составляет 144 г, 81%. Это соединение легко гидролизуется, и поэтому все операции следует проводить в атмосфере сухого азота. [c.30]

    К характерным особенностям этого способа относятся непрерывность процесса газификации применение в качестве газифицирующих агентов кислорода и водяного пара проведение процесса под давлением до 30 ат и выше возможность иолучешш газов для химических синтезов п бытовых нужд. [c.190]

    Синтез ее нз сахарной кислоты возможен при применении того же способа, которым глюкоза получается из глюконовой кислоты. Но в данном случае лучше исходную кислоту долги.ч нагреванием (5 — 6 час.) на водяной баие впз.чожно полнее [c.291]

    Впервые в XVI в. (Василий Валентин) был открыт способ приготовления соляного спирта (соляной кислоты) действием купоросного масла на морскую соль. Эта реакция была описана в середине ХУ11 в. Глаубером. В дальнейшем по этому методу получали хлористый водород в производстве сульфата натрия. После изучения свойств соляной кислоты и расширения областей ее применения начали разрабатываться и другие методы синтеза хлористого водорода. Для этой цели использовали водород, содержащийся в водяном генераторном газе. Хлор и водяной пар пропускали через раскаленный уголь  [c.6]

    Для предотвращения создания взрывоопасных концентраций газов и паров легковоспламеняющихся жидкостей и ядовитых газов в аварийных условиях в опасных местах должны быть установлены автоматические сигнализаторы с включением аварийной вентиляции и водяных завес. Обязательным требованием для цехов ароматических аминов является полная механизация трудоемких операций и сведение к минимуму контакта обслуживающего. персонала с вредными для здоровья веществами. В цехах, где вырабатываются или применяются канцерогенные вещества, такой контакт должен быть полностьюисключен. Это достигается либо комплексной автоматизацией производства (для непрерывных схем), либо установкой аппаратов, в которых осуществляется переработка вредных веществ, в вентилируемых шкафах, а пультов управления — вне шкафа. Во всех случаях, когда можно проводить синтез необходимых продуктов без применения канцерогенных веществ, это осуществляется вне зависимости от экономических показателей. Так, в СССР полностью исключено применение -нафтилами-на, несмотря на то, что обходной путь получения продуктов (например, Гамма- и И-кислот) дороже. Все более ограничивается [c.126]

    НоБый метод синтеза органических соединений из окиси углерода и водяного пара по условиям процесса и характеру получаемых продуктов сходен с методом синтеза органических веществ из окиси углерода и водорода по способу Фишера— Тропша, но имеет ряд преимуществ. Для осуществления нового синтеза не требуется применения дорогостояш,его водорода, и образование органических веществ протекает при прямом взаимодействии окиси углерода и водяных паров на катализаторе по схеме [c.181]


Смотреть страницы где упоминается термин Синтез-газ водяной газ применение: [c.306]    [c.13]    [c.469]    [c.470]    [c.14]    [c.86]    [c.33]    [c.42]    [c.132]    [c.68]    [c.411]    [c.232]    [c.242]    [c.89]    [c.169]   
Технология нефтехимических производств (1968) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез-газ водяной газ

Синтез-газ применение



© 2025 chem21.info Реклама на сайте