Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окиси олефинов этилена

    Кислоты и окись этилена Олефины (этилен) Ag xld В кипящем слое [42]  [c.382]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]


    Имеются два метода осуществления этого процесса — каталитический и радикально-цепной. При первом используются различные катализаторы кислотного типа (протонные кислоты, алюмосиликат, окись алюминия и др.). Например, с окисью алюминия на силикагеле процесс проводится при 100—150°С и 70 кгс/см (ж7 МПа) в жидкой фазе. При этом параметры зависят от реакционной способности олефинов, которая изменяется в обычном порядке изоолефины > н-олефины > этилен. Присоединение протекает по правилу Марковникова, в связи с чем из изоолефинов получаются грет-алкилмеркаптаны  [c.330]

    Если пропилеп заменить этиленом, то при 190—195°, 400 ат, отношении спирт олефин, равном 2,6 1, и отпошении окись углерода олефин, равном 8,0 1, получают с 53%-ным выходом диэтилкетон, вместе с кото- [c.560]

    Гидроперекиси кислот количественно превращают олефины в эпоксиды (Н. А. Прилежаев) в частности, этилен образует простейший эпоксид — окись этилена  [c.270]

    Прн использовании М О значительное количество окиси этилена изомеризовалось в ацетальдегид кроме того, в конденсате было обнаружено до 20% этиленацеталя ацетальдегида. Жидкие продукты состояли в основном из олефинов, а в газообразных были обнаружены окись и двуокись углерода, водород, кислород, ацетальдегид, этилен, пропилен и бутилены. Присутствие пропилена, по мнению авторов , указывает на радикальный механизм распада окиси этилена. [c.64]

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    При изучении механизма взаимодействия олефинов с кислородом в статических условиях было установлено, что атом кислорода способен разрывать двойную углерод-углеродную связь олефина с одновременным образованием альдегида. В случае этилена таким альдегидом является формальдегид. Молекулярный кислород не принимает участия в реакции, однако он может взаимодействовать с первичным радикалом, возникшим при реакции атома кислорода с этиленом. И в этом случае продуктом реакции также будет формальдегид. Окись этилена не была обнаружена среди продуктов окисления, поэтому в предлагаемой ниже схеме она не участвует  [c.202]

    Из многочисленных катализаторов, пригодных для прямой гидратации олефинов, только два—фосфорная кислота на носителе и про-мотированная окись вольфрама—имеют в настоящее время промышленное значение. В процессе Шелл получения этанола в качестве катализатора применяется фосфорная кислота на целите. На активность этого катализатора влияет абсорбция влаги при повышенных давлениях и высокой величине отношения водяной пар/этилен. Повышение температуры благоприятно влияет на активность катализатора, однако если не предусмотрено соответствующее регулирование других переменных факторов процесса, то равновесие сдвигается в сторону уменьшения концентрации этанола в получаемых продуктах. [c.403]

    Перхлорат аммония Этилен Пропилен Бутен-1 Изобутилен-1 Продукты разложения Дегид Высший олефин, этан Высший олефин, пропан Высший олефин, бутан Высший олефин, изобутан МпО [45] рирование Мп и его окись на - -А1 0з в протоке, 200—500° С [46] [c.884]

    Образование электронновозбужденных продуктов из исходных веществ в основных состояниях. При взаимодействии атомов О, находящихся в нормальных состояниях, с этиленом (или вообще олефинами) в качестве основных первичных продуктов [57, а] образуются ацетальдегид и окись этилена  [c.74]

    В современной химической промышленности ведущей группой мономеров ДЛЯ получения синтетических полимерных материалов являются низшие олефины, и в первую очередь этилен и пропилен. На основе этилена базируются производства таких многотоннажных продуктов, как этиловый спирт, полиэтилен, стирол, окись этилена, дихлорэтан и др. [c.3]

    СиО катализирует глубокое окисление олефинов. Причина неселективного действия окиси меди в настоящее время еще не ясна. Нами было показано [4], что на СиО акролеин и пропио-новый альдегид (и, вероятно, другие альдегиды) окисляются с очень большой скоростью. Возможно, именно этим объясняется низкая селективность СиО. Не исключено, однако, что на окиси меди ненасыщенные карбонильные соединения вообще не образуются, поскольку окисление по группе СНз не происходит, а сразу образуются лабильные промежуточные соединения, которые с большой скоростью окисляются до СОг. Этот более вероятный случай подобен, например, неселективному окислению пропилена на серебре, которое избирательно окисляет этилен в окись этилена. Отсутствие окиси пропилена в про- [c.79]

    В литературе имеются указания о возможности получения а-окисей при окислении соответствующих олефинов кислородом воздуха в среде инертного растворителя . Смесь олефинов (этилен, пропилен, бутилен-1) или один из этих олефинов взаимодействует с кислородом при 170—250 °С и атмосферном давлении. Реакция проводится в растворителе. Лучшие результаты получены при использовании в качестве растворителя дибутилфтала-та. При пропускании смеси этилена (80%) с кислородом (20%) через реактор, заполненный дибутилфталатом, селективность окисления в окись этилена составляет 55—60% при конверсии этилена за проход 2—5%. Повышение температуры процесса и увеличение содержания кислорода в газовой смеси способствуют повышению конверсии олефина. Добавка порошкообразного серебра в растворитель не влияет на результаты процесса. При пропускании газовой смеси через два последовательно установленных реактора конверсия этилена составляет 6,7—7,0%. [c.150]

    Вероятно, в такой форме перекись не способна образовать окись олефина даже при соударении с активированным этиленом. Этим же объясняется отсутствие активности у диалкилпере-кисей по отношению к олефинам, которые гидроперекисями хорошо окисляются в а-окиси (метод Прилежаева). Циклическая перекись при соударении со стенкой образует промежуточный бирадикал—диметиленпероксид, который превращается в формальдегид  [c.204]

    А12О3 даЗЮа г/НаО, гдеМе — металл 16 — УП1 групп периодической системы (в том числе Ag), п— степень окисления этого металла, w и у — число молей 5102 и НаО соотношение Ме А1 равно 0,5—1,0 г-экв на 1 г-атом А1. Конверсию алканов ведут в смеси с низшими олефинами (этилен, пропилен мол. отношение олефин ал-кан = 0,15—1,5) при 120—160° С, 2—13 бар и времени контакта 5—20 сек [177]. В другом патенте [1781 рекомендуется катализатор дегидрирования насыщенных или олефиновых углеводородов, состоящий из смеси соединений щелочного металла (Ы, К, МаХ соединений щелочноземельного металла (Са, 5г, Ва), соединения Ag и (или) соединения редкоземельного элемента. Используются окиси, гидроокиси, карбонаты, сульфаты, бромиды перечисленных металлов. К смеси добавляются также соединения переходных металлов 2г, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Рс1, Си и А отношение щелочной металл переходный металл редкоземельный элемент составляет 4 1 1. Окись серебра (возможно превращение в процессе реакции в металлическое серебро) исследовалась в числе окисей других металлов как катализатор дегидрирования пропана в пропилен. Однако было показано, что Ag20 менее селективна в данном случае, чем иОз [77]. [c.172]


    Цетлин, Плотникова, Рафиков и Глазунов [855] разработали новый газофазный метод радиационной прививки, который позволяет осуществлять прививку раз,личных мономеров (метилметакрилата, стирола, акрилонитрила, октаметилциклотетрасилоксана, акриловой кислоты) на различные материалы, в том числе и на такие минеральные вещества, как окись магния, бериллия, карбонат кальция, кремнезем, сажа. Большим преимуществом этого метода является незначительный выход гомонолимера и возможность прививать такие трудно полимеризующиеся мономеры, как различные олефины (этилен, пропилен, бутадиен) и ацетиленовые соединения (ацетилен, фенылацетилен, пропаргиловый спирт). При помощи этого метода были получены привитые сополимеры на пленках, волокнах, в том числе на стекловолокне [782]. Привес прививки достигал веса исходного волокна. [c.151]

    Олефины. Низшие олефины (этилен, бутилены) при 400° над алюмоси-ликатным катализатором изменяются сравнительно мало. Но уже при 500° бутилены подвергаются глубоким иревращениям в основном, это — распад, изомеризация, полимеризация и диспропорционирование водорода в результате наблюдается образование изобутилена и до 21 % жидких углеводородов. Аналогичные превращения претерпевают н. пентены и н. октилены, причем в жидком катализате обнаруживается наличие ароматических углеводородов, а в газообразных продуктах крекинга ок-тиленов — пропилен, бутилены, бутан и изобутан. [c.497]

    Исследована возможность совместного диспропорционирования различных гексенов с низшими олефинами (этиленом, пропиленом или бутеном-2) на алюмо-рениевом катализаторе [82]. Катализатор приготавливали, пропитывая предварительно измельченную и осушенную окись алюминия А-1 водным раствором пер-рената аммония, с последующей осушкой и активированием при 390 °С воздухом и азотом. Исходные изогексены получали димеризацией пропилена. Совместное диспропорционирование проводили в кварцевом трубчатом реакторе. Низший олефин дозировали в газообразном состоянии из баллона через реометр, пропуская поток через обогреваемую на водяной бане градуированную стеклянную ампулу с жидким гексеном. Последний в виде паров уносился потоком низшего олефина в реактор. Продукты реакции конденсировали и анализировали методом газо-жидкостной хроматографии. [c.159]

    В 1964 г. впервые было установлено [1], что пропилен можно диспропорционировать в этилен и С4-олефины (наряду с высшими олефинами). В качестве катализатора для этой реакции была взята пропитанная Мо(СО)в или W(GO)e окись алюминия Al Os, которая затем активировалась при 540—580 °С. Кроме того, эффективными катализаторами являются МоОд на AljOg и активированный катализатор на основе 3,4% СоО, 11,0% MoOg и 85,6% Al Oj [2—4]. [c.325]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    И ПОД давлением 20—50 ата к продуктам реакции добавляли затем воду, чтобы выделить кислоту в свободном виде [11]. В дальнейшем было установлено, что окись углерода может присоединяться к олефинам в присутствии воды, спиртов, аминов и других соединений, образуя соответственно кислоты, стожные эфиры и амиды. Источником окиси углерода служат карбонилы металлов, выделяющие ее в присутствии кислот мож1ю также проводить каталитическую реакцию с газообразной окисью углерода, используя соль металла, способную в условиях процесса образовывать карбонил [12]. Больше всего внимания уделялось синтезу кислот в присутствии карбонила никеля процесс проводили при 200—300° и 150 ат. Этим способом можно превратить этилен в пропионовую кислоту или ее ангидрид. [c.197]

    Как мы видели выше, синтез полиметиленов из метановых угле-ввдородов термодинамически невозможен. Кроме того, очень вероятно, что первоначально образующиеся олефины не могут превращаться в полиметиленовые углеводороды еще и по кинетическим причинам, потому что скорость циклизации олефинов в полиметилены ниже скорости гидрирования в метановые углеводороды. Принципиально возможность образования полимети-леиовых углеводородов из олефинов не исключается. Имеется много указаний на то, что такие агенты, как серная, фосфорная кислоты, окись алюминия, флоридин и активные глины ускоряют процесс полимеризации простейших олефинов с частичным образованием полиметиленовых и даже ароматических углеводородов. Чистый этилен с хлористым алюминием дает полимерные масла с формулой С Н2п-1, где х равен 8—15. Деароматизированный продукт имеет состав, явно говорящий о том, что в нем содержится много высших полиметиленовых углеводородов. [c.99]

    Большое техническое значение имеет дегидрирование алифатических и али-циклйческих углеводотзодов для получения низших олефинов и аренов. Эту реакцию проводят над катализаторами, состоящими из смесей окисей хрома и алюминия или окисей железа и магния. Термически проводят лишь дегидрирование этана в этилен. Для дегидрирования циклопарафинов и циклодегидрирования алифатических углеводородов с образованием аренов (реформинг-процесс) применяют главным образом окись молибдена или платину на окиси алюминия (гидроформинг или платформинг). [c.44]

    Вскоре в Nature появилась статья Робинсона , который возражает против изображений молекул окиси этилена и циклопропана, предлагаемых Уолшем, и считает, что общепринятое изображение строения этих молекул вполне отвечает их свойствам. Особенно резко Робинсон отрицает аналогию свойств окиси этилена и этилена он считает, что по химическим свойствам окись этилена более сходна с ацетальдегидом, так как в первой фазе реакций олефины ведут себя как анионоиды, а ацетальдегид и окись этилена — как катионоиды, т. е. этилен начинает взаимодействовать с отдачи электрона, а окись этилена — с получения электрона. Робинсон отрицает также правомерность сравнения поведения окиси этилена в водных растворах с поведением аммиака. [c.19]

    Под действием ультрафиолетовых лучей окись этилена разла-гается . Продуктами фотосенсибилизированного распада окиси этилена в присутствии ртути при комнатной температуре являются окись углерода, водород, альдегиды (в основном уксусный и высшие), метан, этан, пропан и небольшое количество радикалов СН. —СО. Добавки этилена и бутилена-1 сильно ингибируют выход альдегидов. Этилен увеличивает выход пропана и радикала СНл—СО. Бутилен-1, напротив, почти полностью ингибирует образование пропана, но индуцирует образование этилена и высших парафинов (до октана). При разложении сдмесей дейтерирс-ванной и недейтерированной окиси этилена наряду с Из и Оз образуется НО. В продуктах ингибированного этиленом распада такой смеси НО практически отсутствует, а количество Ог и Н-2 уменьшается до некоторого предела. Основным первичным актом, по-видимому, является распад возбужденной молекулы окиси этилена на -СНз и -СНО, причем далее из -СНОобразуются Н- и СО. Добавки олефинов связывают атомы Н, а алкильные радикалы частично связывают радикалы -СНО, образуя высшие альдегиды и парафины. Кроме того, возможен менее значительный распад окиси этилена на молекулу водорода и кетен, а также на циклический бирадикал и атомарный водород. [c.61]

    Реакция Прилежаева особенно гладко проходит при эпоксиди-ровании высших олефинов. Однако имеются указания, что и этилен можно окислить по реакции Прилежаева в окись этилена . В этом случае реакцию проводят в среде тетрахлорэтилена, а в качестве катализатора используют иод. Продолжительность реакции 12—20 ч, выход окиси этилена достигает 30%. На 1 мл тетрахлорэтилена расходуется 5,5-10 мг-экв иода. При увеличении количества иода выход окиси этилена достигает 53%. [c.148]

    Этилен Пропилен Бутен -1 Изобутилен Р е а к t Этилен Высший олефин, этан Бутен, пропан Высший олефин, бутан Высший олефин, изобутан 1ИИ с участием м Окись этилена РЬ на y-AljOg проток, 1 бар, 200—500 С [734I° юлекулярного кислорода Ag на корунде с добавкой РЬ (0,016% от веса Ag O) [735] [c.535]

    Этилен Пропилен Бутен-1 Изобутилен-1 Этан, высший олефин Пропан, высший олефин Бутан, высший олефин Изобутан, высший олефин Ag и его окись на - -AlaOg проток, 1 бар, 200—500° С [1250] [c.576]

    Вообще дегидратация спирта может происходить в двух направлениях, давая этилен и воду или эфир и воду. У алифатических спиртов образование эфира при дегидратации составляет скорее исключение, нежели правило. Однако Ипатьев [4,5], а также Сабатье и Мейль [12] утверждают, что дегидратация окисью алюминия при низких температурах дает кроме этилена некоторое количество эфира. В случае ароматических спиртов и особенно фенолов дегидратация приводит к образованию больших количеств окиси дифенила или дифенило-вого эфира. Ипатьев предполагал, что окись алюминия дает соединение, аналогичное алюшнату натрия КаАЮг, и механизм каталитической дегидратации алифатических спиртов рассматривал как процесс промежуточного образования нестойких сложных эфиров, легко разлагающихся с образованием соответствующих олефинов. [c.587]

    Окисление этилена. Олефины каталитически окисляются значительно легче, чем соответствующие парафиновые углеводороды. Окисление некоторых олефинов может представлять интерес для химика-органика. Например, этилен с хорошим выходом можно окислить в окись этилена методом Макби, Хасса и Вайзмепа [341]. По этому методу смесь воздуха и этилена (в отношении 8 1 и выше) пропускают над серебряным катализатором при 260—280°, в результате чего образуется окись этилена с выходом 50% и выше конверсия за один проход при времени контакта 1 сек. несколько ниже указанного выхода. Добавление небольших количеств дихлорэтилена к смеси реагентов повышает производительность катализатора. [c.149]

    Активная, свободная от кислот окись алюминия обеспечивает дегидратацию спиртов до соответствующих ненасыщенных углеводородов с прекрасными выходами, причем, реакция не сопровождается заметными перегруппировками углеродного скелета. Реакция протекает при температурах 300—400°. Так, например, в этих условиях этиловый спирт превращается в этилен, а оба про-пиловых спирта—первичный и вторичный—в пропилен с почти теоретическими выходами. Нормальные бутиловые спирты дают при дегидратации нормальные бутилены, а из изобутилового спирта и триметилкарбинола получается изобутилен. Выспше нормальные спирты, такие, как гексанол-1 [396, 397], гептанол-1 [398], октанол-1 [396, 397] и додеканол-1 [399], также дегидратируются в присутствии окиси алюминия с образованием соответствующих. 1шнейных олефинов. [c.156]

    Эфиры Р-алкоксиирониоповой кислоты и окись углерода образуют эфиры янтарной кислоты [33]. Эфиры кислот общей формулы ROGH2O H2 OOR, обработанные окисью углерода, в присутствии фтористого бора дают эфиры дигликолевой кислоты формулы 0( H2G00R)2 [34]. Подобным образом олефины, например этилен или пропилен, при нагревании с окисью углерода нод давлением в присутствии BFg и воды превращаются в соответствующие кислоты [35]. [c.239]

    Уже много лет тому назад было известно также, что при термическом разложении или дегидратации низших алифатических спиртов образуются ди-олефины. Лебедев предложил производить дегидратацию метилового, этилового или пропилового спиртов при 400° в присутствии таких катализаторов, как глинозем или окись цинка. Получаемые продукты можно пропускать через бром, и образующийся при этом тетрабромид бутадиена выделять отгонкой жидких бромидов и восстановлением превращать его в бутадиен. Для получения бутадиена было предложено также использовать 1,3-бутиленгликоль Дегидратация последнего осуществляется таким образом, чтО пары гликоля вместе с парами воды пропускают над нагретыми катализаторами (кислый орто-фосфат висмута, нейтральные пиро- или ортофосфаты магния или щелочноземельных металлов, смесь фосфатов кальция и аммония, или первичного фосфата натрия с графитом или с фосфорной кислотой). В результате дегидратации из этилового спирта можно получить этилен, из циклогексанола — циклогексан и из 2-м тил-1,3-бутиленгл иколя — изопрен. Было предложено также применять для подобной реакции непредельные спирты [c.179]

    Результаты, полученные при изучепии продуктов гидроконденсацни окиси углерода с этиленом, пропиленом, бутиленом, изобутиленом и гексиленом, показывают, что реакция с участием всех этих олефинов протекает по единому механизму. Сюда, помимо образования метиленовых радикалов [17] из окиси углерода и водорода и всех приведенных выше процессов гидрополимеризации, относятся реакции постепенного присоединения метиленовых радикалов к молекулам олефина с получением последующих гомологов, адсорбированных на поверхности катализатора, повидимому, на двух центрах. Таким образом, из метилена и этилена возникает пропилен, из метилена и пропилена — бутилен и т. д. Поскольку в основе реакции каталитической гидрокопдепсацип лежит действие метиленовых радикалов, получающихся из окиси углерода и водорода, следовало ожидать, что подобное действие произведет любое соединение, способное в условиях этой реакции разлагаться на окись углерода и водород или метиленовый радикал. Действительно, было показано [18], что подобно окиси углерода метиловый и этиловый спирты оказывают конденсирующее действие иа смесь этилена и водорода, вступая одновременно в реакцию гидроконденсации с этиленом. Общий выход гидроконденсата составляет 17—35 мл/л катализатора час. Процесс протекает, повидимому, таким образом, что предварительно происходит разложение указанных спиртов с образованием окиси углерода и водорода. Последние далее вступают, как обычно, в реакцию гидроконденсации с этиленом с промежуточным образованием метиленовых радикалов. [c.621]

    Получение олефинов и д и о л е ф и-н о в. При нагревании Г. п. г. до 600° и выше содержащиеся в них парафиновые углеводорода. способны к реакциям расщепления с разрывом связей и образованием ненредельных углеводородов и водорода или непредельных и предельных углеводородов с меньшим числом атомов углерода в молекуле. Эти реакции применяются для ироиз-ва этилена, пропилена, бутилена, бутадиена и изопрена, являющихся основным сырьем для получения спиртов, пластмасс и синтетич. каучуков. Расщепление углеводородов в промышленных условиях проводится под воздействием только темп-ры (пиролиз) или темп-ры и катализаторов (см. Гидрогенизация и дегидрогенизация каталитические). В зависимости от способа подвода тенла, необходимого для протекания реакций, пиролиз и дегидрирование проводят в трубчатых печах с внешним обогревом или в печах регенеративного типа. Выход непредельных углеводородов зависит от темп-ры, времени пребывания сырья в реакционном пространстве, давления, отношения С/Н в исходном сырье, конструкции печи и др. факторов. Основным продуктом термич. пиролиза этана является этилен. При переходе от этана к пропану и бутану в продуктах пиролиза наблюдается снижение выхода этилена и увеличение выхода высших олефинов (пропилена и ёутиленов). Суммарный выход непредельных углеводородов при термич. пиролизе составляет (в вес. %) из этана 75—77, из пропана 40—50 и из бутана ок. 50. [c.387]

    Один из основных путей химической переработки низших олефинов — получение из них соответствующих спиртов (см. стр. 758). Тах , например, этилен С2Н4 является сырьем для получения этилового спирта, который далее можно переработать на уксусный альдегид и уксусную кислоту, на синтетический каучук, по Лебедеву. Из этилена легко получаются также многочисленные его производные, имеющие большое практическое значение, как-то дихлорэтан, этиленхлоргидрин, окись этилена, этиленгликоль и многие другие. [c.753]

    Этилен СН2=СН.2, пропилен СН —СН=СН,, бутилен СНз—СНз—СН=СН-2, бутадиен (дивинил) СН.,=СН—СН=СНз, будучи очень реакционноспособными соединениями, играют очень важную роль в промышленности органического синтеза. Из шoгo-численных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 556) 1 т этилена позволяет сэкономить более [c.507]


Смотреть страницы где упоминается термин Окиси олефинов этилена: [c.168]    [c.552]    [c.151]    [c.389]    [c.372]    [c.15]    [c.138]    [c.758]    [c.343]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины из этилена

Олефины окиси

Этилен окись



© 2025 chem21.info Реклама на сайте