Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Акцептора сила

    Введение фтора в оксид алюминия приводит к повышению акцептор-активности его поверхности. Исследование поверхности -у-оксида алюминия методом ЭПР при использовании в качестве адсорбатов антрацена, нафталина и бензола, обладающих разными потенциалами ионизации, позволило по.г>учить распределение акцепторных центров на поверхности по их силе (табл. 2.2). [c.46]


    Катионы связаны с молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его размер,тем значительнее будет катионная доля поляризующего действия К на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может привести к полному отрыву протона — водородная связь становится ковалентной. Донорная активность А" будет тем значительнее, чем больше я и меньше га . В зависимости от силы поляризующего влияния К"" и А" на молекулы Н2О будут получаться различные результаты. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются -электро-нами. [c.202]

    Взаимодействие с переносом заряда. Межмолекулярные силы, связанные с переносом заряда, возникают при взаимодеЙ Ствии между донорами электронов, имеющими низкую энергию ионизации, и акцепторами электронов, обладающими [c.71]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    Мы уже указывали, что способность иона металла координировать вокруг себя лиганды, например молекулы воды, можно объяснить возникающим при этом льюисовым кислотно-основным взаимодействием (см. разд. 15.10). При таком подходе основание, т. е. лиганд, можно рассматривать как донор пары электронов. Эти электроны принимает вакантная гибридная орбиталь иона металла, играющего роль акцептора (рис. 23.21). Однако можно предположить, что притяжение между ионом металла и окружающими лигандами обусловлено главным образом электростатическими силами притяжения между положительным зарядом на ионе металла и отрицательными зарядами на лигандах. При наличии ионных лигандов, например I или S N, электростатическое взаимодействие осуществляется между положительным зарядом на металлическом центре и отрицательным зарядом на каждом лиганде. Если же лигандами являются нейтральные молекулы, например HjO или NH3, отрицательные концы этих полярных молекул, где находятся неподеленные электронные пары, оказываются направленными в сторону металлического центра. В этом случае притяжение обусловливается силами ион-дипольного взаимодействия (см. разд. 11.5). Но в любом случае результат одинаков лиганды сильно связываются с металличе- [c.390]

    В дифференцирующих растворителях проявляются значительные различия в силе кислот, оснований и других электролитов. Многие кислоты и основания, полностью диссоциированные в водном растворе, существенно различаются по силе в дифференцирующих растворителях. Например, дифференцирующим эффектом по отношению к сильным кислотам обладает безводная уксусная кислота и другие слабые акцепторы протонов. Понятие о дифференцирующем растворителе не является абсолютным, так как для одной группы веществ растворитель может быть дифференцирующим, а для другой — нивелирующим. Например, жидкий аммиак является дифференцирующим растворителем по отношению к сильным основаниям, но нивелирующим по отношению к кислотам. Более универсальным дифференцирующим эффектом обладают диполярные апротонные растворители, под влиянием которых изменяется сила и кислот, и оснований. [c.36]

    Аммиак в водных растворах выступает в качестве основания потому, что, в силу ощутимой полярности химических связей, имеет достаточно высокое значение отрицательного эффективного заряда атома азота. Это способствует тому, что азот становится более сильным акцептором положительно поляризованного атома водорода ближайшей молекулы воды, чем сама вода. [c.345]

    Большая диэлектрическая проницаемость воды не является единственной причиной ее высокого ионизирующего действия. Дипольный характер молекул воды, обладающих неподеленными электронными парами, обусловливает ее значительную способность к образованию гидратированных ионов за счет донорно-акцептор-ного взаимодействия, а выделяющаяся при этом энергия гидратации ионов компенсирует, часто с избытком, энергию, необходимую для преодоления сил электростатического притяжения ионов в кристаллической решетке вещества. [c.22]

    В инертных, неполярных растворителях вероятность отрыва протона очень мала, хотя в силу внутренних электронных эффектов связь Н—А может быть в высокой степени поляризована. В таких условиях кислотные свойства проявляются в самоассоциации молекул НА или в ассоциации с акцепторами протонов — основаниями, В последнем случае мерой кислотности является константа ассоциации с каким-либо основанием, выбранным в качестве стандарта. Например, константа ассоциации бензойной кислоты и дифенилгуанидина в бензоле составляет 1,82 10 . [c.234]

    Кроме такой классификации возможна классификация растворителей по признаку их влияния на относительную силу кислот и солей, по их способности изменять соотношение в силе электролитов. По этому признаку растворители можно подразделить на нивелирующие и дифференцирующие. К нивелирующим относят те растворители, в которых кислоты, основания и соли уравниваются по своей силе, или, более осторожно, — растворители, в которых соотношения в силе электролитов, свойственные их водным растворам, сохраняются. К ним относятся прежде всего все растворители, содержащие гидроксильную группу — спирты, фенолы. В дифференцирующих растворителях проявляется значительное различие в силе электролитов, и в частности в силе кислот и оснований. К ним относятся прежде всего растворители, не содержащие гидроксильных групп альдегиды, кетоны, нитрилы и т. д. В этих растворителях соотношение в силе электролитов иное, чем в воде. Обычно такие растворители не являются донорами протонов, но и пе являются хорошими их акцепторами. Дифференцирующим действием могут обладать в той или иной степени все неводные растворители. [c.274]

    Резкого изменения в относительной силе кислот можно ожидать при переходе от растворителей, которые могут быть акцепторами и донорами протонов (вода, спирты), к растворителям, которые обычно являются только акцепторами протона (кетоны, нитрилы, нитросоединения). В этих последних карбоновые кислоты и фенолы образуют соединения одного состава — АВ. В гидроксилсодержащих растворителях фенолы образуют соединения состава АВ, а карбоновые кислоты — состава АВд (см. гл. V). [c.292]


    Катионы связаны с молекулами воды донорно-акцеп-торной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его ра шер, тем значительнее будет катионная доля поляризующего действия К" на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может принести к полному отрыву протона— водородная связь становятся ковалентной. До-норная активность А" будет тем значительнее, чем больше п и меньше В зависимости от силы поляризующего [c.208]

    Основные свойства аминов зависят от того, какую орбиталь занимает неподеленная пара электронов, образующая донорно-акцептор-ную связь. При одинаковой пространственной доступности неподелен-ной пары электронов сила основания уменьшается в ряду [c.232]

    Водородные связи могут существовать в твердом состоянии, в жидкой фазе и в растворах соединения, образующие особенно прочные водородные связи, могут сохранять их даже в газовой фазе. Например, уксусная кислота в газовой фазе при не слишком низких давлениях существует в виде димера [2]. В растворах и жидкой фазе водородные связи быстро образуются и также быстро рвутся. Так, среднее время жизни связи ННз- -НгО составляет 2- с [3. За исключением очень сильных водородных связей [4], например РН---Р с энергией почти 50 ккал/моль, энергия сильных водородных связей лежит в пределах 6—8 ккал/моль к ним относятся связь РН---Р, а также связи между карбоновыми кислотами (в последнем случае указанная величина характеризует каждую связь в отдельности). Энергия таких связей, как ОН---Н и ЫН---Н, составляет от 3 до 6 ккал/моль. В первом приближении можно сказать, что прочность водородных связей возрастает с увеличением кислотности А—Н и основности В, но эта закономерность далеко не точна [5]. Для количественной оценки силы водородной связи используют а-шкалу кислотности донора и р-шкалу основности акцептора, участвующих в образовании водородной связи [6]. [c.114]

    В комплексах порфирина с магнием или кальцием действуют преимущественно электростатические силы ион металла — лиганд (Б. и А. Пюльман указали, что вследствие наличия у многих лигандов неподеленных пар электронов связи простых катионов магния, кальция и т. п. с лигандами носят отчасти донорно-акцептор-ный характер). [c.361]

    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]

    Координационная теория не решила вопроса о природе сил комплексообразования. Это сделано на основе учения о строении атомов и молекул. Как известно, химическая связь между комплексообразователем (акцептором) и лигандами (донором) осуществляется по донорно-акцепторному механизму. [c.186]

    В основу современных теорий кислот и оснований положены представления Бренстеда и Льюиса. По протонной теории кислот и оснований Бренстеда, кислота является донором протона, а основание — акцептором протона. Сила кислоты НА определяется константой кислотности, соответствующей равновесию НА Н + А. - [c.158]

    Здесь А/в — потенциал ионизации акцептора атома водорода, измеренный относительно потенциала ионизации изоэлектронного атома благородного газа (например, Н2О относительно Не). Расчеты показывают, что системы типа PH Ке имеют энергии связи, которые могут быть объяснены единственно дисперсионными силами. Дипольный момент связи АН есть [гдн. Эта величина вызывает определенные сомнения, так как однозначно определен лишь полный дипольный момент молекулы. Однако ее можно оценить с использованием локализованных орбиталей [c.371]

    Азидогруппа относительно слабо взаимодействует с -арильным хромофором. В основном состоянии в арилазидах азидогруппа одновременно я-донор и а-акцептор, сила которых мало изменяется в зависимости от природы заместителя в пара-положении [7]. Изучались и спектры арилнитренов [8], отнесение полос в них сделано аналогично спектром арилазидов. В низкотемпературных [c.135]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Кислоты и сила кислот. По Льюису, кислота — акцептор, а основание-донор электронной пары. Кислотами, по Льюису, являются AI I3, ВРз, Н+ и т. д. Согласно определению Бренстеда, кислота является донором, а основание — акцептором протона. Каждая кислота Бренстеда сопряжена с основанием  [c.158]

    К электростатическим взаимодействиям, обнаруженным в ас-фальтеновом ассоциате, относятся 1) ориентационное — между фрагментами, содержащими диполи (гетероатомы) 2) деформационное,— между полярными фрагментами и неполярными, но поляризующимися в поле диполя (наведенный диполь) 3) комплексы с переносом заряда, возникновение которых энергетически выгодно в том случае, если разность потенциала ионизации донора и сродства к электрону акцептора меньше энергии кулоиовского взаимодействия. Электростатические взаимодействия также относятся к близкодействующим силам, энергия которых обратно пропорциональна шестой степени расстояния между молекулами [287]. [c.287]

    В зависимости от природы растворенного вещества, сольваты могут образовываться различными путями. Так, при растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения. В этом случае говорят о ион-дипольном взаимодействии. Кроме того, может иметь место донорно-акцепторное взаимодействие. Здесь ионы растворенного вещества обычно выступают в качестве акцепторов, а молекулы растворителя — в качестве доноров электронных пар. Ясно, что в таком взаимодействии могут участвовать растворители, молекулы которых обладают неподеленными электронными парами (например, вода, ам.миак). [c.220]

    Водородная связь, образованная с карбонильным кислородом, уменьшает его электроотрицательный характер благодаря оттягиванию электронов к водороду в водородной связи, а это приводит к увеличению силы карбоновых кислот в гидроксилсодержащпх растворителях по сравнению с фенолами. Этими же причинами объясняется изменение относительной силы кислот других химических групп ири переходе от растворителей, являющихся донорами и акцепторами протона, к растворителям, которые являются только акцепторами. [c.292]

    Для теоретического описания слабых водородных связей использованы различные варианты, включающие а) донорно-акцептор-ное взаимодействие, б) электростатическое взаимодействие и в) ван-дер-ваальсовы силы. [c.209]

    Сравнение отдельных сопряженных пар донор ионов — акцептор ионов по их силе путем сопоставления соответствующих показателей констант равновесия пока невозможно, так как в противоположность протолитиче-ским системам здесь еще не разработаны приемлемые методы стандартизации активностей обмениваемых ионов. Константы равновесия в таких случаях всегда относятся к общей суммарной реакции между двумя такими сопряженными системами с обменивающимися ионами. [c.49]

    В последнее время И. А. Измайлов предложил количественную теорию диссоциации кислот и оснований, в которой учитывается многообразие химических и физических процессов в растворах и объясняется дифференцирующее действие растворителей на силу кислот. Особенности кислотно-основного взаимодействия как электрохимического процесса являются следствием особых свойств протона как элементарной заряженной частицы. Кислотой называется вещество, содержащее водород и участвующее в кислотно-основном взаимодействии в качестве донор. , протона. Основанием называется вещество, участвующее в кис-Л0ТН0-.0СН0ВН0М взаимодействии в качестве акцептора протона. В завершенном кислотно-основном процессе протон передается от кислоты к основанию, в результате чего образуется катион и анион кислоты. [c.79]

    Современные электронные теории органической химии оказались в высшей степени полезными для целого ряда разделов химии, поскольку с их помощью удалось связать реакционную способность соединений с их химическим строением. Наиболее успешно эти теории были использованы для объяснения относительной силы органических кислот и оснований. По определению Аррениуса, кислотами являются соединения, которые в растворе дают ионы водорода Н+, в то время как основания образуют ионы гидроксила 0Н. Эти определения были вполне правильными до тех пор, пока речь шла только о реакциях, идущих в водных растворах. Поскольку представления о кислотах и основаниях оказались весьма полезными для практики, были предприняты попытки сделать их более общими. Так, Брёнстед определил кислоты как вещества, способные отдавать протоны, т. е. как доноры протонов, а основания — как акцепторы протонов. Рассмотрим в качестве примера первую ионизацию серной кислоты в водном растворе как кислотноосновной процесс  [c.71]

    Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения к-парафипов от разветвленных и ненасыщенных углеводородов. Селективно задерживаются алкилбензолы. Одновременное присутствие атомов-акцепторов (кислород гидроксила и простых эфиров) и атомов-доноров (водород гидроксила) приводит благодаря образованию водородной связи к тому, что низшие члены ряда полигликолей способны к сильному взаимодействию не только с соединениями, содержащими гидроксильные группы и первичные аминогруппы, но и с соединениями, содержащими карбонильный кислород, вторичные и третичные аминогруппы или гетероциклически связанные азот или кис.пород. Так как водородная связь во всех этих случаях составляет главную часть сил притяжения, то для упомянутых классов соединений не наблюдается заметных различий в селективности. Поэтому не удивительно, что альдегиды, кетоны и простые эфиры выходят в последовательности повышения температур кипения. Так например, полиэтиленгликоль 2000 является наименее селективной неподвижной фазой для кислородных соединений. [c.200]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    Положительный заряд в катионе солей диазония расположен на обоих атомах азота на связанном с ароматическим ядром в силу его 5р-состояния и на крайнем атоме азота из-за сильного индукционного эффекта соседнего атома. Дл-азониевая группа — настолько сильный акцептор, что ароматическое ядро со всеми имеющимися в нем заместителями является донором электронов. Это положение сохраняется даже при наличии в ядре такого сильного акцептора, как нитрогруппа. Конечно, характер заместителей в ароматическом ядре так или иначе изменяет величину положительного заряда на крайнем атоме азота, так как заместители в пара-и орто положениях сопря женьт с ним из-за того, что одна из трех пар электронов, связывающих атомы азота, расположена в плоскости л-электронного облака кольцл. Другие же связи способны передавать лишь индукционный эффект от одного атома азота к другому. Все сказанное иллюстрируется следующей схемой  [c.58]

    Сила кислоты или основания измеряется их константамп диссоциации. Сильные кислоты — сильные доноры протонов, и их К велпкп сильные основания — сильные акцепторы протонов, и их Кь велики. Папример, в водном растворе Нг504 пмеет /Саг = 1,2Х ХЮ а ЫНз имеет 7Сь= 1,77-10 . Слабые кислоты п основания [c.406]

    При а > Ь образуются слабые, легко диссоциирующие комплексы с энтальпией образования ДН is 20— 30 кДж/моль. Стабилизация осн. состояния в них достигается гл. обр. за счет электростатич. сил, величина перенесенного заряда невелика. К слабым относятся распространенные комплексы типа яя (я-донора с я-акцеп-тором), обычно называемые я-комплексами, а также типа яа (напр., галогенов с аром, углеводородами). Осн. вклад в возбужд. состояние слабых М. к. вносит состояние ф), поскольку а Ь. Переход иа осн. состояния N и возбужденное Е сопровождается резким увеличением степени переноса заряда. Появляющаяся в электронном спектре полоса поглощения наз. полосой переноса заряда. М. к. часто наз. комплексами с переносом заряда (КПЗ). Гораздо более прочные комплексы образуют и-доноры с г)-акцепторами (напр., HaN- А1С1з), для к-рых—ДНк достигает200кДж/моль. [c.348]

    Существует многочисленное семейство молекулярных комплексов, энергия связи которых больи е энергии, обычно ассоциируемой с вандерваальсовыми силами. Как правило, эти комплексы образуются между молекулой, обладаюидей свойством легко отдавать электроны (донор электронов или льюисово основание), и другой молекулой, которая охотно принимает электроны (акцептор электронов или льюисова кислота). Такие комплексы называют донорно-акцепторными комплексами или комплексами с переносом заряда. [c.359]

    Из-за отсутстЕня стерических препятствий водородная связь образуется легко. Ее сила определяется тем, что она в значительной стеиени имеет ковалентный характер, т.е. две нары электронов (связывающие ст-электроны связи 0-Н молекулы, являющейся донором водородной связи, и неподелеиная пара молекулы акцептора водородной связи) делокализованы между тремя ядрами. Водородная связь обычно изображается пунктирной лгшией между донором и акцептором, нанример для случая спиртов  [c.116]

    При взаимодействии кислоты А с осиоваиием В происходит образование доиорио-акцепториого комплекса АВ (реакция (3.2)). Можно полагать, что прочность комплекса АВ, т.е. сила кислотно-основного взаимодействия, будет определяться степенью переноса заряда от В к А. Степень переноса заряда (АЛ ) имеет размерность долей электрона и связана с абсолютной жесткостью и абсолютной электроотрицательностъю следующим соотношением  [c.218]

    Взаимодействие граничных орбиталей. В реакции донора электронов (основания Льюиса) с акцептором электронов (кислота Льюиса) происходят парные взаимодействия между всеми орбиталями донора и акцептора, которые подходят друг другу по симметрии, но все же главный вклад в общую энергию возмущения вносит взаимодействие между граничными орбиталями (разд. 2.3.6) ВЗМО донора (основания) и НСМО акцептора (кислоты). Поэтому ири качественном описании любого кислотно-основного взаимодействия достаточно ограничиться рассмотрением лишь взаимных возмущений ВЗМО донора и НСМО акцептора. Есш1 сравгшваются две пары кислота-основание, и энергия электростатического взаимодействия для каждой пары одинакова, то определяющей силу кислотно-основного взаимодействия будет энергия возмущения граничных орбитапей. [c.219]


Смотреть страницы где упоминается термин Акцептора сила: [c.217]    [c.265]    [c.167]    [c.194]    [c.484]    [c.203]    [c.27]    [c.78]    [c.257]    [c.467]    [c.230]   
Теплоты реакций и прочность связей (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Акцептор

Акцептора сила боралкилы

Акцептора сила тригалогениды алюмини

Акцептора сила триметилалюминий

Акцептора сила триметилбор



© 2024 chem21.info Реклама на сайте