Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографическое определени газовая хроматография

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]


    Чтобы оценить современный уровень развития газовой хроматографии, достаточно сказать, что. существуют методики и приборы, позволяющие в течение часа производить раздельное определение углеводородов от С1 до Сто [Л. 93]. Хроматографические приборы могут быть настолько чувствительными, что позволяют при необходимости определять концентрации отдельных компонентов газовой смеси начиная от 1 10 % об. [Л. 94]. [c.75]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]

    Метод идентификации веществ по их масс-спектрам состоит в переводе непрерывно выходящей из хроматографической колонки газовой смеси в ионный источник масс-спектрометра, который настроен на определенную массу. Самописец масс-спектрометра записывает параллельно с самописцем хроматографа масс-спектро-хроматограмму. Идентификация основана на определении отношения показаний основной хроматограммы к интенсивности линий, измеренных по масс-спектрограмме. При этом чувствительность [c.123]

    Газовая хроматография применялась не только для специальных аналитических целей, но и с успехом использовалась для определения физикохимических констант (коэффициентов распределения и активности, величин поверхности, теплот испарения и адсорбции, коэффициентов диффузии, энтальпии, энтропии и свободной энергии равновесных процессов растворения), а также для исследования равновесий и скоростей химических реакций, которые протекают непосредственно в хроматографических колонках. Физикохимическое приложение газовой хроматографии возникло непосредственно на основе теории газовой хроматографии, и развитие его еще пи в коем случае нельзя считать завершенным. [c.445]


    В отличие от других хроматографических методов газовую хроматографию проводят почти исключительно на приборах, выпускаемых промышленностью. Для простоты рассмотрим основные части установки для проведения газовой хроматографии в виде блок-схемы (рис. 7.13). При помощи определенного устройства устанавливается необходимая скорость газа-носителя. Перед входом в верхнюю часть колонки пробу дозируют, если необходимо [c.363]

    Поскольку во многих случаях предусматривается получение хроматографической зоны лишь одного вещества, в неаналитическом плане становится несущественной характеристика газовой хроматографии как метода разделения , фигурирующая во всех определениях газовой хроматографии [2—7]. Кроме того, имеется целый ряд методов исследования, осуществляемых с использованием хроматографической аппаратуры, по лишенных ряда существенных элементов, присущих хроматографии крайним случаем, по-видимому, следует считать метод определения коэффи- [c.5]

    Функция колонки в газовой хроматографии сводится лишь к разделению смеси на индивидуальные компоненты. Определение их качественного состава может быть выполнено за пределами колонки. Существует два способа качественного анализа разделенной в хроматографической колонке смеси по характеристикам удерживания и с использованием других аналитических приемов. В первом случае на выходе из хроматографической колонки ком- [c.48]

    В основу определения физико-химических характеристик с помощью газовой хроматографии положена известная функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического пика. Первые представляют собой функцию коэффициента распределения или величины адсорбции, что позволяет определять коэффициенты активности, термодинамические функции адсорбции или растворения, структуру изучаемых соединений и другие характеристики газообразных, жидких и твердых веществ. [c.160]

    Выше были кратко рассмотрены наиболее важные способы хроматографического разделения и некоторые их варианты применительно главным образом к газовой хроматографии. Число способов и вариантов хроматографии этим далеко не ограничивается, как не ограничивается определенными рамками развитие и применение метода Цвета вообще. Подробное рассмотрение всех существующих способов и вариантов хроматографии не входит в нашу задачу. Поэтому мы ограничимся упоминанием некоторых из тех способов, которых не коснулись выше, но которые, по нашему мнению, заслуживают большого внимания для отдельного рассмотрения. Это прежде всего объемная хроматография (Янак—Вяхирев), подробно рассматриваемая ниже, вакантная хроматография (Жуховицкий и сотр.), хроматография без газа-носителя (Жуховицкий и сотр.), тепловытеснительный способ (Рогинский и сотр.) и др. Эти способы целиком относятся к газовой хроматографии, однако широкого практическою применения пока не получили. [c.21]

    Пробу можно вводить либо непосредственно в поток газа-носителя, либо в определенный дозируемый объем, из которого она с помощью потока газа-носителя транспортируется в хроматографическую колонку. Объем пробы зависит от чувствительности детектора. Для аналитических целей он колеблется в пределах 0,01 —10 мкл. Для препаративных целен, т. е. при использовании газовой хроматографии для получения индивидуальных веществ в чистом виде, объем пробы зависит от размеров колонки и составляет от 0,1 г до килограммов, как об этом сообщается в литературе. Идеальным случаем считается тот, когда вся проба из дозатора, попадая в хроматографическую колонку, умещается иа первой теоретической тарелке (см. гл. IV), не размываясь по всей колонке. Средняя высота тарелки (0,2—0,03 см) в колонках, имеющих диаметр 2,5—0,025 см, соответствует объему тарелки [c.39]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]


    Разграничение методов хроматографического разделения смесей по признаку применения их в неорганическом либо в органическом анализе явилось бы условным. Например, газо-жидкостная хроматография недавно нашла применение в неорганическом анализе для разделения хе-латных соединений металлов [3] известны также работы по применению газовой хроматографии для определения четыреххлористого германия в смеси с другими хлоридами [4]. [c.9]

    Для групповой идентификации применяют реакционную газовую хроматографию (превращение определенных групп соединений, их удаление из анализируемой смеси, элементарный анализ, качественные реакции в сочетании с хроматографическим анализом) анализ на селективных фазах или на приборах с селективными детекторами, имеющими повышенную чувствительность к соединениям определенных классов. [c.97]

    На рис. 19 изображена схема газового хроматографа ХЛ-4. Выходящий из баллона I газ-носитель проходит через осушитель 3, дроссель 4, ротаметр 5 и попадает в одну из двух камер детектора 8 (в камеру сравнения). Затем выходящий из камеры сравнения газ-носитель проходит через кран-дозатор, с помощью которого вводится исследуемая проба. В хроматографической колонке 7 происходит разделение компонентов, которые в определенной последовательности выходят в рабочую камеру детектора 8. [c.55]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    Обычно параметры, относящиеся к обеим группам, определяют нри помощи статических адсорбционных измерений. В носледнее время появились динамические способы, в большей мере использующие газовую хроматографию. Впоследствии сложилось мнение, что для определения физикохимических констант необходимо привлекать адсорбционно-хроматографические способы, а не распределительную хроматографию. Кремер и Приор рассмотрели в 1951 г. связь между удерживанием газов на адсорбционной колонке и теплотой адсорбции. В последнее время Кремер и сотр. (1959, 1961) существенно развили исследования в этой специальной области. [c.463]

    Для определения концентрации веществ, выдуваемых газовым потоком из хроматографической колонки, разработано множество детекторов. Наиболее употребительным детектором является катарометр, действие которого основано на измерении теплопроводности вытекающего из колонки газа (появление примеси анализируемого вещества изменяет теплопроводность газа-носителя). Другой, не менее широко распространенный детектор — пламенно-ионизационный. Появление в газе-носителе примеси анализируемого вещества вызывает изменение электропроводности пламени водорода, горящего в токе воздуха или кислорода на выходе из колонки. Пламенно-ионизационный детектор обладает в несколько сот раз большей чувствительностью, чем катарометр, однако при его применении требуется подключение к прибору двух дополнительных баллонов со сжатым газом (водород и воздух). В газовой хроматографии на колонках одинаковой длины, заполненных одинаковым сорбентом, при одинаковых температурах и скорости газа-носителя (эти условия легко соблюсти) каждому веществу соответствует строго определенное время выхода на хроматограмме. Площадь хроматографического пика пропорциональна содержанию этого вещества в смеси. [c.126]

    Химические методы определения ароматических углеводородов в топливах все более вытесняются физико-химическими и физическими. Среди стандартных имеются методы газовой хроматографии — метод ASTM D 2267 для бензинов и лигроинов, метод ГОСТ 10679—76 для анализа газообразных продуктов, DIN 51405 и др. Разрабатываются спектральные методы, варианты хроматографических методов и др. Методы, предписанные стандартами, [c.143]

    Для определения в продуктах неполного горения горючих компонентов (Нг, СО и СН4) газовую хроматографию начали применять сравнительно недавно [Л. 95], однако интерес к этому методу со стороны энергетиков непрерывно возрастает, и в настоящее время хроматографические методы используются рядом науч-но-исследовательских институтов и на многих электростанциях (Л. 96—117]. [c.75]

    Хроматографический анализ впервые предложен русским ученым М.С. Цветом в 1903 г. В настоящее время известно большое количество различных хроматографических методов. Для аналитического контроля химико-технологических процессов и производств наибольшее значение имеет газовая хроматография. Как и другие гибридные методы анализа, газовая хроматография объединяет способ разделения (хроматографическая колонка) и способ неселективного определения разделенных компонентов (детектор). [c.155]

    Для раздельного определения углеводородов широко используется метод газовой хроматографии с пламенно-ионизационным детектором (ПИД), так как хроматография — универсальный метод анализа, позволяющий определять концентрации различных вешеств в газовых смесях. Метод основан на использовании свойства разделения сложных смесей на хроматографической колонке, заполненной сорбентом. В связи с развитием электроники и миниатюризацией аналитической части хроматографов указанная аппаратура, помимо традиционного использования, нашла применение для оснащения передвижных лабораторий. [c.215]

    Использование метода газовой хроматографии для анализа газовых смесей оказалось весьма перспективным при определении проницаемости полимерных мембран. Впервые хроматографический анализ газов для [c.250]

    Газовая хроматография может быть использована для определения проницаемости одной пленки одновременно несколькими газами с последующим разделением газов на хроматографической колонке, а также при определении проницаемости пленок сухими и влажными газами в широком интервале температур и значений коэффициентов проницаемости. Чувствительность метода достигает 5-10- см -см/(см -с-атм). Газо- и паропроницаемость полимерных пленок можно с успехом определять на отечественных хроматографах Цвет , ХЛ-6, ХЛ-7М и др. [c.251]

    Внедрение в хроматографическую практику систем неносредственного ввода проб в колонку существенно расширило область ирименения капиллярной газовой хроматографии. Были успешно проведены определения соединений многих классов, ранее сопряженные с трудностями, если вообще возможные. Метод неносредственного ввода пробы в колонку без предварительного испарения обладает рядом преимуществ  [c.51]

    Во-вторых, в связи с развитием хроматографии — быстрого и удобного метода — появилась новая группа динамических сорбционных методов [8]. К их числу относятся непосредственный хроматографический метод (газовая хроматография, обращенная гель-хроматография), основанный на использовании величин удерживаемых объемов, и метод тепловой десорбции, заключающийся в определении по теплопроводности газового потока количества азота, адсорбированного образцом при его замораживании и десорбированного при последующем его разогревании при комнатной температуре. В обоих методах используется серийно выпускаемая промышленностью аппаратура. [c.199]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]

    Из всех вариантов газовой хроматографии наибольшее распрост-ранекие получил проявительный метод разделения и анализа сложных смесей в насадочных хроматографических колоннах. Однако для решения некоторых специфических задач, таких как определение микропримесей, анализ очень сложных смесей, экспрессный анализ и в ряде других случаев целесообразным оказывается применение некоторых вариантов, более или менее существенно отличающихся от общепринятого метода. Эти варианты могут осуществляться в рамках как проявительного, так и фронтального анализа. Из них наибольшее значение получили капиллярная хроматография, различные модификации хроматографии без газа-носителя, хроматермография и др. Некоторые варианты, например хроматермография и теплодинамический метод, были рассмотрены нами ранее. [c.137]

    Рассмотренное влияние на разрешфие хроматографической колонны разных факторов показывает, что газовая хроматография может успешно применяться для определения констант Генри как одного вещества, так и сразу нескольких компонентов смеси, если при достаточно высокой селективности а и емкости к обеспечивается необходимая эффективность колонны (большие М, малые Н). Этому способствует приближение условий работы колонны к равновесным (достаточно высокая температура колонны, однородность адсорбента и его упаковки, не слишком большие энергии адсорбции). Таким образом, для реализации селективности колонны, определяемой природой данного адсорбента, необходимо позаботиться о возможно большей ее эффективности. Определение констант Генри и изотерм адсорбции хроматографическим методом требует обеспечения равенства и постоянства температуры подводимого к колонне газа-носителя и температуры самой колонны, поддержания постоянства и измерения Т, I, w, р и Ро (см. раздел 7.8) с максимальной точностью, а также соблюдение необходимых предосторожностей при вводе малых доз адсорбатов. [c.140]

    Для данной колонки объем ненодвижной фазы считают постоянным. Изменение в необходимых пределах возможно при условии, что значение коэффициента распределения лежит в определенной области. Если температура хроматографической колонки равна комнатной, методом газовой хроматографии может быть исследован лишь ограни ченный круг соедхгнений. Количество анализируемых веществ увеличивается во много раз, если использо- [c.56]

    Хроматографически измеренные теплоты адсорбции хорошо согласуются с величинами, определенными калориметрически или полученными путем применения уравнения Клаузиуса — Клапейрона к данным изотермам адсорбции при двух или нескольких температурах. Вследствие энергетической неоднородности поверхности теплота адсорбции, вообще говоря, при измерении зависит от поверхностной концентрации адсорбата. Величины, полученные с помощью газовой хроматографии, соответствуют весьма малым поверхностным концентрациям, в то время как калориметрически измеренные величины или изостерические теплоты адсорбции могут быть получены с достаточной точностью лишь при заметных поверхностных концентрациях. Поэтому для сравнения хроматографически определенных теплот адсорбции следует привлекать только такие калориметрически определенные величины, [c.464]

    Современная высокоэффективная газовая хроматография характеризуется чрезвычайно высокой воспроизводимостью определения времен удерживания. Это обусловлено прежде всего природой самих колонок. В насадочных колонках со временем насадка уплотняется, а следовательно, изменяется газопроницаемость колонки. Этого недостатка лишены открытые капиллярные колонки. Кварцевые капиллярные колонки имеют низкую термическую массу, поэтому они быстро нагреваются и охлаждаются. Как правило, неподвижные фазы в кварцевых колонках иммобилизованы, что иренятствует иерерасиределению фазы и снижает ее упос из колонки. Таким образом, улучшенные характеристики капиллярных колонок стали для производителей хроматографического оборудования стимулом к улучшению качества сами хроматографов в первую очередь в узлах термического и пневматического упраг вления. Результатом стало появление более совершенных газохро-матографических систем. [c.92]

    Благодаря быстрому развитию регистрационной газовой и жидкостной хроматографии появилась возможность разработки новых экспрессных методов определения качества нефтепродуктов. С помощью регистрационной газовой и жидкостной хроматографии можно быстро определять фракционный состав, температуру кристаллизации, давление насыщенных паров, содержание ароматических углеводородов, нафтеновых кислот и их солей, общей серы и сероводорода, суммы водорастворимых щелочных соединений, тетраэтилсвинца, фактических смол, йодное и люминоме-трическое число и др. Возможности применения хроматографических методов для быстрого анализа нефтепродуктов хорошо иллюстрируются работой [50]. Показано, что фракционный состав топлив может быть легко определен на отечественном газовом хроматографе Цвет-2 с пламенно-ионизационным детектором. Для бензинов и реактивных топлив применен режим линейного программирования температуры термостата колонок со скоростью 10 °С/мин. Анализ занимает 15—20 мин. [c.338]

    Первые попытки применения хроматографов для анализа состава продуктов сгорания выявили серьезные трудности разделения смесей СО, N2 и 62. В ЗНИН была проведена экспериментальная работа по применению газовой хроматографии для анализа продуктов сгорания. Ставилась задача разработать макет хроматографа, обеспечивающего высокую чувствительность анализа яри четком разделении содержащихся в продуктах сгорания компонентов с тем, чтобы наличие азота в пробе (в любых его соотношениях с кислородом) не сказывалось на точности определения концентрации окиси углерода. С этой целью на экспериментальной хроматографической установке, оборудованной термохимическим детектором, А. А. Авдеевой были проведены исследования влияния ряда конструктивных и режимных факторов на работу хроматографического газоанализатора [Л. 65], [c.186]

    Масс-спектрометрическое детектирование для газовой хроматографии дает ряд уникальных преимуществ, например, возможность использования в качестве стандарта соединений, меченных изотопами, для повышения точности, определения элементного состава соединений, если используется высокоэффективный прибор, а также возможность раздельного анализа хроматографически неразрешаемых пиков на основании различий в их масс-спектре. [c.599]

    Методы газовой хроматографии (ГХ) и высокоэффективной жидкостной хроматографии (ВЭЖХ) позволяют за короткое время проводить разделение, идентификацию и количественное определение состава сложных смесей. Благодаря сочетанию высокоэффективных разделительных систем с чувствительными, селективными и специфическими детекторами, такими, например, как диодноматричный детектор (ДМД) в видимой и УФ-областях спектра, масс-спектрометрия и ИК-фурье-спектроскопия (ИКФС) удается надежно идентифицировать отдельные вещества. Приборное оформление этих методов настолько хорошо развито, что почти всегда удается автоматизировать проведение хроматографических анализов. [c.5]

    Мощные средства детектирования, успехи в области технологии колонок, разработка программного обеспечения и совершенствование хроматографического оборудования существенно расширили область применения газовой хроматографии. Внедрение в хроматографическута практику кварцевых капиллярных колонок способствовало дальнейшему распространению газохроматографических методов для проведения специфических анализов и анализов сложных смесей. Используя капиллярные колонки, можно легко разделить и анализировать многие сложные смеси, анализ которых с насадочных колонок весьма затруднен. Хромато-масс-спектрометрия стала стандартным методом определения лекарственных средств в таких областях, как криминалистика и терапия. Благодаря высокой надежности качественного и количественного определения, воспроизводимости и меньшей продолжительности анализа капиллярную газовую хроматографию стали применять для решения широкого спектра аналитических задач. Технология капиллярных колонок и хроматографического оборудования в целом находится в постоянном развитии. Ежедневно появляются новые аналитические задачи. Все это способствует более широкому применению КГХ в науке и промышленности. Непрерывный рост роли капиллярной ГХ в аналитической химии свидетельствует о том, что этот метод станет одним из основных методов анализа. [c.131]

    Хроматографический метод также имеет высокую чувствительность, но он пригоден только для определения двойных связей винильного типа, стоящих у атома кремния. Он основан на расщеплении химических связей в полимере реагентом, спещ1фическим для связи 81-С. При этом винильная группа превращается в этилен и определяется затем методом газовой хроматографии. [c.41]

    Определение микроструктуры полимеров осуществляют методами гакционной и пиролитической газовой хроматографии, а также пу-5м сочетания химических реакций, проводимых вне хроматографа, с ледующим газохроматографическим анализом продуктов реакции. 1я этой же цели используют хроматографические анализаторы эле-рентного состава, разделяющие оксиды азота, углерода и воду, обра-f ющиe я при сжигании образца. [c.49]


Смотреть страницы где упоминается термин Хроматографическое определени газовая хроматография: [c.95]    [c.13]    [c.156]    [c.60]    [c.251]   
Определение ртути в природных водах (2000) -- [ c.117 , c.129 , c.131 , c.132 , c.133 , c.134 , c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая

Хроматография определение

Хроматография определение газовая



© 2025 chem21.info Реклама на сайте