Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория переходного состояния, метод

    Итак, мы ознакомились с основными положениями теории переходного состояния, с возможностями оценки на базе этой теории предэкспоненциального множителя в уравнении Аррениуса. Для вычисления энергии активации надо рассчитывать поверхность потенциальной энергии элементарного химического акта. Задача эта сложная и решается только для простейших реакций. Для отдельных типов реакций предложены приближенные методы расчета энергии активации. Широко применяются для оценки констант скоростей реакций корреляционные методы. [c.588]


    Однако конформации с максимумами энергии не следует рассматривать только как барьеры вращения. Нередко они играют и другую важную роль. Так, многие реакции циклизации идут через переходные состояния, в которых реакционные центры молекулы сближены, причем образованию переходного состояния предшествует возникновение реакционной конформации (г-конфор-мации), в которой эти центры уже сближены. В таких конформациях чаще всего имеется большой избыток конформационной энергии, т. е. они являются одновременно барьерами вращения. Тем не менее их образование может играть важную роль в протекании реакции. Энергии напряжения /--конформации иногда можно рассчитать обычными методами конфор мационного анализа. Таким образом осуществляется сближение конфор-мационного анализа с теорией переходного состояния. Известен ряд некаталитических реакций, в которых некоторые стадии проходят только в определенных конформациях. Возможность того, что ход каталитических превращений тоже может определяться конформационными эффектами, в том числе высотой барьеров вращения, еще мало изучена, однако некоторые примеры этого уже имеются. Они будут приведены в последующих разделах. [c.17]

    Если имеется несколько констант скоростей при разных температурах, то удобным методом расчета энтропии активации и одновременно энергии активации является графический метод квази-термодинамическая форма уравнения теории переходного состояния записывается в виде линейного уравнения, которое и пред- [c.337]

    Одна пз главных трудностей, связанных с предложенными ранее методами вычисления предэкспоненциальных мно кителей, если не учитывать некоторые нечеткие положения теории переходного состояния, лежит в гипотетическом характере параметров, которые применяются для описания колебательного и вращательного двил ений предполагаемого активированного [c.257]

    Таким образом, энергия активации приобретает смысл энергии переходного состояния. Для того чтобы произошла реакция, энергия реагируюш,ей системы должна позволить ей образовать переходное состояние. Вероятность осуществления реакции связывается, следовательно, с вероятностью образования переходного состояния. В результате возникает возможность применения статистических методов для расчета скорости процессов, которая реализуется в теории переходного состояния. [c.337]


    Величина была вычислена Эйрингом и Поляни в созданной ими теории переходного состояния с помощью методов статистической физики х = к/ кТ. Концентрация может быть выражена через концентрации реагирующих частиц с ь Сг, , если считать, что между ними и активированными комплексами существует равновесие, характеризуемое константой равновесия [c.350]

    В теории переходного состояния, разработанной Г. Эйрингом и М. Поляни, принимается, что скорость образования п. с. очень велика ио сравнению со скоростью его распада. Поэтому всегда успевает установиться равновесие между исходными веществами и п. с., концентрация которого принимает определенную величину (расчет этого равновесия осуществляется методами ста-342 [c.242]

    Даже если можно построить полную энергетическую поверхность, это еще далеко не означает, что можно рассчитать абсолютную скорость химической реакции. Как было показано ранее, в реакциях принимают в общем случае участие вещества с широким спектром энергий теплового возбуждения. Поэтому необходимо применить методы статистической механики для расчета соответствующих статистических сумм веществ, принимающих участие в реакции, и активированного комплекса, рассматривая последний как обычную молекулу, за исключением вопроса о колебательной частоте вдоль координаты реакции. Таким образом, в теории переходного состояния вначале рассчитывают полную поверхность потенциальной энергии и на основании этого определяют форму активированного комплекса. Затем используют полученные длины связей, валентные углы и силовые постоянные для расчета соответствующих статистических сумм. Полагают, что реагирующие вещества находятся в равновесии с активированным комплексом, который с фиксированной скоростью распадается на продукты реакции. [c.310]

    Расчет величины максимума потенциальной энергии, т.е. энергии активации реакции, связан с теми же трудностями, что и расчет энергий связи. Сегодня, благодаря мощности компьютерных методов и созданию комплекса программ, удалось построить полные поверхности потенциальной энергии и оценить энергию активации ряда одностадийных реакций. Это — большой успех теоретической химии. Точным методом определения энергии активации остается изучение температурной зависимости констант скорости. Расчет же предэкспоненциального множителя методом теории переходного состояния (ТПС) возможен для реакций всех порядков, и это одно из главных достоинств ТПС. [c.131]

    Вычисление абсолютных скоростей реакции , стерических факторов и т. и. по теории переходного состояния базируется на экспериментальных спектроскопических данных. На этом основании можно построить более или менее близкую к объективной реальности модель химической структуры исходных и промежуточных реагирующих веществ. Спектроскопия является весьма чувствительным методом, позволяющим изучать кинетику и механизм химической реакции, не нарушая и не прерывая ее. Особенно большое значение спектроскопический метод имеет при изучении сложных газовых реакций, сопровождающихся очень быстрым возникновением промежуточных реагирующих веществ. [c.91]

    Зависимость от поля дает гораздо более надежный метод для оценки изменений работы выхода, так как он не связан с чрезмерно упрощенной картиной эмиссионного процесса. Здесь снова проявляется близкая аналогия с определением энергии активации в химических реакциях. Применяя теорию переходного состояния, можно вывести выражение для предэкспоненты в уравнении скорости. Затем экспериментально найденную скорость реакции можно использовать в качестве абсолютной для вычисления энергии активации. Более надежное и наиболее часто применяемое значение можно получить из температурной зависимости скорости. [c.171]

    Известно, что повышение прочности искусственных целлюлозных волокон почти всегда сопровождается понижением из разрывных удлинений. Однако сущность этого факта пе была еще настолько ясна, чтобы предвидеть и объяснить возможные соотношения изменений между прочностью и разрывными удлинениями для волокон, упрочненных но различным механическим схемам при прочих равных условиях. Между тем упрочнение целлюлозного волокна разными методами при постоянстве всех других условий приводит при равных разрывных прочностях к разрывным удлинениям готовых волокон, отличающимся друг от друга в 2—3 раза, причем, что особенно интересно, такое резкое падение удлинений возможно даже при сравнительно более низких прочностях. Как это было показано в экспериментальных работах, обобщенных Каргиным и Слонимским [4] в единую теорию переходных состояний линейных полимеров, имеющих и ниже температуры химического распада, переход из вязкотекучего состояния в стеклообразное совершается через высокоэластическую область с исчезновением большого набора периодов релаксации и может осуществляться как за счет межмолекулярного, так и за счет внутримолекулярного взаимодействия звеньев цепи. Естественно предположить, что стеклование полимерных волокон связано с теми же причинами и что увеличение жесткости линейных молекул целлюлозы может совершаться под действием механического напряжения, приложенного извне. [c.270]


    Одним из главных успехов химической кинетики было создание в 30-х годах главным образом Эйрингом и его сотрудниками теории переходного состояния в химических реакциях [2]. Эта теория впервые дала прямую количественную связь независящей от температуры части константы скорости от строения атомов и молекул, участвующих в химическом превращении. К сожалению, хотя сейчас есть много методов количественного изучения нормальных или основных состояний молекул, мы почти безоружны, когда хотим исследовать структуру сильно возбужденных переходных состояний. [c.14]

    Вторая глава посвящена теории кинетики элементарных реакций. В ней анализируется метод активных соударений и теория переходного состояния (активированного комплекса), а также рассматривается правило Поляни — Семенова. [c.3]

    Даже не задаваясь целью абсолютных расчетов скорости, метод можно с успехом применять для получения различных качественных или полуколичественных выводов в химической кинетике. Для этого удобно использовать термодинамическую формулировку теории переходного состояния. Выражая константу равновесия образования активированного комплекса из исходных веществ (уравнение И.З), как [c.35]

    Представление о ходе реакции, используемое в теории активных соударений и в теории переходного состояния, в общих чертах сходно в обоих случаях предполагается, что молекулы реагирующих веществ встречаются между собой, и если они обладают достаточным запасом энергии по определенным связям, то внедряются друг в друга и ориентируются так, чтобы с определенного момента могло произойти превращение в продукты. Различие методов заключается в том, что для подсчета скорости реакции выбирают разные этапы в ходе элементарного процесса. [c.36]

    Для теории переходного состояния мономолекулярные реакции не представляют собой ничего исключительного, так как для применения методов этой теории безразлично, сколько молекул образует активированный комплекс. Из уравнения (И.5) следует, что [c.37]

    Предэкспоненты реакций В63 + ВН можно приближенно рассчитать методом теории переходного состояния. Такой расчет был сделан для метана и циклогексана при следующих предположениях [49]. Расстояние ВОз. . . НВ в активированном комплексе равно 1,4 А. Колебательные суммы по состояниям равны единице, температура 400° К. Вращение групп атомов в молекулах и комплексе свободное или полностью заторможено. Результаты расчета приведены в табл. 18. Как видно из сравнения табл. 16 и 18, значения Аз, рассчитанные при предположении о свободном вращении групп атомов, в среднем на 1—2 порядка больше экспериментальных значений Аз. По-впдимому, это расхождение связано с тем, что [c.103]

    Успех, которым в настоящее время пользуется теория переходного состояния, неудивителен. Он определяется главным образом тем, что эта теория предоставляет химикам метод исследования, позволяющий объяснить и даже предвидеть явления, относящиеся к химической реакционной способности. Действительно, рассмотрение предполагаемой структуры переходного комплекса и сравнение двух структур — начального состояния и переходного комплекса — часто позволяют количественно истолковать влияние электронных и про- [c.83]

    Мы должны вернуться к эмпирическим и полуэмпирическим методам. Теория столкновений и теория переходного состояния дают средние или нормальные величины для различных реакций. Например, нормальные предэкспоненциальные множители А ъ к = Ае 1 равны 10 с для мономолекулярной реакции, 10 л-моль с для бимолекулярной реащии и 10 л2. моль 2. с 1 для тримолекулярной реакции. Существует много методов, с помощью которых для различных типов реакций можно определить с большой точностью [76]. Аналогичным путем, но только для ограниченных типов реакций можно определить АН. Конечно, наши правила симметрии также способны кое-что сказать о величине АН" . [c.162]

    Органическая химия в своем развитии стремится к тому, чтобы ее основные законы и теории позволяли без специально поставленных опытов избирать приемлемый метод синтеза любого органического вещества и предсказывать все его свойства. Однако строение молекул большей части органических веществ настолько сложно, что едва ли кот да-либо в полной мере будет достигнуто такое состояние науки. Поэтому химики-органики должны довольствоваться более скромной целью — извлечением из точных данных науки всего, что может содействовать проявлению их чудесного инстинкта (Гильберт Льюис). Роль, которую в этом может играть современная физическая химия, становится ясной, если руководствоваться ранее сказанным. Так, чтобы избрать хороший способ синтеза любого органического соединения, необходимо учитывать следующее 1) намеченная реакция должна быть термодинамически возможной, 2) реакция должна протекать с достаточно большой скоростью, чтобы ее можно было осуществить практически, и 3) она должна сопровождаться возможно меньшим числом побочных реакций, а те из них, которых нельзя избежать, должны протекать значительно медленнее главной реакции. Отсюда, естественно, вытекает, что если мы хотим иметь возможность учесть эти условия, необходимо знать, какое влияние оказывают изменения среды и строения молекулы как на свободную энергию, так и на энергию активации реакций органических веществ. Но для осуществления этого должно произойти слияние электронных теорий органической химии с такими современными ответвлениями физической химии, как квантовомеханическая концепция резонанса и теория переходного состояния в кинетике реакций. Главная цель данной книги состоит в том, чтобы показать, каким образом осуществилось такое слияние идей. Поиски решения родственной задачи предсказания физических свойств веществ на основе знания их молекулярной структуры заставили бы нас заглянуть во все самые отдаленные уголки физической химии. Вторая проблема будет лишь частично рассмотрена в этой книге, так как для решения этой проблемы пришлось бы охватить слишком обширную область. [c.13]

    Однако в этой операции есть свои трудности. Во-первых, до сих пор не был еще найден математический метод, который, на основании уравнений теории переходного состояния, давал бы возможность учитывать также и влияние эффектов поляризуемости. Кроме того, вычисление квантово-механического взаимодействия является нелегкой задачей. Поэтому лучше усовершенствовать качественную теорию п тем создания полуколичественных приемов ее использования. [c.253]

    Динамический метод можно иллюстрировать на примере теории локализации Уэланда [13], предложенной им в 1942 г. Согласно Уэланду, переходное состояние реакции, например при нитровании бензола, можно приближенно представить структурой типа в на рис. 144. Отличительная особенность такой структуры состоит в том, что атомная орбиталь атакуемого атома углерода выбывает из системы сопряжения и становится изолированной АО. Расчет энергии такого гипотетического переходного состояния методом МО позволяет получить приближенное значение теплоты образования переходного состояния АЯ [уравнение (481)], если пренебречь изменением энергии а-связей в системе. На рис. 145 изображены типы переходных состояний, через которые следуют реакции с реагентами Х+, Х и К (т. е. реакции с электрофилом, нуклеофилом и со свободным радикалом). В переходном состоянии гибридизация атакуемого атома углерода вместо 8р становится р , и этот атом выбывает из системы сопряжения. Последняя в этом случае состоит из шести, пяти или четырех л-электронов (в зависимости от типа реагента), находящихся в поле пяти атомов углерода. [c.297]

    В рамках формально-кинетич. теории совершенно не учитывается влияние строения соединений на их Р. с., поэтому нри дальнейшем развитии ее появилась статистическая теория расчета скоростей реакции (см. Переходного состояния метод), к-рая позволяет установить связь между скоростью реакции и молекулярными характеристиками исходных реагентов. Существуют два метода квантово-механич. расчетов P. . приближение изолированной молекулы (расчет величин, характеризующих распределение я-электронов в изолированной молекуле) и приближение локализации (методы валентных связей и молекулярных орбит. См. Квантовая химия). Результаты расчета Р. с. с помощью этих двух приближений удовлетворительно согласуются с опытными данными для многих реакций замещения сопряженных и ароматич. молекул. [c.279]

    Скорость электродного процесса можно выразить кинетическим уравнением, выведенным Батлером [4], а также посредством моделей, основанных на кривых потенциальной энергии, теории переходного состояния или теории абсолютных скоростей. Детальное обсуждение теории кинетики электродных процессов не является целью этой книги. Все, что требуется для использования полярографической методологии, как это уже отмечалось, это понимание типа констант скорости, лучше всего подходящего для определения обратимости. Нужно знать, при какой константе скорости стадии переноса электрона электродный процесс можно считать обратимым применительно к рассматриваемому методу. Поэтому здесь представлено только нестрогое иллюстративное обсуждение стадии переноса электрона без вывода уравнений. Читателя, который интересуется детальными аспектами теории и принципами электродных процессов, отсылаем к литературе [4—9]. [c.24]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]

    Первой теорией абсолютных скоростей реакций, сохранившей значение и по настоящее время, была созданная Эйрингом н Поляни теория переходного состояния или, как ее часто называют, метод активированного комплекса . Эта теория обосновала закон действия масс для элементарных реакций, т. е. пропорциональность скорости реакций произведению концентраций участвующих в реакции частиц, и общий вид зависимости константы от температуры, а также позволила рассчитать для ряда реакций предэкспоненци-альные множители в хорошем согласии с экспериментальными данными. [c.88]

    Созданная Эйрингом и Поляни теория часто фигурирует в литературе как теория абсолютных скоростей реакций. В снязи с развитием в последнее премя новых методов расчета абсолютных скоростей реакций, учитывающих динамику элементарного акта, применение этого всеобт.емлющрго термина к теории переходного состояния едва ли оправдано. [c.88]

    В разработанной Г. Эйрингом и М. Поляни теории переходного состояния принимается, что исходные вещества находятся в равновесии с активированными комплексами, т. е. скорость образования последних намного больше скорости их распада, и что распределение молекул реагирующих веществ по энергиям вследствие столкновений соответствует равновесному распределению Максвелла — Больцмана. Это равновесие рассчитывается при помощи методов статистической термодинамики. Переходное состояние (активированный комплекс) можно рассматривать как обыкновенную молекулу, характеризующуюся определенными термодинамическими свойствами, за исключением того, что, кроме обычных трех степеней свободы поступательного движения центра тя кести, оно имеет четвертую степень свободы внутреннего поступательного движения, связанную с движением вдоль путч (координаты) реакции. [c.439]

    Советские ученые, в особенности Кондратьев и его сотрудники, широко применяют метод спектроскопического исследования реакций при изучении вопросов горения, в частности, цепных газовых реакций [83]. При таком сочетании теории и экслеримента теория абсолютных скоростей реакций может принести несомненную пользу для расчета скоростей реакций, энергий активации, расширения представлений о ходе и механизме реакций и истинной структуре химических соединений. Вместе с тем в ряде случаев положения этой теории применяются формально механически приписываются молекулам химических соединений априорные, не существующие состояния или структуры [84], [85]. Разработка теории переходного состояния производилась Баландиным, Темкиным и другими советскими учеными, за границей — Эйрин-гом, Поляньи и др. [85]. [c.91]

    Мак-Лафферти указывает, что наибольшим препятствием к однозначному определению молекулярной структуры масс-спектрометрическим методом служит возможность перегруппировки в процессе ионизации. Он различает два типа перегруппировок — случайные и специфические. Процесс ионизации был рассмотрен с позиций теории переходного состояния. При этом Филд и Франклин указывали, что энергия акгивации разложения или перегруппировки Л1олекулярного иона мала по сравнению с энергией активации разложения или перегруппировки нейтральной молекулы и что скорость перегруппировки зависит от энергии и энтропии активированного комплекса. Случайные перегруппировки происходят, если несколько возможных направлений реакции равноценны по энергии и энтропии, так что образуется несколько перегруппировочных ионов, обычно в небольших количествах. Если благоприятно одно какое-либо направление, как правило, протекает специфическая перегруппировка, и в спектре преобладает перегруппированный ион. Присутствие в молекуле функциональных групп способствует специфической перегруппировке. Для соединений фтора наблюда- [c.276]

    В заключение мы обратим внимание на два момента. Создание методов изучения быстропротекающих реакций является необходимой предпосылкой, как пишет Эмануэль в предисловии к монографии Колдина, стратегического наступления химической кинетики в области органической химии и биохимии, а также неорганической химии и химической технологии. Но изучение быстропротекающих реакций подорвало в то же время и основу основ классической химической кинетики — то толкование энергии активации, которое дает теория переходного состояния, а именно положение о том, что энергия активации представляет высоту потенциального барьера, в структурном отношенйи обусловленного растяжением химических связей. Оказывается, в энергию активации быстрых реакций существенный вклад могут вносить и другие факторы [59, с. 290]. [c.317]

    Детальное обсуждение нуклеофильной реакционной способности соединений связано с расчетом констант абсолютных скоростей реакций, что принципиально было невозможно до появления теории переходного состояния [4]. Эта теория позволила произвести квантовомеханический расчет энергии активации трехцентровой реакции, как, например, при рассмотрении Гайт-лером—Лондоном реакции между атомом водорода и молекулой водорода [5]. Полная волновая функция для трех электронов выражается как функция межъядерного расстояния, и соответствующий гамильтониан минимизирует в зависимости от этих расстояний. Для четырехэлектронных систем, соответствующих нуклеофильным реакциям, этот метод практически непригоден из-за осложнений, связанных с трактовкой межэлектронного отталкивания остальных электронов системы, изменения заряда ядра и сольватационных эффектов. По этим причинам Поляни с сотр. [6] разработал полуэмпирический подход, согласно которому переходное состояние представляет собой комбинацию резонансных структур. [c.114]

    Абсолютная температура 1 —17 А6СШ1ЮТНЫЙ геологический возраст — см. Возраст геологический абсолютный Абсолютный нуль, принцип недостижимости 5—250 Абсолютных скоростей реакций теория — см. Переходного состояния метод Абсорбенты 1 — 19 Абсорбционная спектроскопия 1 — 18 Абсорбция 1 — 19 [c.551]


Смотреть страницы где упоминается термин Теория переходного состояния, метод: [c.576]    [c.593]    [c.576]    [c.593]    [c.337]    [c.21]    [c.439]    [c.89]    [c.89]    [c.77]    [c.333]    [c.93]    [c.85]   
Химия горения (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метод теории

Переходное состояние метод метод

Состояние переходное

Теория переходного состояния

Теория переходного состояния Теория



© 2025 chem21.info Реклама на сайте