Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформации макромолекул и механические свойства полимеров

    КОНФОРМАЦИИ МАКРОМОЛЕКУЛ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРОВ 17. Теория растяжения макромолекул [c.250]

    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]


    Упорядоченность во взаимном расположении полимерных молекул и высокая степень регулярности построения цепи приводят к ухудшению приспосабливаемости макромолекул к поверхности и взаимодействия с нею. В работе [563] была рассмотрена роль гибкости молекулярных цепей каучука в усилении сажей на основе представлений об изменении конформации цепей при смачивании полимером твердой поверхности. При этом было найдено, что усиление тем более заметно, чем. выше гибкость цепи и чем больше, следовательно, ее контактов с поверхностью может быть реализовано. Проведенные термомеханические исследования свойств наполненных аморфных и кристаллических образцов полистирола также показали, что при введении наполнителя изменения свойств кристаллического полимера менее заметны, чем аморфного того же химического строения. Таким образом, взаимодействие с поверхностью и адгезия зависят не только от химической природы полимера и наполнителя, но и от степени регулярности цепи и молекулярной упорядоченности полимера в надмолекулярных образованиях. Взаимодействие этих образований с поверхностью и их взаимное расположение — весьма важные факторы, определяющие физико-химические и физико-механические свойства наполненного полимера. [c.284]

    Полимерные материалы отличаются от традиционных материалов, таких, как металлы, стекло или камень, способностью к большим обратимым деформациям, проявляющейся в определенном интервале температур. Эта и другие специфические особенности механических свойств полимеров связаны с особенностями строения длинных цепных молекул, прежде всего с их гибкостью. Исследование механизма деформации па молекулярном уровне показывает, что причиной высокоэластичности является броуновское движение, в котором участвуют отдельные подвижные элементы (сегменты) гибкой нитевидной молекулы. Под воздействием броуновского движения молекула принимает статистически беспорядочные конформации при этом расстояние между ее концами стремится к минимуму. При деформации полимера, например при растяжении, молекулы принимают менее вероятные конформации, расстояние между их концами увеличивается, и появляется сила, стремящаяся при снятии внещней нагрузки изменить конформации макромолекул на более вероятные. [c.15]

    Механические релаксационные свойства кристаллического полипропилена и частично кристаллического полиэтилена схожи. В кристаллическом и частично кристаллическом полипропилене обнаруживаются три абсорбционных максимума, обычно называемые а-, р- и у-максимумами. Интенсивность поглощения в области высокотемпературного ос-максимума непосредственно связана с содержанием кристаллических областей в полимере. Очевидно, что этот максимум не появляется в спектре полностью аморфного полипропилена. Молекулярная и кристаллическая структуры полипропилена и полиэтилена существенно различны. Содержание метильных групп в полипропилене очень велико (одна метильная группа приходится на каждые три углеродных атома основной цепи). Это обусловливает спиральную конформацию макромолекул. В этом полимере изменения кристалличности связаны главным образом с пространственным расположением метильных групп. Вследствие различии в строении полимеров характер максимумов поглощения в полипропилене и в полиэтилене совершенно различен как по положению на температурной шкале, так и по интенсивности. Эти же различия приводят к тому, что изменение кристалличности полипропилена по-иному отражается на его релаксационных свойствах, чем в случае полиэтилена. [c.355]


    Аналогичные результаты были получены как для других типов жесткоцепных полиарилатов, так и для полиарилатов анилида фенолфталеина, полученных гомогенной поликонденсацией при повышенных температурах в различных растворяющих полимер средах. Таким образом, приведенные в этой главе данные подтверждают, что надмолекулярные структуры оказывают существенное влияние на свойства полимерного тела не только в кристаллическом, но и в стеклообразном состоянии. Одновременно можно сделать вывод, что при синтезе полимеров с жесткими макромолекулами необходимо учитывать влияние реакционной среды на отбор тех или иных конформаций макромолекул в процессе самого синтеза. Следовательно, комплекс механических свойств полимеров с жесткими макромолекулами можно регулировать не только путем химических изменений макромолекул, но и изменением физических условий взаимодействия растущей макромолекулы с окружающей средой. [c.40]

    Физико-механические свойства полимеров определяются не только химическим составом и строением, т. е. структурой на молекулярном уровне (конфигурацией, конформацией, молекулярной упаковкой), но и взаимным расположением макромолекул и их элементов — их надмолекулярной организацией (НМО). Под надмолекулярной структурой (НМС) полимеров понимают способ упаковки макромолекул в пространственно выделяемые элементы (агрегаты), размеры и объем которых на несколько порядков превышают размер и объем звена. [c.140]

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]

    Возможность вращения макроцепей вокруг связей С—С связана с изменением конфигурации (конформации) макромолекул и определяет их гибкость, а следовательно, и физико-механические свойства полимеров. Такое вращение, например, из-за взаимодействия водородных атомов, не является свободным (связано с преодолением потенциального барьера) и требует от макромолекулы определенного запаса кинетической энергии, зависящего от температуры. Тем не менее, при наличии такого запаса макромолекула может принимать бесконечное множество конфигураций и тем легче, чем выше температура. [c.21]

    Возможность существования макромолекул в вытянутой конформации приводит к появлению в полимерных кристаллах выделенного направления — кристаллографической оси с, совпадающей с направлением вытянутых конформаций или, как чаще говорят, с главным, направлением полимерных цепей. Структурная анизотропия, характеризующаяся одним выделенным направлением, существует не только, когда цепи полностью вытянуты, но и тогда, когда под влиянием растягивающего напряжения или других сил клубки хотя бы частично разворачиваются и звенья макромолекул приобретают преимущественную ориентацию. Это приводит не только к механической и оптической, но и к термодинамической анизотропии (именно ее и обнаружил в свое время Джоуль в опытах с растягиванием каучуков). Специфичность свойств полимеров с ориентированными макромолекулами (к ним относятся все полимерные волокна, и природные, и синтетические) потребовало рассмотрения особого ориентированного состояния полимеров, которому в книге посвящена гл. XVI. [c.20]


    Одной из наиболее важных проблем, стоящих перед физико-хи-мией полимеров,. является проблема синтеза трехмерных сеток, обладающих регулярным строением, или бездефектных сеток. Эта проблема имеет особенно важное значение для синтеза каучуков с повышенными физико-механическими свойствами, в частности, высокой износостойкостью, которая, как полагают [7], связана с регулярностью построения сетчатой структуры. С точки зрения образования бездефектной сетки очевидно, что таковая в принципе не может быть получена при вулканизации обычных каучуков из-за статистического характера процесса вулканизации и наличия различных конформаций макромолекул в каучуке до вулканизации и фиксации их после сшивания. [c.131]

    Объяснение указанного свойства полимеров целиком связано с протеканием в них релаксационных процессов, т. е. переходом макромолекул из одного состояния равновесия (наиболее согнутые конформации) в другое, задаваемое наложением направленного механического поля (вытянутые конформации). [c.135]

    Направленное механическое воздействие является основным, а в технологической практике — единственным способом ориентирования полимеров. Изменение ориентации полимера происходит в результате его деформирования и заключается в повороте и перемещении частей или целых макромолекул и элементов надмолекулярной структуры в направлении действия сил. При этом происходят также изменения конформаций макромолекул, межмолекулярного взаимодействия и строения упорядоченных надмолекулярных образований. Перестройка структуры полимерного материала в результате механического воздействия ведет к изменению его механических свойств. [c.229]

    На стадии переработки полимеров в изделия следует стремиться не только к получению необходимой формы изделия, но и к формированию заданных структур, обеспечивающих оптимальные механические свойства. На этой стадии в случае растворимых полимеров с гибкими макромолекулами можно воздействовать уже на первичные надмолекулярные структуры подбором растворителя и изменением других условий, от которых зависит отбор тех или иных конформаций и характер последующей агрегации макромолекул. [c.362]

    При использовании в качестве среды, в которой происходит образование полимера, названных хороших растворителей, удается синтезировать преимущественно развернутые (вытянутые) жесткие конформации макромолекул, вследствие чего возникают пачки макромолекул и другие фибриллярные надмолекулярные структуры. Так, в пленке полиарилата Ф-1, синтезированного в а-хлор-нафталине, отчетливо видны надмолекулярные структуры фибриллярного типа (рис. 3,6), хотя в некоторых случаях наблюдаются также и отдельные глобулы. При рассмотрении поверхности скола с помощью оптического микроскопа (см. рис. 4а, б) также отчетливо видно резкое различие картины разрушения полиарилатов с глобулярной и преимущественно фибриллярной структурами. Соответственно структуре изменяется и комплекс механических свойств. [c.36]

    Эффективным способом модификации структурно-физических свойств полимерного материала является его механическая деформация (сжатие или растяжение). При ориентационном растяжении в полимерном материале создаются неравновесные вытянутые конформации макромолекул и их участков, жесткость ориентированных полимеров повышается. Вытянутые, напряженные макромолекулы обладают ограниченной молекулярной подвижностью именно они ответственны за механическую прочность ориентированного полимерного материала. [c.134]

    Проблема получения высокопрочных полимерных материалов неразрывно связана с созданием в них предельно ориентированных структур. К настоящему времени наибольшее распространение получили способы придания полимерам высокой степени ориентации, основанные на их кристаллизации из перемешиваемых растворов или ориентированных расплавов в процессе течения последних под высоким давлением. Механическое воздействие является мощным фактором, влияющим на структуру и, следовательно, на термодинамическое состояние материала, поскольку приложение напряжений приводит не только к вязкому течению растворов и расплавов полимеров, но и к накоплению обратимых (высокоэластических) деформаций. По своей природе это явление связано с изменением конформаций макромолекул и до некоторой степени межмолекулярных взаимодействий, т. е. в конечном счете с изменением свободной энергии системы. Действие перечисленных факторов приводит к изменению термодинамических закономерностей фазового перехода, обычно называемого ориентационной кристаллизацией полимеров. Структура и свойства образуемого при этом материала в значительной степени отличаются от обычно наблюдаемой картины прежде всего тем, что при фазовом переходе под действием напряжений, по крайней мере, часть цепей кристаллизуется в выпрямленных конформациях, образуя кристаллы с выпрямленными цепями — КВЦ. Наличие КВЦ приводит к изменению всей совокупности физико-механических характеристик полимеров, причем в ряде случаев отмечаемые при этом показатели являются уникальными и недостижимыми любым другим способом. [c.141]

    В низкомолекулярных телах, состоящих из небольших молекул, релаксационные процессы протекают чрезвычайно быстро — доли секунды. В полимерах, состоящих из больших гибких молекул, релаксационные процессы протекают сложно и связаны с изменением конформаций макромолекул. Гибкость молекул, обусловленная внутримолекулярным тепловым движением, связана с самостоятельным перемещением отдельных участков, величина которых может значительно меняется в зависимости от характера действующего силового поля. Следовательно, общий процесс релаксации в макрообразцах полимера будет складываться из многих отдельных нроцессов, характеризующихся различными временами релаксации. Иными словами, релаксационный процесс в полимерах характеризуется не одним каким-либо временем релаксации, как это наблюдается в низкомолекулярных телах, а целым набором таких времен от самых малых, присущих небольшим частям молекул, до очень больших, присущих большим частям пли молекуле в целом. Этим, собственно, объясняется большая зависимость механических свойств полимеров и полимерных материалов от времени действия и скорости приложения нагрузки. Этим же объясняется и изменение свойств во время отдыха или, как говорят, залечивание образцов. [c.249]

    При концентрации растворенного полимера, большей 1л1 , в растворах существенно возрастает вероятность взаимных контактов макромолекул, обусловливающая интенсификацию межмолекулярных взаимодействий и, как результат, возникновение аномалии вязкостных свойств. Характерной особенностью таких растворов является существенное подавление термодинамической гибкости сольватированных макромолекул и все более отчетливое проявление кооперативного характера изменений структуры растворов при тепловых и (или) механических воздействиях изменение конформации индивидуальной цепи определяется возможностями, которые обеспечивают ей соседние сольватированные макромолекулы. Полимеры в вязкотекучем состоянии представляют собой псевдопластичные аномально вязкие жидкости. [c.172]

    Межмолекулярное взаимодействие в полимерах, определяемое обычно как сила когезии, приходящаяся на единицу длины макромолекулы, оказывает большое влияние на механические и другие-свойства пленок. Величина силы когезии, приходящаяся на 5 А (0,5 нм) длины макромолекулы, теоретически подсчитана Марком [7 ] при условии плотной упаковки цепей, т. е. без учета реальных конформаций (табл. 1). Из данных таблицы следует, что прочность меж-молекулярной связи зависит от полярности боковых групп полимерной цепи. Реальная гибкость цепи и внутримолекулярное взаимодействие вносят существенные поправки в приведенные данные. Меж-молекулярные связи, суммируясь по длине вытянутой макромолеку- [c.14]

    При применении различных физико-химических методов было выявлено, что существует корреляция в оценке долговеч-носги при использовании в качестве ее критерия внутренних напряжений й других физико-механических характеристик, показателей, определяющих изменение декоративных и защитных свойств, а также параметров, обусловленных структурными превращениями в процессе их эксплуатации. В то же время внутренние напряжения, как и другие свойства и структура покрытий, зависят от химического состава полимера, строения и конформации макромолекул. [c.8]

    Полимеры обладают рядом специфических свойств, обусловленных их большой молекулярной массой, цепным строением макромолекул и их гибкостью (способностью макромолекул изменять свою конформацию под влиянием теплового движения звеньев или внешних механических сил), а также интенсивным проявлением сил вторичного взаимодействия между макромолекулами. При переходе от линейных цепей к разветвленным полимерам и сетчатым [c.16]

    Свойства твердых полимеров определяются в очень большой мере предысторией образца. Особенно сильное влияние оказывают термическое и механическое воздействия, изменяющие молекулярную упорядоченность. Многообразие пространственных конформаций, которые может принимать макромолекулярная цепочка под действием внутри- и межмолекулярных сил, проявляется в надмолекулярной структуре. Структура полимера меняется от полностью аморфной в случаях, когда имеются стерические помехи кристаллизации или в закаленном расплаве, до законченной структуры кристалла, возникающей в результате длительного отжига или при медленной кристаллизации разбавленного раствора. Между этими структурами лежат промежуточные упорядоченные состояния, например более или менее вытянутые длинные отрезки отдельных макромолекул и мезоморфные структуры, обладающие регулярностью строения лишь в одном или двух направлениях. [c.91]

    Различные формы одной и той же гибкой цепной мо.лекулы получили название конформаций макромолекул. В первых работах по механическим свойствам полимеров и по растворам полимеров употреблялся тер.ми конфигупяиия которой пыл ппзапее заменен термином конформация , соответствующим общепринятой в химии терминологии. [c.15]

    Рассмотренное изменение механических свойств полимера объясняется одновременным действием различных процессов перестройки структуры растягиваемых полимеров. Высокоэластическая деформация обусловлена распрямлением и поворотом цепей макромолекул и других элементов структуры в направлении приложенного усилия. Это приводит к уменьшению набора возможных конформаций макромолекул, повышению их жесткости, усилению межмолекулярного взаимодействия и созданию различных анизометрических надмолекулярных образований (фибрилл). Вследствие этих процессов вязкость системы возрастает, а релаксационные процессы замедляются. Наряду с этими процессами ориентационного структурообразовання в деформируемом полимере происходят процессы разрушения исходной и образующейся структуры разрывы узлов сетки, препятствующих дальнейшему растяжению.  [c.236]

    Резкое изменение механических свойств наблюдается при температурах выше температуры стеклования Тс. Участок кривой от температуры стеклования Тс до температуры текучести Г соответствует высокоэластическому состоянию. Это состояние яв< пяется характерным признаком полимерных веществ. Полимеры в высокоэластическом состоянии способны к обратимой деформации, т. е. обладают эластичностью. Действие механического на< пряжения на полимеры, находящиеся в высокоэластическом со стоянии, вызывает изменение конформации скрученных молекул, При снятии напряжения молекулы стремятся возвратиться в пер<, воначальное состояние. Такое свойство макромолекул и придает полимерам эластичность. Типичным представителем высокоэла-. стичных полимеров являются каучуки. При растягивании или, сжатии каучука он легко деформируется, но при снятии нанря<( женин возвращается в первоначальное состояние. [c.246]

    Механические свойства ориентированных полимеров и принципы получения высокопрочных волокон и пленок. При растяжении полимерных пленок, волокон и т. д. быстрая ориентация небольших участков макромолекулы приводит к немедленному выпрямлению длинных отрезков ее Это, в свою очередь, влечет за собой усиление действия межмолекулярных сил цепи в значительной степени утрачивают способность менять конформацию, повышается эффективная жесткость макромрлекул и величш1а их сегментов. В результате все меньше становится подвижность отрезков цепи, обусловливающая ориентацию Следовательно, по мере своего развития ориентация будет протекать все медленнее и наоборот, чем сильнее полимер ориентирован, тем ниже скорость его дезориентации (самоторможение).  [c.465]

    Эта причина связана с существованием складчатой конформации макромолекул в кристаллах. Как уже упоминалось выше, величина скла.дки определяется температурой кристаллизации и при данной степени переохлаждения значение периода складывания оказывается близким к критическим размерам зародышей кристаллизации, определяемым отношением удельной поверхности к объему. Вследствие этого кристаллический полимер представляет собой набор метастабильных структур, спосо бных при повышении температуры выше температуры кристаллизации переходить более равновесные формы. Поэтому при отжиге или в условиях эксплуатации при повышенных температурах в кристаллическом полимере могут происходить процессы рекристаллизации, сопровождающиеся контракцией и появлением макродефектов в образцах. По этой причине материалы, полученные на основе кристаллических полимеров, претерпевают структурное старение, в результате которого ухудшаются механические свойства изделий,, а ино гда наблюдается и их разрушение. [c.55]

    Переход от строения 1 к строению 3 сопровождается значительным понижением температуры стеклования и ударной вязкости с одновременным увеличением плотности и модуля упругости. Гомополимер на основе 1 обнаруживает способность к развитию больших деформаций вплоть до разрушения даже при —180 °С, сополимер 1 и 2 разрушается хрупко практически во всем интервале температур. Низкотемпературное старение иоли-ариленсульфонов (например, при 150 °С) приводит к существенному снижению ударной вязкости и возрастанию модуля упругости, плотность при этом также несколько увеличивается. Сопоставляя показатели механических свойств с плотностью полимеров, авторы [21] делают вывод, что решающим фактором в формировании свойств полиариленсульфонов при изменении изомерного состава звена, а также при старении полимеров данного типа является плотность упаковки макромолекул в монолитном теле. Возможно, что при формировании монолитного тела из полиариленсульфонов так же, как и из других теплостойких ароматических полимеров, макромолекулы принимают неравновесные мета-стабильные конформации. При отжиге вследствие релаксации внутренних напряжений конформации могут несколько изменяться, и макромолекулы упаковываются более плотно. [c.161]

    На ооновании этих представлений были получены нолиарилаты с двумя формами надмолекулярных структур (глобулярные и фибриллярные), имевшие одинаковое химиче1Ское строение, но совершенно различные механические свойства. Есте(ственно, что эти результаты имеют особо важное значение для полимеров с жесткими макромолекулами, для которых изменение конформации после синтеза уже невозможно. [c.341]

    К началу 40-х годов относятся также первые работы В. Н. Цветкова и его сотрудников в области физико-химии полимеро(в, которые явились логическим продолжением его более ранних работ, посвященных исследованию свойств мезоморфных жидкостей или жидких кристаллов. Основное направление работ В. Н. Цветкова и его сотрудников в области физико-химии полимеров заключается в исследовании растворов полимеров с целью получения информации о структуре и конформации растворенных макромолекул. Эти исследования, результаты которых обобщены в ряде обзоров и монографий [21—27], проводились с использованием методов, теория и практика применения которых в значительной мере были разработаны В. Н. Цветковым. Сюда относятся такие методы, как двойное лучепреломление в потоке, поляри-зационно-интерферометрические методы исследования диффузхгп и седиментации, светорассеяние, двойное лучепреломление растворов под действием механических, электрических и магнитных полей, а также фотоупругость полимерных пленок и гелей. Многие из методов, разработанных в лаборатории В. Н. Цветкова, были внедрены в практику работ ряда исследовательских институтов Советского Союза. [c.319]

    Полипропилен может бьпь получен в изо-, синдио- или атактической конфигурации. Изотактический полимер плавится при 208 °С и имее высокую степень кристалличности. Его макромолекулы преимущественно линейны и принимают спиральную конформацию типа З1, изображенную на рис. 7.13. Обладая высокой кристалличностью, полипропилен отличается жесткостью (твердостью) и другими повышенными прочностными характеристиками (высоким пределом прочности на растяжение). Высокая прочность полипропилена в расчете на единицу массы обеспечивает его широкое промьшиенное использование. Изделия из полипропилена легко стерилизуются, так как температура его плавления намного превышает 100°С. К тому же полипропилен нерастворим в большинстве известных растворителей при комнатной температуре. Однако при нагреве выше температуры плавления полипропилен растворим в ароматических и хлорированных углеводородах. Полипропилен устойчив к действию большинства реагентов кислот, щелочей, масел, однако он менее устойчив к окислению по сравнению с полиэтиленом. Полипропилен менее тепло- и светостоек, но обладает отличными механическими и диэлектрическими свойствами, его влагостойкость сравнима с влагостойкостью полиэтилена. Детали из полипропилена используют при изготовлении холодильников, радио- и телеаппаратуры. Полипропилен находит широкое использование при производстве упаковочной пленки, изготовления трубопроводов, резервуаров для хранения жидкостей, покрьп ия сидений, канатов и моноволокна. [c.172]


Смотреть страницы где упоминается термин Конформации макромолекул и механические свойства полимеров: [c.189]    [c.185]    [c.100]    [c.24]    [c.303]   
Смотреть главы в:

Конформации макромолекул -> Конформации макромолекул и механические свойства полимеров




ПОИСК





Смотрите так же термины и статьи:

Конформации макромолекул

Механические свойства полимеро

Полимеры механические свойства



© 2025 chem21.info Реклама на сайте