Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции водорода с металлами

    Эта реакция включает гомогенное расщепление молекулы водорода. В реакциях гетерогенной каталитической гидрогенизации большая затрата энергии (103 ккал), необходимая для расщепления 1 моля водорода, пополняется за счет энергии, выделяющейся при образовании связей водород—металл. При установлении соответствующего контакта между основным компонентом реакции и поверхностью катализатора в принятых условиях процесса атомы водорода переходят к акцептору по механизму, пока еще мало изученному. Примеры гомогенной гидрогенизации исключительно редки. Кэлвин [3J описал подобную систему, в которой проводится восстановление водородом хинона в растворе хинолина с использованием в качестве катализатора ацетата одновалентной меди. При детальном кинетическом изучении этой реакции Велер и Миле [24] обратили внимание на поразительное сходство между активацией водорода ацетатом одновалентной меди и активацией водорода в условиях оксосинтеза. Эти исследователи выступили в поддержку механизма активации, предложенного Кэлвиным, который они записали следующим образом  [c.300]


    Органическое вещество Л — бесцветная, с характерным запахом жидкость. В зависимости от условий продуктами его окисления могут быть либо ангидрид минеральной кислоты, либо органическая кислота. Продуктами разложения вещества Л прн определенных условиях (каких ) могут быть вещества Б я В. Первое из них — бесцветная жидкость. Ее мол<но получить прн горении вещества Л. Второе — бесцветный газ, обесцвечивающий бромную воду и перманганат калия. Вещество Л легко вступает в реакцию с металлом. Одним из продуктов этой реакции является водород. Что собой представляет вещество Л Напишите соответствующие уравнения реакций. [c.55]

    Мортон относит реакцию замещения водорода металлом к реакциям электрофильного замещения, основываясь на убеждении (иризнанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов [229]. С другой стороны, основываясь на расположении нары электронов углерод-водородной связи, которая разрывается, и связи углерод — металл (ионной), которая образуется [159], реакция замещения водорода металлом мон<ет быть определена как электрофильное замещение. По той же причине гидролиз тирет-бутилхлорида определяют как реакцию нуклеофильного замещения [159]. [c.473]

    К этой группе восстановителей относятся металлы и некоторые другие элементарные вещества, как, например, водород, углерод и др., атомы которых способны терять электроны и переходить в окисленное состояние. Металлы образуют при этом соответствующие соли в зависимости от кислоты, участвующей в реакции. Такие металлы, как цинк, алюминий и некоторые другие, могут восстанавливать и в щелочной среде, поскольку эти металлы растворимы в щелочах с образованием гидроксоцинкатов, гидроксоалюминатов и т. д. Являясь сильными восстановителями, при реакции, например, с некоторыми растворами азотной или серной кислоты, они способны восстановить центральные ионы этих кислот до низщих степеней окисления, т. е. до или по схемам  [c.151]

    Алкильные заместители активируются в реакциях электрофильного замещения и оказывают направляющее действие преимущественно в о-/г-положения. Все же алкильные группы нри реакциях замещения водорода металлом оказывают дезактивирующее действие (сравнительные скорости изопронилбензол бензол =0,23, т/)ет-бутилбензол бензол =0,19 и направляют реакцию замещения водорода металлом преимущественно в л-и -положения [65]. Относящиеся к этому вопросу данные суммированы в табл. 19. [c.474]


    Выделение водорода является потенциально конкурирующим процессом при катодном осаждении металлов, а выделение кислорода — при их анодном растворении. При рафинировании металлов на процесс растворения основного металла, например меди, накладываются реакции ионизации металлов-примесей Мпр  [c.387]

    Фторирование фторидами металлов. Реакция фторида металла с углеводородом, сопровождающаяся образованием фторированного парафина, является удобным методом замещения атома водорода фтором. Реакция эта, несмотря на то, что она экзотермическая,. в противоположность реакции с фтором гораздо легче контролируется и в значительно меньшей степени сопровождается разрывом углерод-углеродной связи. Кроме того, образование полимерных веществ минимально, следовательно, получаются соответственно более высокие выходы желаемых продуктов. [c.71]

    Такие металлы, как платина, палладий, медь, железо, сплавы палладия с родием, с самого начала претерпевают характерные, сложные изменения структуры поверхности, не прекращающиеся при длительной работе. Пластинки платины после работы переходят в нагромождения кристаллов разной величины и формы. После длительной работы (реакция водорода с кислородом) в катализаторе появляются отграниченные друг от друга зоны, соответствующие граням отдельных кристаллов, выходящих на поверхность . Такие грани имеют разную каталитическую активность, что очень важно для понимания распределения активных центров на поверхности катализатора. [c.56]

    Прежде чем начать поиск конкретных методик получения того или иного препарата, являющегося полупродуктом в многостадийном синтезе, необходимо составить схему синтеза. Обычно при составлении схем рекомендуется записывать структурные формулы исходных и промежуточных продуктов. В схеме следует обозначать только главный продукт (после стрелки) и исходный (перед стрелкой). Побочные продукты в генеральной схеме записывать не следует. Реагенты, катализатор и условия указывают над и под стрелкой. В тех случаях, когда реакция сопровождается окислением или восстановлением, но окислитель или восстановитель еще не известны или это не принципиально, то окисление принято обозначать символом атома кислорода в квадратных скобках [01, восстановление—символом атома водорода 1Н1. Обычно такие обозначения приводятся в схеме синтеза над стрелкой. Для обозначения повышенной температуры принято ставить латинскую букву ( или греческую А (дельта) если синтез проводится при повышенном давлении, то рядом с условным обозначением температуры ставят символ р. Если катализатором реакции является металл или молекула определенного химического вещества, то, как правило, над стрелкой пишется химический символ этого металла или формула катализатора, при кислотном катализе — символ Н при щелочном — ОН . [c.85]

    Образование этого производного бипиридила, видимо, является результатом реакции замещения водорода металлом, с образованием металлоорганического соединения 2-литий-6- т/ ети-бутилпиридина (СУ1), которое затем присоединяется к другой молекуле пиридинового основания  [c.472]

    Взаимодействие металлов с кислотами. При взаимодействии металлов с кислотами в качестве окислителя выступает ион водорода, который оттягивает электрон от агома восстановителя. В качестве восстановителя в этих реакциях могут участвовать только металлы, за исключением мало активных. Реакции окисления металлов ионами водорода протекают в водных растворах тех кислот, анионы которых (илн сами молекулы) не проявляют окислительных свойств. [c.118]

    При осуществлении электродных реакций на -металлах, адсорбирующих водород и кислород, появляются новые пути процесса, связанные с участием адсорбированного водорода и кис--лорода в реакциях электрохимического восстановления или окис- ления. [c.190]

    Образование гидрид-иона при реакциях водорода с сильно электроположительными металлами можно доказать, проводя электролиз солеобразных гидридов в расплавленных галогени-дах щелочных металлов. При этом водород выделяется на аноде. Химическое поведение солеобразных гидридов можно объяснить присутствием в них гидрид-иона. [c.465]

    Процесс дина-крекинг (фирма Хайдрокарбон рисёрч ) позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием металлов, азота н серы. В этом процессе (испытан на пилотной установке, строится полупромышленная установка мощностью 250 тыс. т/год) горячее сырье вводят в верхнюю часть вертикального трубчатого реактора, где оно крекируется в кипящем слое инертного теплоносителя (товарный адсорбент) в присутствии водородсодержащего газа. Образующиеся дистиллятные продукты частично или полностью могут быть направлены на рециркуляцию (табл. V. 13). Выделяющийся кокс осаждается на частичках носителя, которые непрерывно опускаются вниз, и, пройдя отпарную зону, поступают в нижнюю часть реактора. В ней происходит газификация кокса парокислородной смесью с образованием водородсодержащего газа, поток которого поднимается вверх. При этом, двигаясь через- отпарную зону, газ отпаривает с поверхности носителя адсорбированные углеводороды, а затем поступает в верхнюю часть реактора, поставляя необходимый для реакции водород. Частички носителя после выжига кокса в зоне газификации через транспортную трубу, расположенную в центре реактора, пневмотранспортом (паром или топливным газом, образующимся в процессе) подают в зону реакции. Состав продуктов процесса дина-крекинг зависит от количества рисайкла (табл. V. 14) и температуры в зонах гидрокрекинга (табл. V. 15) и газификации. В зависимости от набора продуктов температуру в зоне гидрокрекинга изменяют от 496 (почти полностью жидкие продукты) до 760 °С (преимущественно газ ), а в зоне газификации — от 927 до 1038 С. [c.123]


    Разложение ПХД в этом случае осуществляется, например, обработкой отработанных нефтяных масел жидким натрием в атмосфере аргона при кипячении в токе водорода. Продукты разложения (нетоксичные хлорид натрия и фенильные полимеры) отфильтровывают. По другим способам отработанные нефтяные масла обрабатывают продуктом реакции щелочных металлов (или их гидроксидов) и полиалкиленгликолей (или их эфиров). [c.362]

    Этот метод основан на реакции растворения металла в избытке кислоты и измерении объема выделившегося водорода. По объему водорода вычисляют его массу, а затем — эквивалент металла. Для проведения опыта в настоящей работе используется прибор, показанный на рис. П. Он состоит из бюретки 1 и уравнительного сосуда 2, сообщающихся друг с другом посредством резиновой трубки 3. К верхнему концу бюретки с по- [c.29]

    Рассмотрим систему, в которой протекают всего две параллельные электрохимические реакции — растворение металла и выделение водорода. Парциальные поляризационные кривые этих реакций представлены на рис. 190. Парциальные кривые не могут быть измерены методом поляризационных кривых, поскольку при поляризации электрода идут одновременно оба процесса. Поэтому получают суммарную поляризационную кривую 1 , В соответствии с уравнениями (69.1) и (69.2) [c.359]

    Гидриды можно разделить на экзотермические и эндотермические Б зависимости от знака энтальпий их образования (рис. В.18). Экзотермичны реакции водорода с самыми электроположительными металлами, а также с некоторыми сильно электроотрицательными неметаллами. Если же разность электроотрицательностей невелика, реакции образования гидридов эндотермичны. Положение равновесия реакций элементов с молекулярным водородом определяется изменением свободной энергии АС . Для расчета равновесия необходимо знать изменение энтропии в этой реакции, например [c.463]

    Типичная реакция окисления металла водой сопровождается образованием гидроксида и выделением водорода  [c.331]

    Так как стандартный потенциал определяется изменением свободной энергии при реакции взаимодействия металла (металлоида) с водородом [c.183]

    При обычных условиях азот представляет собой газ без цвета, вкуса и запаха. Молекула азота состоит из двух атомов, соединенных между собой тройной связью. Энергия диссоциации азота очень велика— 225,1 ккал/моль (941,8 кДж/моль). В соответствии с этим термическая диссоциация N2 становится заметной лишь при очень высокой температуре. Так, при 3000 К и нормальном давлении диссоциирует на атомы 0,1% N2. Этим объясняется химическая инертность азота при обычных условиях. В атомарном же состоянии азот очень активен и энергично вступает в реакции с водородом, металлами, кислородом и другими элементами. [c.130]

    Реакции оксидов металлов с аммиаком идут в две стадии. Вначале аммиак восстанавливает оксиды до металла, а затем металл соединяется с азотом, образующимся при диссоциации аммиака. Эти процессы протекают почти одновременно, поэтому данный метод применим только в тех случаях, когда оксиды восстанавливаются водородом. [c.51]

    Во всех перечисленных реакциях водород является восстановителем, образуя соединение, где его степень окисления равна (1+). Однако водород способен образовывать соединения, где его степень окисления равна (1 )— гидриды металлов (NaH, КН, СаНг). Так, при нагревании водорода с натрием образуется гидрид натрия  [c.285]

    В химических реакциях водород может быть и восстановителем, и окислителем (Н — Н + е-- -Н ). Окислительные свойства его проявляются довольно редко, только в реакциях с некоторыми металлами. [c.129]

    В этих реакциях водород вначале появляется в атомном виде Водород обладает способностью растворяться в некоторых металлах (палладий, платина, никель) в них водород присутствует в атомном состоянии. [c.197]

    Реакция замещения водорода металлом включена в этот раздел, нотому что начальная стадия реакции, видимо, включает нуклеофильное замещение ароматического водорода алкилкарбанионом. Необходимо, однако, отметить, что классификация реакций замещения водорода металлом выдвигает несколько необычную проблему. Реакция, несомненно, является нуклеофильной, так как преобладающую роль в ной играет алкилкарбанион, однако она не может быть нуклеофильным замещением, так как ароматический водород удаляется в виде протона, как и во всех случаях электрофильного замещения. Единственным различием в этом случае является то, что протон удаляется первым. Кроме того, тщательное изучение ориентации, наблюдаемой при реакциях замещения водорода металлом, показывает, что направляющее действие в этом случае в корне отличается от такового, наблюдаемого в типичных реакциях электрофильного замещения [65, 265]. [c.473]

    Если считать, что в реакции замещения водорода металлом в первую очередь происходит атака карбаниона по углерод-водородной связи, то можно было бы ожидать, что сравнительная скорость ее в различные положения должна была бы контролироваться сравнительными плотностями электронов в тех положениях кольца, в которых находятся атакуемые атомы водорода. Представляется невероятным, чтобы существовал какой-либо механизм изменения этих плотностей электронов, в котором резонанс играл бы какую-либо роль. Отсюда следует, что сравнительные плотности электронов должны определяться в первую очередь индуктивным влиянием заместителя. Исходя из этого полон<ения, электронные плотности в моноалкилбензолах должны быть наиболее высокими в о-положении и должны уменьшаться в ж- и п-псложениях в указанном порядке. Из этих данных следует, что замещение в о-положе- [c.474]

    Титан показал ограниченную стойкость в сильных окислителях таких, как дымящая азотная кислота и концентрированная перекись водорода. Металл в этих условиях довольно чувствителен к удару, так как на свежеобразовавшейся поверхности пленки протекает спонтанная реакция, которая в статических условиях не идет. Стойкость к ударному воздействию зависит от состава сплава и состояния поверхности. Наличие иа поверхности твердых частиц и других загрязнений способствует такой реакции. [c.216]

    Термический гидрокрекинг ( Дина-крекинг ). Процесс термического крекинга в присутствии водорода позволяет увеличить выход светлых нефтепродуктов и одновременно понизить содержание в них серы. Этот процесс, предложенный фирмой Хаидрокарбонрисёрч [228], обеспечивает переработку разнообразного остаточного сырья с высокой коксуемостью и большим содержанием металлов, азота и серы. В процессе горячее сырье вводится в верхнюю часть вертикального трубчатого реактора и подвергается преврашению в кипяшем слое инертного теплоносителя в присутствии водородсодержащего газа. Образующиеся дистиллятные продукты частично или полностью могут быть направлены на рециркуляцию. Выделяющийся кокс осаждается на частичках носителя, которые непрерывно опускаются вниз и, пройдя отпарную зону, поступают в нижнюю часть реактора. В ней происходит газификация кокса парокислородной смесью с образованием водородсодержащего газа, поток которого поднимается вверх. При этом, двигаясь через отпарную зону, газ отпаривает с поверхности носителя адсорбированные углеводороды затем он поступает в верхнюю часть реактора, поставляя необходимый для реакции водород. Частички носителя после выжига кокса в зоне газификации подаются через транспортную трубу в зону реакции, расположенную в центре реактора. [c.215]

    Целый ряд исследований, посвяпхенных изучению каталитической активности сферических монокристаллов меди [230], указывает иа то, что ориентация кристаллов действительно приводит к различиям в скоростях каталитических реакций. Реакция водорода с кислородом протекает с на-ибольшей скоростью на участках поверхпости медного шарика, параллельньгх кристаллографическим ПЛОСКОС1ЯМ с индексами 111 . Те части сферической поверхности, которые параллельны плоскостям 100 , сильно разрыхляются под влиянием реакции, хотя скорость реакции на них меньше, чем на частях, параллельных плоскостям 111 , которые при этом остаются гладкими [231]. Создается впечатление, что в тех частях поверхности шарика, которые параллельны плоскостям 100 , атомы как водорода, так и кислорода проникают внутрь -металла на некоторую глубину и реагируют там между собой (см. разделы VII, 6 и 7), в то время как в частях, параллельных плоскостям 111 (т. е. граням 111], которые в действительности отсутствуют), быстрее протекающая реакция препятствует проникновению атомов реагирующих веществ внутрь металла. Между теплотами адсорбции и катал-итической активностью не наблюдается прямого параллелизма. [c.128]

    При растворении железа в соляной кислоте роль окислителя выполняют ионы водорода. В отличие от хлора они могут окислить железо лншь до двухвалентного состояния. Прежде всего это связано со слабыми по сравнению с хлором окислительными свойствами ионов водорода. Кроме того, образующийся в результате реакции водород в момент выделения является сильным восстановителем и препятствует более глубокому окислению металла. Поэтому, если в кислотах растворение металла, проявляющего переменную валентность, сопровождается выделением водорода, в образующихся соединениях металл, как правило, проявляет низшую валентность. [c.217]

    Полагают, что, например, окисление водорода на платиновых металлах осуществляется через реакцию водорода как в молекулярной, так и в атомной формах. Упрощенно это можно представить в виде следующей нелинейной по интермедиатам схемы реакций на поверхности  [c.390]

    Молекулярный водород не очень реакционноспособен. С галогенами водород реагирует после инициирования по радикально-цепному механизму. Обычно при нагревании молекула Нг гомолнтически расщепляется. Образующийся атомарный водород восстанавливает, к примеру, многие оксиды до низщих оксидов или до металлов (разд. 36.2.1). В присутствии платинового, никелевого или палладиевого катализаторов водород вступает в реакции уже при комнатной температуре. Каталитическое действие оказывают также соединения некоторых тяжелых металлов или их ионы. Например, ионы Ag+ и Мп04 восстанавливаются молекулярным водородом. Реакции водорода при низких температурах протекают вследствие образования реакционноспособной связи с металлом-катализатором (переходным металлом). При этом происходит поляризация молекулы водорода. [c.464]

    При реакциях с водородом алкильных или арильных производных металлов образуются соответствующие углеводороды. Так, реакция водорода с раствором (я-С5Н5)2Т1 (СНз)г в алифатическом углеводороде при комнатной температуре приводит к образованию метана и диииклопентадиенилтитана. [c.464]

    Взаимодействие простых веществ с кислотами — окислительно-восстановительный процесс, в котором кис- ота выступает в качестве окислителя, а простое вещество — в роли восстановителя. Характер протекания процесса зависит рт а) природы кислоты и ее концентрации б) температуры с) природы простого вещества. Разбавленные кислоты, как правило, проявляют окислительные свойства за счет иона водорода, а концентрированные — за счет элемента (не водорода и не кислорода) в высшей степени окисления. НС1 и в разбавленном и в концентрированном виде в реакциях с металлами проявляет окислительные свойства за счет иона водорода . HNO3 и в разбавленном и в концентрированном виде проявляет окислительные свойства только за счет азота (в степени окисления -1-5). [c.107]

    Взаимодействие металлов с кислотами. В случае взаимодействия металлов с кислотами в качестве окислителя выступает водородный ион, который оттягивает электрон из атома восстановителя. В свою очередь в качестве восстановителя в этих реакциях могут участвовать только металлы (кроме самых малоактивных) металлоиды же вообще не способны окисляться водородными ионами. Реакции окисления металлов водородными ионами протекают в водных растворах тех кислот, анионы (или сами молекулы) которых не проявляют окислительных свойств. Энергия сродства к электрону у водородного иона, очевидно, равнл энергии ионизации атома водорода ион. н- Тогда взаимодействие металла с кислотой схематично можно представить следующим уравнением  [c.46]

    Оксид марганца МпО получается из оксида марганца (IV) МпОг или из оксида МП3О4 восстановлением водородом при 400—500 °С (рис. 1, 2). Процесс можно вести и при более высокой температуре, так как даже при 1200 °С константа равновесия восстановления металла из оксида марганца (II) равна 5,89-10 , т. е. при такой температуре для образования, наиример, 0,001 г марганца потребовалось бы пропустить над его оксидом несколько тысяч литров абсолютно сухого водорода. Между тем даже тщательно осушенный водород содержит влаги больше, чем это соответствует константе равновесия реакции окисления металла до оксида марганца (II). [c.249]

    Однако наряду со еходством реакций водорода, протекающих по схеме (1) с аналогичными превращеннямй щелочных металлов, например  [c.283]

    По химическим свойствам сера — типичный неметалл. Энергично реагирует со многими металлами и металлоидами соединяется с железом, цинком, водородом, кислородом, фосфором, хлором и т. д. В реакциях с металлами и водородом сера играет роль окислителя (электроноакцентора), проявляя при этом валентность, рав- [c.502]

    При реакции катионов металлов с ЭДТА в водных растворах наблюдается увеличение концентрации водородных ионов. Это ири-водпт -к увеличению электропроводности раствора до прохождения точки эквивалеитности. После точки эквивалентности, вследствие слабо выраженных кислотных свойств у ЭДТА, ионы водорода взаимодействуют с избыточными ионами Это приводит к снижению электропроводности. Следовательно, в этих случаях титра-ционные кривые имеют форму, изображенную на рис. 106, г, кривая 2. [c.161]


Смотреть страницы где упоминается термин Реакции водорода с металлами: [c.472]    [c.474]    [c.474]    [c.475]    [c.201]    [c.109]    [c.363]    [c.378]    [c.363]   
Смотреть главы в:

Гидриды переходных металлов -> Реакции водорода с металлами




ПОИСК





Смотрите так же термины и статьи:

Влияние параллельной реакции выделения водорода на электроосаждение металлов

Ж Реакции, не затрагивающие связи металл — водород

Каталитическая активность окислов металлов 4-го периода в отношении реакции окисления водорода.— В. В. Поповский и Г. К. Боресков

Кобальтовые катализаторы реакций на основе окиси углерода, водорода и олефинов и их промотирование окислами металлов. — Я. Т. Эйдус Буланова

Металлы водородом

Островский, Н. II. Добровольский (СССР). Исследование реакции окисления водорода в присутствии металлов 16 группы периодической системы

Расщепление связи металл — водород при реакциях переноса водорода от лиганда к металлу

Реакции внедрения по связи металл — водород

Реакции водорода с солями металлов

Реакции разряда ионов водорода и гидроксила и их роль в процессе осаждения металла

Реакции, в которых водород или нон металла присоединяется к гетероатому

Щелочных металлов АН и AF реакций восстановления водородом



© 2024 chem21.info Реклама на сайте