Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк хлористый, применение для соединений

    До температуры 100 °С цинк хрупок, но в интервале температур 100—150 °С он становится ковким и легко прокатывается. При температуре выше 250 °С он вновь теряет вязкость. Цинк растворяется в разбавленных минеральных кислотах и щелочах. Цинк плавится при температуре 419,4 °С, кипит при 907 °С. Плотность его 7,1 г/сл1 . Из соединений цинка наибольшее значение имеют окись цинка (цинковые белила), которая используется в качестве краски и в производстве резины. Цинк в виде сернистого соединения входит в состав литопона (белой краски). Хлористый цинк получил применение для пропитки древесины (шпал) с целью предохранения ее от гниения. [c.410]


    Во многих случаях реакцией ацилхлоридов с реактивами Г риньяра можно пользоваться и для получения кетонов, хотя предпочтительнее в этом случае применение цинк- и кадмийорганических соединений. В настоящее время разработаны хорошие синтетические методы, при которых цинк- или кадмий-органические соединения получаются из реактивов Гриньяра добавлением хлористого цинка [2] или хлористого кадмия [3] (см. Методы элементоорганической химии , том, посвященный соединениям ртути, кадмия и цинка). [c.246]

    Многие реагенты благоприятствуют конденсации. Наиболее часто применяются концентрированная [51 ] и 73%-ная серная кислота [79], раствор хло-)истого водорода в уксусной кислоте [80] или спирте [81], хлористый цинк 82], фосфорная кислота, этилат натрия, борный ангидрид, уксуснокислый натрий [83], хлорокись фосфора [63], пятиокись фосфора [84] и хлористый алюминий [85]. Если концентрированная серная кислота может вызвать сульфирование соединения, то предпочитают применять 73%-ную кислоту. Сульфогруппа, вступившая в цикл при конденсации, способна отщепляться при более высоких температурах [86]. Во всех случаях, за исключением двух, при применении серной кислоты в качестве конденсирующего средства получают кумарины. Р-Нафтол дает смесь кумарина и хромона [56], а 4-хлор-  [c.141]

    Гриньяр взял за основу известную реакцию Зайцева — взаимодействие иодистых алкилов с цинком — и заменил цинк магнием, использовав в качестве растворителя безводный эфир. Эти.м область применения металлоорганических соединений значительно расширилась, так как магний является более активным металлом и может реагировать не только с иодистыми (как цинк), но и с бромистыми и хлористыми алкилами и арилами (см. стр. 124). В 1912 г, Гриньяру за открытие магнийорганических соединений была присуждена Нобелевская премия. [c.123]

    Хлористый цинк возгоняется при этом и уходит из сферы реакции, так что процесс превращения сульфата в хлорид проходит в данном случае до конца. Сплавленный безводный хлористый цинк (т. пл. 250°) во влажном воздухе быстро расплывается, образуя с водой концентрированные растворы. Водные растворы хлористого цинка готовятся растворением в соляной кислоте металлического цинка, окиси цинка, сернистого цинка и других его соединений. На некоторых производствах, например при регенерации олова, хлористый цинк является побочным продуктом и даже отбросом. Если не считать употребления хлористого цинка в лабораторной и заводской практике в качестве водуотнимающего и конденсирующего реагента, то едва ли не единственное его применение в крупном масштабе — это пропитка дерева, особенно шпал, для предохранения от гниения. Вообще можно считать, что как материал для очистки нефтяных дестиллатов хлористый цинк представляет собой вещество легко доступное и недорогое. [c.628]


    Катализаторы реакции ацетилирования. В литературе описано большое количество катализаторов реакции ацетилирования, относящихся к различным классам (минеральные и органические кислоты, основания, соли и др.), однако основное практическое применение находят минеральные кислоты (серная и хлорная), являющиеся, по существу, единственным типом катализаторов, используемым в промышленности- Наряду с кислотами в качестве катализаторов ацетилирования применяются соединения типа кислот Льюиса (например, хлористый цинк), соли щелочных металлов (ацетаты натрия и калия), органические основания (пиридин). [c.316]

    ВИЙ стабилизации находят различное применение (А) применяется для обработки текстильных материалов, пропитанных или напечатанных щелочным раствором нафтола , и (Б) —для проявления печатной краски при замешивании со щелочными солями нафтолов типа Нафтола AS. Стойкие диазосоли Ю и других заводов относятся к первой группе. Диазосоединения второй группы, применяемые в печати, выпускались IG под названием прочных рапидов, рапидогенов и рапидозолей. Эти стойкие диазосоли устанавливают на определенное содержание (например 20%) диазониевой соли. При исследовании ряда стойких диазосолей путем титрования щелочного раствора -нафтола Муалим нашел, что среднее содержание диазониевой соли, рассчитанное на хлористый арилдиазоний, равнялось 22—24%. В качестве стабилизаторов и разбавителей обычно применяются такие неорганические соединения, как хлористый цинк, хлористый или сернокислый магний, сульфат алюминия и обычная соль. [c.265]

    Авторы считают [54], что каталитическая активность хлористого алюминия основывается на промежуточном образовании галогенидов алкил-алюминия, являющихся переносчиками алкильных радикалов. В ряде экспериментов хлористый алюминий был заменен триэтилалюминием, три-бутилалюминием, хлористым диэтилалюминием или двухлористым бутил-алюминием, причем выходы были равны выходам при условии применения хлористого алюминия. Некоторые другие соединения, такие как безводный хлористый цинк, хлористый бериллий, хлористый бор, треххлористый фосфор, хлорокись фосфора, пятихлористый фосфор или смесь двух последних соединений, обладают более слабым каталитическим действием. [c.85]

    Как и хлорангидриды кислот, ангидриды кислот широко применяют для получения сложных эфиров из соединений, содержащих оксигруппу. Эту реакцию проводят как в отсутствие катализаторов, так и с применением таких катализаторов, как серная кислота [61], хлористый цинк [62, 63), хлорсулы )окислота [64], хлористый ацетил [65], ацетат натрия [66]. борная кислота [67], сульфат железа(П1) [c.291]

    Безводный хлористый цинк является лучшим, хотя и не единственным, катализатором [17, 19]. В оби ем случае применение катализатора обссп-ечивает более высокие выходы [17]. Хлор юе жел зо иногда дает лучшие результаты, чем хлористый цинк [17], хотя небольшое количество данных о сраннении действия обоих катвлизаторов недостаточно для того, чтобы предсказать, какое из этих соединений следует предпочесть. В отдельных случаях бывает необходим хлористый алюминий, который является более сильным катализатором [61]. [c.296]

    Диэтилцинк был получен из цинка и диэтилртути и из бромистого этила и цинк-медной пары в присутствии специального катализатора Обычно диэтилцинк получается действием иодистого этила на цинк, обработанный предварительно различными способами Самым удобным из этих препаратов цинка является пара цинк — медь Приведенная выше методика описдна в литературе . Галоидные соединения цинкарилов и цинкдиалкилы и диарилы могут быть получены действием реактива Гриньяра на безводный хлористый цинк в эфирном растворе Улучшенный прибор для получения, очистки и применения диэтилцинка опубликован в литературе [c.252]

    RF [100]. Восстановление можно проводить в углеводородных растворителях. Полагают, что реакция проходит по радикальному цепному механизму. В более старых методах использовались такие восстанавливающие агенты, как натрий, амальгама алюминия, цинковая пыль, цинк-медная пара и магний. Применение магния включает образования реагента Гриньяра с последующей реакцией металлорганического соединения с водой или разбавленной кислотой. Таким путем был получен н-пентан в качестве растворителя вместо диэтилового эфира был использован ди-н-бутиловый эфир, чтобы обеспечить отделение продукта (т. кип. 36°С) от растворителя (т. кип. 141°С) перегонкой [101]. н-Гексадекан был синтезирован из Ьиодпроизводного с выходом 85% действием цинка в ледяной уксусной кислоте, содержащей сухой хлористый водород [102]. Для восстановления алкилгалогенидов используют также каталитическое гидрирование, в качестве типичного катализатора при этом применяют палладий на карбонате кальция в присутствии гидроксида калия [81а]. [c.134]


    Из всех соединений моноз с органическими кислотами наибольшее значение имеют ацетаты, а из последних — продукты по шого ацетилирования. Присоединение к молекуле моносахарида остатка уксусной кислоты удается лучше всего при действии уксусного ангидрида и различных катализаторов, как например пиридина уксуснокислого натрия хлористого цинка серной кислоты и т. д. Ацетилирование при помощи уксусного ангидрида и пиридина является наиболее мягкой формой ацетилирования и поэтому пригодно для получения уксусных эфиров малоустойчивых производных моносахаридов. При применении пиридина получаются оба стереоизомерные а- и /5-пеитааце-тата глюкозы, безразлично, исходить ли из а- или из /9-глюкозы. Применение других катализаторов приводит большею частью к преимущественному образованию одной из двух возможных модификаций. Так например с уксуснокислым натрием" и серной кислотой получаются главным образом /9-ацетаты, с хлористым цинком при нагревании — а-ацетаты. На холоду же хлористый цинк, на-против, ие изменяет первоначальной конфигурации первого атома углерода из а- и /3-глюкоз посредством уксусного ангидрида и цинка, так же как посредством уксусного ангидрида и пиридина при О -" можно получить а- и (9-пентацетаты глюкозы. а-Ацетаты получают также при обработке моноз хлористым ацетилом [c.301]

    Альдоль I, представляющий собой важное промежуточное соединение для синтезов (стр. 196), может быть получен с 95%-ным выходом при проведении конденсации в пиридиновом растворе [256]. Лучшие выходы соединений ряда стирила, получаемых из хинальдина, достигаются при применении уксусного ангидрида в качестве конденсирующего агента [257]. Хлористый цинк является более эффективным конденсирующим агентом в аналогичной реакции,с участием лепидина [258]. Однако при нагревании 2-фенил-4-метил-хинрлина с бензальдегидом в присутствии хлористого цинка или серноки слота калия конденсации не происходит. Если эти же реагенты применяются, без конденсирующего агента, то при нагревании до 200—210 рбразуется 2-фенил-4-стирилхинолин [259]. [c.61]

    Из хлористых соединений металлов, в процессах очистки возможно применение хлористого алюминия, хлористого цинка, хлористого олова и хлорного железа. Из них наиболее активным является хлоргистый алюминий, наиболее слабым — хлорное железо. В практических условиях на1нли применение хлористый цинк и отчасти слористый алюминий. Действие этих солей на различные группы органических соединений каталитическое, проявляющееся в ускорении и облегчении реакций конденсации и разложения. [c.76]

    Реакции Zn lj с сернистыми соединениями не изучены, но извлечение последних при обработке крэкинг-дестиллатов достигает 40 Применение хлористого цинка позволяет очищать крэкинг-бензины или в жидкой 3 или в паровой фазе, соединяя таким образом процесс редестилляции с очисткой. Хлористый цинк, как показали, опыты Дуброва я, Розенберг иМусатова, применим в процессах очистки парофазных крэкинг-бензинов, продуктов пиролиза, а также бензинов и керосинов прямой гонки. [c.77]

    Как и следовало ожидать, тер.мическая полимеризация этилена заметно ускоряется применением давления. Было найдено что при 70 ат в стальном автоклаве и при температурах выше 325° этилен легко уплотняется в жидкие углеводороды. Так как эти- продукты состоят не только из высших олефино в, но также парафинов и циклопарафинов, то очевидно простая полимеризация сопровождается здесь расщеплением и образованием циклических соединений. Температура полимеризации этилена под давлением значительно снижается в присутствии таких катал.изаторов, как хлористый цинк С хлористым алюминием полимеризация этилена под давлением происходит даже при 0° и дает смесь углеводородов, большинство которых имеет сложньлй состав и высокий молекулярный вес 2. При аналогично проводимой полимеризации ко.мприми рованного этилена в присутствии фтористого бора получаются масла с высоким и молекулярными весами . Действие хлористого- алюминия и фтористого бора на олефины интересно в связи с воэможностью притотовле ния синтетических смазочных масел. [c.652]

    Бромирование циклопропана было предметом исследований многих авторов, особенно Густавсона. В присутствии солнечного света происходит очень быстрое соединение брома с циклопропаном (находящихся в сухом или влажном состоя-ши) с образованием в качестве единственного продукта 1,3-дибр 0 мпропана Бромирование при комнатной тем пературе и в темноте совершенно сухого циклопропана протекает очень медленно, но реакция заметно ускоряется присутствием влаги или некоторых переносчиков брома к числу последних относятся галоидные соединения алюминия, хлорное >келеэо, хлористый цинк элементарный иод. В присутствии бромистого водорода, который может также действовать как катализатор бромирования, в результате реакции получаются 1,3- и 1,2-дибромпро-паны и продукты их дальнейшего бромирования, а также некоторое количество пропилбромида при применении в качестве катализаторов бромистого алюминия или хлорного железа основным нродуктом является 1,2-дибромпропан Отсюда видно, что главной реакцией, происходящей ери действии брома на циклопропан, является расщепление кольца из трех атомов углерода с после-, дующим бром ированием временно образующейся ненасыщенной системы. [c.810]

    В случае некоторых фенолов и их простых эфиров следует в качестве катализатора применять хлористый алюминий [3] при проведении реакции с другими соединениями хлористый алюминий можно заменить на хлористый цинк [4]. Согласно видоизмененной методике, описанной Адамсом и его сотрудниками [5, 6], применяется цианистый цинк, служащий одновременно удобным источником безводного цианистого водорода и катали-заторо.м. Когда в реакционную смесь вводится хлористый водород, образуются in situ цианистый водород и хлористый цинк. В случае тех реакций, в которых в качестве катализатора применяется безводный хлористый алюминий, последний. можно вводить вместе с цианистым цинком [6]. Многоатомные фенолы, например резорцин и флороглюцин, в молекуле которых гидроксильные группы находятся в лгета-положении по отношению одна к другой, не нуждаются в применении катализатора [3]. [c.45]

    В ОДНОМ исследовании с соединениями ряда пиррола в качестве катализатора был применен хлористый цинк [71] однако лучших выходов удалось достигнуть в отсутствие какого-либо катализатора. Видоизмененный Адамсом синтез Гаттермана был с успехом применен для получения 5-фенилпиррол-2-альдегида [72], 2-карбэтоксииндол-З-альдегида (83%) [73] и 2-метилиндол- [c.58]

    Из соединений кадмия, чрезвычайно сходственных с соединениями цинка, должно упомянуть о нодистои кадмии dP, находящем применение в медицине и в фотографии. Эта соль очень хорошо кристаллизуется, приготовляется прямым действием иода, смешанного с водою, иа металлический кадмий. 1 ч. dp при 20° требует для насыщения 1,08 ч. воды. Хлористый кадмий требует, для растворения, при той же температуре 0,71 ч. воды, так что для этого металла иодистое соединение менее растворимо, чем хлористое, тогда как для вышеописанных щелочных или щелочноземельных металлов существует обратное отношение. Сернокадмиевая соль хорошо кристаллизуется и имеет состав 3( dS0 )8№0, ишой, чем цинковый купорос. Окись кадмия, хотя очень мало, однако растворяется в щелочах но в присутствии винной и некоторых других кислот щелочный раствор окиси цинка не изменяется при кипячении, тогда как разбавленный щелочный раствор окиси кадмия в этом случае выделяет dO что и может служить для разделения цинка от кадмия. Кадмий в растворах осаждается из своих солей цинком, а потому из смеси Zn и d кислоты сперва извлекают цинк. Во всех отношениях кадмий менее энергичен, чем цинк. Так, он с трудом разлагает воду и только при сильном накаливании. Даже на кислоты он действует медленно, но все же с ними выделяет водород. Должно обратить здесь внимание на то, что для щелочных и щелочноземельных (из четных рядов) металлов выс(аий вес атома определяет большую энергию, но кадмий (из нечетного ряда), имеющий больший вес атома, чем цинк, менее его энергичен. Соли кадмия [c.406]

    Этот тип конденсации альдегидов и ароматических соединений с образованием производных дифенилметанового ряда был от-крыт в 1872 г., а в 1874 г. реакция эта была использована для получения 4,4 -дихлордифенилтрихлорметилметана из хлорбензола и хлораля с применением в качестве конденсирующего средства серной кислоты . Позднее, после открытия у 4,4 -дихлорди-фенилтрихрорметилметана инсектицидных свойств, в качестве конденсирующих средств были предложены и различные другие вещества, например олеум с различным содержанием серного ангидрида, хлорсульфоновая кислота, фторсульфоновая кислота, фтористый водород, хлористый цинк и хлористый алюминий —2 . [c.34]

    Выше уже было показано, что соли металлов, способные связывать хлористый водород, неодинаково ведут себя в процессе дегидрохлорирования поливинилхлорида. Например, хлористый цинк, образовавшийся при употреблении стеарата цинка, может апособствовать дальнейшему разложению яолимера. В связи с этим закономерно применение смесей различных продуктов, обладающих специфическим действием. Так, используют сравнительно дешевые препараты цинка, апособные связывать хлористый водород с добавлением, например, бариевых солей, кото(рые, очевидно, в результате образования комплексных соединений парализуют вредное влияние хлористого цинка. [c.238]

    С-Алкилфенолы находят большее применение в производстве бактерицидных препаратов, смачивателей и пластиков, чем в качестве промежуточных продуктов для красителей, но методы С-алкилирования фенолов, описанные в сотнях патентов, должны быть коротко упомянуты. Основной реакцией является конденсация фенола со спиртом, галоидным алкилом или олефином, а возможными конденсирующими агентами служат хлористый алюминий, хлористый цинк, серная кислота и трехфтористый бор. При этом образуются о- и -алкилфенолы со вторичной или третичной алкильной группой. н-Алкильные соединения не могут быть получены этим способом, так как всегда происходит изомеризация во вторичное соединение. н-Алкилфенол может быть получен восстановлением соответствующего арилалкилкетона, образующегося (1) по реакции Фриса, (2) по реакции Ненцкого и (3) по реакции Гоша. Реакции Ненцкого и Гоша применимы и к л-диокси-бензолам, а первая даже и к а-нафтолу. Кетоны могут быть восстановлены по Клемменсену амальгамой. [c.137]

    Из многочисленных химических реагентов, которые предла- гаются для дополнительной химической обработки волокна [127— 130], следует отметить серную кислоту, хлористый цинк, фенол и капролактам, поскольку эти вещества были использованы не только в лабораторных опытах по разрыхлению поверхности поликапроамидного штапельного волокна, но и в работах, проведенных в опытном и полупроизводственном масштабе. Промышленное использование для этой цели других реагентов практически исключается [127]. Определенные ограничения существуют и в применении четырех упомянутых выше реагентов. Как видно из данных, приведенных в табл. 34, наиболее эффективно эти соединения действуют только в условиях, близких к условиям, в которых происходит повреждение волокна. [c.569]

    Извлечение по этому способу осуществляется следующим образом. Свинец расплавляют и при температуре около 500° добавляют в расплав цинк. Образующиеся соединения AuZm, AgaZOg и др. всплывают на поверхность свинца и удаляются в виде пены. Затем из пены отгоняют цинк, а остаток подвергают купелированию для отделения благородных металлов от свинца и остатков цинка. Иногда обработку свинца цинком ведут в три приема, снимая раздельно золотую пену, серебряную пену и цинковую пену с небольшим содержанием серебра, которая используется для обработки следующей порции свинца. Расход цинка составляет около 2% от веса свинца. Продолжительность процесса 30—60 мин. Часть цинка остается в расплавленном свинце, поэтому после снятия пены свинец очищают от цинка путем окисления последнего кислородом воздуха или парами воды, или путем обработки хлором. В первом случае воздух или пары воды продувают через расплавленный свинец при 800°, цинк удаляется в виде окисла при этом окисляется и часть свинца. Во втором случае через расплавленный свинец продувают при 400° хлор, цинк удаляется в виде хлористого цинка. Можно удалять цинк из свинца по способу Гарриса (без применения селитры, так как для окисления Цинка достаточно присутствия щелочи). [c.167]

    Реакцию получения циклопропановых соединений проводят в круглодонной колбе, снабженной магнитной мещалкой и обратным холодильником, закрытым трубкой с осушителем. Цинк-медную пару, иод и сухой эфир (100—150 мл) помещают в колбу и перемешивают до ослабления окраски иода (добавление небольшого количества иода ускоряет начало реакции), после чего прибавляют иодистый метилен и олефин. Реакционную смесь умеренно кипятят с обратным холодильником в течение некоторого времени, определенного для каждой реакции. Обычно слабая экзотермическая реакция начинается через короткое время и продолжается в течение 30 мин. К концу реакции большая часть серой цинк-медной пары заменяется выделившейся медью. Холодную реакционную смесь фильтруют, промывают последовательно холодной 5%-ной соляной кислотой, 5%-ным раствором бикарбоната натрия и водой. (В случае, если получаемые продукты разлагаются под действием кислот, соли цинка удаляют вначале промыванием реакционной смеси водой или раствором хлористого аммония, а затем раствором водного аммиака.) После сушки над сульфатом магния эфир отгоняют, а остаток фракционируют. Применение чистых олефинов, иодистого метилена и цинк-медной пары, приготовленной указанным выше методом, дает воспроизводимые выходы чистых циклопропанов. Что касается применения других галоидметиленов, то, например, хлористый или бромистый метилен в описанных условиях не реагирует, однако циклопропановые производные образуются при введении в реакцию хлориодме-тана (выходы низки). [c.99]

    В качестве катализаторов прямого синтеза метилхлорсиланов пред-лон<ены кроме меди также окислы меди, хлориды одновалентной и двухва-лентно1г меди, сурьма, никель, цинк, алюминий и др. [21—30]. Для увеличения скорости реакции и выхода наиболее ценных алкилхлорсиланов используются промоторы реакции, в качестве которых предлагаются цинк и алюминий [31—33]. Пары ртути оказывают аналогичное действие [34]. Для этого же предлагаются различные газы (водород, хлор, хлористый водород, азот и др.), которые пропускаются одновременно с галоидными алкилами [4, 7, 8, 27, 35—39]. При добавлении водорода увеличивается выход метилхлорсиланов, содержащих водород, связанный с атомом кремния. Повышение выходов метилхлоргидридсиланов наблюдается также в тех случаях, когда пропускаемый над контактной массой 81 — Си — Zll хлористый метил содержит третичный хлористый бутил [40]. Инертные газы (азот, метан) и хлор позволяют лучше регулировать температуру и уменьшают образование побочных продуктов. Применение хлористого водорода в реакции прямого синтеза увеличивает выход монозамещенных соединений и соединений, содержащих связь 81 — Н. [c.350]


Смотреть страницы где упоминается термин Цинк хлористый, применение для соединений: [c.864]    [c.89]    [c.45]    [c.50]    [c.236]    [c.61]    [c.110]    [c.739]    [c.399]    [c.54]    [c.90]    [c.426]    [c.399]    [c.601]   
Органические реакции Сб 8 (1956) -- [ c.46 , c.47 ]




ПОИСК







© 2024 chem21.info Реклама на сайте