Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы кристаллов и силы взаимодействия

    Кристаллические структуры, частицы которых соединяются друг с другом в результате обобществления электронных пар, относятся к совершенно иному типу твердых веществ, называемых ковалентными кристаллами. Силы взаимодействия между атомами в таких кристаллах аналогичны силам, действующим между атомами в ковалентных молекулах, как, например, СО2, ССЦ или КНз. Однако ковалентные кристаллы в отличие от молекул простираются на несравненно большие расстояния во всех трех измерениях, и поэтому говорят, что в них существует протяженный трехмерный каркас ковалентных связей между соседними атомами. Наиболее известным представителем ковалентных кристаллов является алмаз (рис. 10.16). В кристаллической структуре алмаза каждый атом углерода ковалентно связан с четырьмя соседними атомами углерода, располагающимися вокруг него в тетраэдрической конфигурации. Ориентация четырех возникающих в этом случае связей ничем не отличается от существующей в молекулах с простыми углерод-углеродными связями, поэтому весь кристалл алмаза можно рассматривать как одну молекулу. Поскольку протяженность системы углерод-углеродных связей в алмазе чрезвычайно велика, этот кристалл и подобные ему кристаллические ковалентно связанные вещества иногда называют гигантскими молекулами. [c.179]


    Ионная решетка. Ионные кристаллы имеют в узлах пространственных решеток положительно и отрицательно заряженные ионы, которые связаны между собой электростатическими силами притяжения разноименных зарядов. Силы взаимодействия в ионных кристаллах весьма значительны, благодаря чему вещества с ионным типом решетки обладают высокой прочностью, высокими температурами плавления и малой летучестью. [c.32]

    Самые слабые силы взаимодействия между частицами существуют в молекулярных кристаллах, к числу которых относятся, например, кристаллы диоксида углерода, серы, бензола, иода и азота. Эти вещества состоят из молекул, слабо взаимодействующих друг с другом. Взаимодействие между их молекулами относится к такому же типу, который описывается поправочным членом в уравнении Ваи-дер-Ваальса. В кристаллических веществах рассматриваемого типа расположение молекул определяется в основном их формой, дипольным моментом и поляризуемостью. Поскольку силы межмолекулярного взаимодействия невелики, для молекулярных кристаллов характерны низкие температуры плавления или сублимации, мягкость или хрупкость, а также необычайно высокое давление паров над их поверхностью. Наличие запаха у таких твердых веществ, как камфора, нафталин или иод, свидетельствует о том, что их молекулы легко испаряются с поверхности твердого вещества. Электропроводность молекулярных кристаллов очень мала, потому что в их молекулах существует ковалентная связь, и способность электронов перемещаться между молекулами оказывается чрезвычайно низкой. [c.176]

    Тип и строение кристаллической решетки определяются характером и силой взаимодействия составляющих ее атомов. Наличие прочной связи атомов в кристаллической решетке объясняется электрическим характером взаимодействия отдельных атомов между собой. При этом одни атомы теряют электроны, другие их приобретают — возникает ионная связь в другом случае электроны двух атомов становятся для них общими — возникает атомная связь (называемая также ковалентной или гомеополярной). В узлах решетки металлического кристалла находятся ион-атомы металла, а электроны уже не принадлежат какому-либо определенному атому, они свободно перемещаются в виде электронного газа. Это состояние характеризует металлическую связь. [c.11]


    Типы кристаллов и силы взаимодействия [c.87]

    Ионные кристаллы. Они образованы правильно чередующимися в решетке противоположно заряженными ионами, связанными между собой электростатическими силами притяжения разноименных зарядов. Силы взаимодействия в таких кристаллах весьма значительны, благодаря чему соединения с ионной решеткой обладают высокой прочностью, сравнительно высокой температурой плавления, малой летучестью, большой растворимостью в воде и высокой электропроводностью. Для соединений с ионной решеткой понятие молекулы утрачивает смысл. Ионный тип решетки характерен для полярных соединений, в частности для большинства солей. [c.43]

    Атомный диаметр — это такое расстояние между центрами соседних атомов, которое отвечает минимуму энергии кристалла. Энергия кристалла является суммой потенциальной энергии взаимодействия атомов и кинетической энергии свободных электронов. Силы взаимодействия атомов носят электростатический характер, а особенности взаимодействий зависят от природы взаимодействующих частиц. В соответствии с этим вводится понятие о типах химических связей, осуществляемых в основном внешними валентными электронами. [c.27]

    Оба типа молекулярных соединений имеют тенденцию образовывать мягкие кристаллы, что указывает на относительно малую величину сил взаимодействия по сравнению с силами в ионных или атомных кристаллах. Можно ожидать, что соединения, в которых главными силами являются ван-дер-ваальсовские силы, более мягки, чем подобные же соединения, в которых преобладают дипольные силы, хотя для такого заключения имеется еще мало данных и, кроме того, мягкость и твердость являются свойствами, которые трудно сравнивать. [c.209]

    Рассмотренные ранее типы кристаллов с кристалло-химиче-ской точки зрения имели две общие особенности. Во-первых-в узлах кристаллической решетки у них располагаются атомы или ионы, размеры которых лежат в пределах 1 А, а форма дозволяет наиболее плотную упаковку. Это обеспечивает наибольшее сближение частиц, находящихся в узлах кристаллической решетки, и сильное взаимодействие между ними. В результате кристаллы первых четырех типов имеют большие энергии решеток. Во-вторых, силы, действующие между частицами, являются химическими силами их действие проявляется иа небольших расстояниях. [c.249]

    В ряде случаев ясно, что ассоциация гидрофобных белков необходима для проявления функциональной активности, особенно когда фермент состоит из несимметричных и комплементарно соответствующих друг другу субъединиц. Такой случай называют гетерологической ассоциацией (в отличие от и з о л о г и-ческой ассоциации, при которой взаимодействуют симметричные протомеры, сохраняющие эквивалентность ). Пример гетерологической ассоциации дает гексокиназа, катализирующая фосфорилирование глюкозы в присутствии Mg-ATФ (Гончарова, 1985). Гексокиназа существует в виде димера с молекулярной массой 102 кДа. Повышение pH или ионной силы вызывает диссоциацию димера, наличие обоих субстратов реакции — его ассоциацию. Субъединицы в ассоциате ориентированы несимметрично два типа кристаллов, обнаруживаемых на рентгенограммах, соответствуют двум способам ассоциации. Для одного из способов, соответствующего наличию ферментативной активности, показано, что группы, участвующие в образовании белкового домена, принадлежат различным участкам каждого протомера. Это означает, что после связывания партнеров каждая молекула в ассоциате имеет разные группы в свободном состоянии. [c.48]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    У ионных кристаллов (рис. 1.9, 6 решетка построена из чередующихся ионов с противоположными зарядами, связь между которыми осуществляется за счет сил электростатического взаимодействия — кулоновских сил. Хотя энергия связи в решетке этого типа такая же, что и у атомного [составляет (8 — 12) X X 10 кДж/моль], прочность тел с этой структурой значительно ниже, так как в них связь рассеянная , ненаправленная. Поэтому, представители кристаллов такого типа хотя и обладают большой прочностью, высокой температурой плавления, малой летучестью, низкими тепло- и электропроводностями, но хорошо растворяются в полярных растворителях. Таковы неорганические соли и большинство минералов. [c.37]


    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    В кристаллах веществ, молекулы которых состоят из атомов двух видов, может быть различное взаимное расположение атомов. Атомы двух видов могут располагаться совершенно беспорядочно по отношению друг к другу или же строго чередуясь (рис. 4.10). Для большинства таких веществ характерно именно второе расположение атомов. Например, в кристалле иодоводорода Н1 иодид-ион по размерам значительно превосходит ион водорода и кристаллическая решетка, по-видимому, должна состоять из слоев молекул, подобных указанным на рис. 4.10, в. Обмен атомами (ионами) в отдельных узлах решетки кристалла невозможен при различных размерах атомов. В кристалле фтороводорода размерный фактор делает вероятным обмен между ионами и Н+, однако этого не происходит, так как ион водорода обладает значительными валентными силами, оставшимися не использованными полностью после взаимодействия с атомом фтора, и за счет этих сил (водородная связь) каждый ион водорода окружен фторид-ионами. Поэтому в кристаллической решетке веществ типа галогенидов при абсолютном нуле проявляется максимальный порядок в расположении атомов и 5°о=0, что и подтверждается экспериментально. [c.170]

    Кристаллы со смешанными связями. Существует большая группа твердых веществ, в кристаллах которых одновременно реализуются разные по типу связи. При оценке свойств такого кристаллического тела необходимо вводить поправку на дополнительное специфическое взаимодействие. Так, в молекулярных кристаллах типа NH3, Н2О, НС1, на ряду с силами Ван-дер-Ваальса действуют и силы водородной связи, следствием чего служит относительное повышение прочности таких твердых веществ, а также температур их плавления. [c.80]

    Ионные кристаллы. Кристаллические решетки этого типа состоят из чередующихся положительно и отрицательно заряженных ионов, между которыми действуют электростатические силы взаимодействия. Ионные кристаллы образуются при взаимодействии атомов, имеющих большую разность электроотрицательности. Примерами кристаллов, в которых преобладает ионный тип связи, могут быть МаС1, СаРг, КР. В состав ионных соединений могут входить также сложные ионы, например ЫОз и 504 .  [c.77]

    Основные виды адсорбции по энергетике взаимодействия были уже рассмотрены выше (гл. 5), но адсорбент-катализатор нас интересовал лишь с точки зрения снижения энергии активации реакций, идущих в газовой среде. Здесь мы рассмотрим механизм адсорбции на границе раздела фаз. Значительная неуравновешенность частиц, образующих поверхность раздела, создает свободную энергию поверхности, которая распределена неравномерно, особенно на границе раздела газ (или жидкий раствор) —твердое тело, так как граница раздела со стороны газа или жидкой фазы в силу своей подвижности в большей степени подвержена релаксаци.ч. На границе раздела твердой фазы наряду с участками высокой активности наблюдаются участки малой активности. Так, например, наиболее активные участки металлических поверхностей — скопления вакансий, выходы краевых или винтовых дислокаций, наличие примесных атомов и ступеней, образующихся на кристаллической поверхности (см. гл. 4). Нарушения кристаллической структуры особенно характерны для тонкораздробленных кристаллов, обладающих высокой активностью. Такого типа кристаллы и используются в качестве катализатора после осаждения их на какой-нибудь инертной подложке. Образование на поверхности кристаллов центров различен активости схематически показано на рис. 117. [c.216]

    Поверхностное натяжение на фанице между дву.мя конденсированными фазами характеризует различие сил взаимодействия между молску лами (частицами) в каждой из соприкасающихся фаз Че.м больше различаются по своей природе эти силы, тем больше межфазное поверхностное натяжение. Для веществ с низки.м поверхностным натяжением (вода, органические вещества и др.) интенсивность молеку, 1ярных взаимодействий можно охарактеризовать их по. тярностью. Макроскопической мерой полярности жидкостей могут служить дипольный. ю-мент, поверхностное натяжение, внутреннее (молекулярное) давление, диэлекфическая проницаемость, теплота испарения. Поэтому при контакте веществ с близкой полярностью, повер.хностное натяжение невелико, в результате достигается хорошее смачивание. Например, твердые тела с гетерополярным типом связи (ионные кристаллы) гидрофильны. [c.98]

    Слои связаны слабыми силами Ван-дер-Ваальса. Расстояния между атомами (в A) 3,156 (In—In) 2,505 (In—Se) и 4,168 (Se—Se). При этом расстояние In—Se меньше суммы атомных (2,785 A) или ионных (2,855 A) радиусов элементов и близко сумме тетраэдрических ковалентных радиусов (2,306 A). Это указывает на сходство взаимодействия индия и селена в InSe и атомов в структуре типа структуры GaS, обладающей явно выраженной тетраэдрической координацией [65, 67]. Из-за слоистости структуры и слабых связей слоев кристаллы InSe необычайно легко расщепляются по плоскости спайности на очень тонкие слои, что также может указывать на наличие значительны доли ионной связи в соединениях этого типа. Кристаллы InSe обладают сильной анизотропией свойств. [c.105]

    Закл/счение. Большое разнообразие в рассматриваемых структурах углерода порождается значительной подвижностью слоев атомов углерода, что, в свою очередь, обусловлено малыми силами взаимодействия между слоями. Пинс-кер [45, 46], исследуя слоистые кристаллы, отметил, что подобный тип полиморфизма присущ не только графиту, но и вообще характерен для слоистых структур. [c.26]

    Кристаллы типа ЗЬгЗз построены из двойных лент, параллельных кристаллографическому направлению [001]. Двойные ленты в ЗЬгЗз связаны силами взаимодействия ЗЬ—8 на расстояниях 3,33 А (8Ьц—8п) и 3,60 А (8Ь —8ш), а сумма ван-дер-ваальсовых радиусов 8Ь и 5 4,05 А. [c.159]

    При взаимодействии экситонного типа наибольшую роль обычно играет член, соответствующий диполь-дипольному взаимодействию т. е. взаимодействие происходит между переходным дипольным моментом возбужденной молекулы и дипольным моментом соседней невозбужденной молекулы. Однако иногда значительной величины могут достигать и члены, соответствующие высшим мультиполям и электронно-обменному (перекрывание орбиталей) взаимодействию. Таким образом, обычно взаимодействие имеет тот же характер, что и механизм дальнодействия по Фёрстеру. Различие между ними заключается главным образом в силе взаимодействия. Поскольку энергия взаимодействия изменяется пропорционально 1/г , скорость переноса энергии убывает пропорционально 1/г . Таким образом, перенос на расстояние 5 А происходит в 10 раз быстрее, чем на 50 А. Перенос на большое расстояние имеет константу скорости примерно 10 сек и обусловливает сенсибилизированную флуоресценцию в таких разбавленных системах, как твердые стекла, в которых молекулы отделены друг от друга на 50—100 А. В кристаллах расстояние между молекулами равно примерно 5 А, и константа скорости переноса энергии составляет 10 сек -. Перенос происходит так быстро, что он связывает вместе многие молекулы за время, сравнимое с временем, необходимым на единичный акт поглощения, и приводит к непосредственно наблюдаемому расщеплению уровней энергии. Таким образом, энергия возбуждения быстро распространяется по кристаллу до тех пор, пока не попадает в ловушку молекулы примеси с более низко расположенными уровнями энергии или на какой-нибудь дефект кристаллической решетки [32]. [c.80]

    В принципе возможны два типа распределения с.э. в кристаллической решетке — равновероятное и неравновероятное [20]. В первом случае вероятность р найти данный с.э. в каком-либо из узлов или междоузлий кристаллической решетки одинакова для всех позиций данного вида и равна р, где р — доля узлов или междоузлий данного вида, занятая данным с.э. Этот тип распределения может реализоваться лишь в том случае, если отсутствуют силы взаимодействия между с.э. Распределение с.э. в решетке носит статистический характер, свойственный обычно неупорядоченным твердым растворам, например, неупорядоченным сплавам. В результате статистических флуктуаций в кристалле нерегулярные с.э. образуют комплексы парные, тройные и более сложные группы из одинаковых или разнородных ионов. Рассмотрим случай равновероятного распределения для обра- [c.286]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

    Наиболее сильное взаимодействие между частицами проявляется в кристаллическом состоянии вещества. Сила этого взаимодействия такова, что частицы образуют определенную пространственную структуру —/срисгалл, в котором они закономерно расположены на фиксированном расстоянии друг от друга. Кристалл ограничен плоскими гранями, которые пересекаются по прямым линиям — ребрам. Углы между гранями обусловлены внутренним строением кристалла и зависят от типа химической связи между частицами, от ее энергии, углов и числа связей между частицами. Существование кристаллов является следствием исключительно высокого порядка в расположении частиц, составляющих кристалл. [c.158]

    Пользуясь справочной и у 1ебной литературой, укажите, какой тип кристаллической peнJeтки отвечает твердым дигалогенам. За счет каких сил межмолекулярного взаимодействия молекулы галогенов удерживаются в кристалле Почему температура плавления иода значительно вьшле, чем у твердого фтора  [c.107]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, N3" и N6, К- и Аг и т. д.). В от личие от ковалентной иогаая связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами пе зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной сэязи. Следствием этой особенности ионной связи является ассоциация всех ионов с образованием ионного кристалла, в котором каждый ион окружен ионами противоположного знака. Число ионов противоположного знака, удерживающихся данным ионом на ближайшем расстоянии, получило название координационного числа данного иона. Ионы могут удерживать также и нейтральные молекулы. При большом размере катиона и малом радиусе аниона (соотношение кат "аи > 0 3) вокруг катиона (аниона) координирует 8 анионов (катионов). В результате образуется кристалл так называемой кубической структуры — 8 ионов одного знака располагаются в вершинах куба, в центре которого находится ион противоположного знака (тип СзС1 рис. 14). [c.82]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    В жидкостях в отличие от газов доминируют те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют ван-дер-ваальсовы силы. Те же силы вызывают взаимное притяжение молекул неполярных жидкостей. Молекулы воды, кислот жирного ряда и спиртов взаимодействуют друг с другом посредством водородных связей, возникновение которых связано с наличием в их составе гидроксильных групп ОН. В расплавах солей действуют электростатические силы притяжения, в металлах — силы металлической связи. [c.10]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]


Смотреть страницы где упоминается термин Типы кристаллов и силы взаимодействия: [c.48]    [c.35]    [c.53]    [c.490]    [c.14]    [c.14]    [c.322]    [c.83]    [c.186]    [c.48]    [c.99]    [c.118]    [c.127]    [c.79]    [c.317]   
Смотреть главы в:

Колебательные спектры и симметрия кристаллов -> Типы кристаллов и силы взаимодействия




ПОИСК







© 2025 chem21.info Реклама на сайте