Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление насыщенных паров веществ при различных температурах

Рис. 73. Зависимость давления насыщен- Рис. 74. Повыщение температуры ки-ного пара над растворителем и над. рас- пения разбавленных растворов творами нелетучего растворенного вещества различных концентраций от температуры Рис. 73. <a href="/info/48607">Зависимость давления насыщен</a>- Рис. 74. Повыщение температуры ки-ного пара над растворителем и над. рас- пения <a href="/info/6269">разбавленных растворов</a> творами <a href="/info/1446452">нелетучего растворенного вещества</a> <a href="/info/121789">различных концентраций</a> от температуры

    ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ ВЕЩЕСТВ ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ [c.87]

    Возможность построения графиков типа диаграммы Кокса для различных родственных групп углеводородов была установлена экспериментально. Совместное использование таких диаграмм и эмпирического уравнения Антуана, записанного для углеводорода как эталонного вещества, позволяет получить аналитическое выражение, связывающее температуры кипения ts компонентов непрерывной смеси по кривой разгонки ИТК с соответствующими значениями давлений Р их насыщенных паров при рабочей температуре процесса. [c.110]

    Помещенные в табл. 3—6 данные о давлении насыщенных паров при различных температурах получены экспериментально. При отсутствии экспериментальных данных давление паров различных веществ можно вычислить по формулам  [c.24]

    Физические методы разделения углеводородных газовых смесей основаны на различии свойств разделяемых компонентов (различные пар циальные давления насыщенного пара при одинаковых температурах различные величины скрытой теплоты испарения, констант критиче ского состояния, неодинаковая летучесть или фугитивность и др.) а также на селективности различных сорбентов по отношению к разделяе мым веществам. Физические константы газов приведены в I томе книги (стр. 288, табл. 19). [c.304]

    Это давление, развиваемое парами, находящимися над жидкостью в условиях равновесия при определенной температуре. Давление насыщенных паров индивидуальных химических веществ зависит только от температуры. Для нефти и нефтяных фракций оно зависит не только от температуры, но и от состава паровой и жидкой фаз и их соотношения. Для узких фракций нефти можно с известной степенью приближения считать р = Г(Т). На этом базируются различные формулы (Антуана, Кокса, Вильсона, Киреева, Трегубова и др.), из которых чаще других используется формула Ашворта  [c.81]

    Если имеется не чистая жидкость, а раствор, причем различные содержащиеся в нем вещества (растворенные вещества или растворитель) могут испаряться, то в условиях равновесия при ( данной температуре каждому летучему компоненту раствора отвечает определенное давление его паров. Это давление называют парциальным давлением насыщенного пара данного компонента. Парциальное давление насыщенного пара зависит уже не только от температуры, но и от состава раствора (от концентрации в нем данного компонента и от вида и концентрации других компонентов). Но давление насыщенного пара каждого данного раствора, как и чистого вещества, зависит только от температуры и при постоянной температуре является величиной постоянной, не зависящей от количества раствора или пара. Парциальное давле- [c.242]


    Задача 3.6. По заданному преподавателем методу расчета для базового органического вещества с различными функциональными группами выполнить расчет давления насыщенных паров при заданной температуре кипения и сопоставить результаты расчетов между собой и экспериментальными данными. [c.71]

    Графические методы определения давления паров по сравнению е расчетными методами обычно проще и требуют меньшей затраты времени. По правилу Дюринга кривую давления паров получают следующим образом. Температуры кипения данного вещества А и эталона Б, соответствующие одному и тому же давлению, представляют в прямоугольной системе координат в виде точки, абсцисса которой равна температуре кипения вещества Б, а ордината — температуре кипения А. Точки, нанесенные для различных давлений, лежат все без исключения на одной и той же прямой. На рис. 38 показана диаграмма Дюринга, характеризующая давление паров уксусной кислоты она построена с использованием воды в качестве эталонного вещества. Давление насыщенных паров уксусной кислоты для какой-либо определен- [c.63]

    Для индивидуальных жидких Т веществ давление (упругость) насыщенного пара, т. е. пара, находящегося в равновесии с жидкостью, является физической константой, зависящей только от молекулярных свойств данной жидкости и от температуры. Для жидкостей неоднородного состава, таких, как бензин, давление насыщенных паров при данной температуре является сложной функцией их состава и зависит от объема пространства, в котором находится паровая фаза. Это вызвано тем, что при разных объемах испаряется и переходит в паровую фазу разное количество компонентов с наибольшим давлением пара следовательно, состав жидкой фазы будет также различным. Отсюда для каждого соотношения жидкой и паровой фаз равновесие паров устанавливают с жидкостью разного состава, а это в свою очередь влияет на величину давления насыщенного пара. Поэтому, чтобы получить сравнимые результаты определений, необходимо поддерживать соотношение паровой и жидкой фаз постоянным, т. е. проводить определение в стандартной аппаратуре. [c.35]

    Свойства газов и жидкостей, а также переходы между этими состояниями вещества, позволяют объяснить климатические особенности горных местностей. Максимальное количество водяных паров, которое может содержаться в воздухе при заданной температуре, называется давлением насыщенных паров (данные о давлении насыщенных паров воды при различной температуре воздуха приведены в приложении VH). Когда воздух поднимается вверх на гору, его общее давление уменьшается, он расширяется, в результате чего воздух охлаждается. При подъеме на каждые 100 м температура воздуха снижается приблизительно на 1°С. В конце концов воздух охлаждается настолько, что давление содержащихся в нем водяных паров становится равным давлению насыщенного пара при достигнутой температуре. Эта температура называется точкой росы, и при ее достижении происходит выпадение осадков. Таким образом, выпадение дождя или снега происходит с наветренной стороны горы, по которой поднимается воздух. [c.197]

    Для автоматизированного расчета таких процессов необходимо однотипное уравнение, обеспечивающее определение давления насыщенных паров /ДНЦ/ различных классов веществ и позволяющее проводить надежную экстраполяцию в область низких температур. [c.52]

    В заключение рассмотрим еще один метод, специально предназначенный для расчета давления насыщенных паров веществ гомологического ряда. Согласно этому методу по оси ординат откладывают значения температуры кипения в линейном масштабе, а по оси абсцисс — число углеродных атомов в молекулах компонентов в логарифмическом масштабе затем на диаграмме строят изобары для различных давлений, как это показано на рис. 42 применительно к парафинам Сю—Сао с прямой углеродной цепью для остаточных давлений [c.69]

    Для индивидуальных жидких веществ давление насыщенного пара, т. е. пара, находящегося в равновесии с жидкостью, — физическая константа, зависящая только от молекулярных свойств данной жидкости и от температуры. Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Это объясняется тем, что при разных объемах будет испаряться, т. е. переходить в паровую фазу, разное количество компонентов с наибольшим давлением пара и, следовательно, состав жидкой фазы будет также различным. Таким образом, для [c.75]


    Соотношения между давлением насыщенного пара и температурой для растворителя и растворов различной концентрации представлены на рис. VI. I. Кривая ОА выражает зависимость от температуры давления насыщенного пара над чистым растворителем, кривые ВС и ОЕ — давления пара растворителя нзд растворами нелетучего вещества различной концентрации. Чем выше концентрация растворенного вещества, тем ниже давление пара над раствором при каждой температуре, т. е. тем ниже расположена соответствующая кривая. [c.76]

    Печь Кинга. Предложена и описана А. Кингом [4] в 1908 г. Печь представляет собой нагреваемую до 3000° С графитовую трубку, располагаемую в вакуумированной камере. Внутрь печи помещается исследуемый элемент. Испаряющееся вещество через открытые отверстия трубки перегоняется к холодным частям камеры. Равновесные концентрации элементов в столбе пара поддерживаются постоянными за счет непрерывного испарения новых порций вещества. Поскольку скорость испарения определяется давлением насыщенных паров элемента при температуре печи и практически не зависит от количества элемента в пробе, состав паров не соответствует составу пробы. При испарении нескольких элементов с различной летучестью имеет место четко выраженное фракционирование. [c.178]

    Гетерогенными химическими равновесиями называются равновесные состояния для реакций между веществами, находящимися в различных фазах. Если при ЭТОМ твердые или жидкие вещества (так называемые конденсированные фазы) являются чистыми индивидуальными веществами, то давление насыщенного пара этих веществ можно считать зависящим только от температуры. ". [c.126]

    В литературе различными авторами оценивались возможные отклонения в значениях параметров испарения, вызванные разными причинами, в том числе и конструктивными особенностями камеры [1, 2, 12, 13]. Проведенная нами экспериментальная проверка погрешностей при измерениях давлений насыщенных паров веществ при высоких температурах не дает точного совпадения с многими результатами, опубликованными в литературе. [c.297]

    Допустим, что вещество, находящееся в замкнутом пространстве, объем которого поддерживается постоянным, образует две фазы, находящиеся в равновесии между собой. Такие сочетания, как жидкость и насыщенный пар или кристаллы и насыщенный пар, могут существовать при различных температурах. Жидкость и кристаллы находятся в равновесии тоже при различных температурах. Но всегда нужно определенное сочетание значений Т" и р для равновесного превращения. Если нагревать подобные системы, то давление внутри постоянного объема начинает повышаться. При наличии пара это объясняется тем, что давление насыщенных паров при повышении температуры увеличивается. В случае полностью конденсированных систем жидкость — жидкость, жидкость — кристаллы, кристаллы — кристаллы повышение давления является следствием стремления одной из фаз перейти в другую и тем самым увеличить объем системы. [c.72]

    Подобие критических явлений в объектах разной природы позволяет рассматривать их с единой точки зрения. В 19 веке наиболее полно были исследованы переходы пар - жидкость и газ - жидкость. В работах Ван-дер-Ваальса, Клаузиуса, Дитеричи было получено приведенное уравнение состояния и сформулирован закон соответственных состояний [12] для приведенных величин. Приведенные значения получают делением количественных значений свойств на критические свойства. Согласно закону соответственных состояний у сходных по природе веществ приведенное давление насыщенного пара является универсальной функцией температуры, а энтропия парообразования является универсальной функцией приведенной температуры (уточненное правило Трутона о равенстве отношений теплот парообразования различных жидкостей к их температурам кипения). Питцер и Гутенгейм развили теорию соответственных состояний для жидкостей. Для всех объектов существуют определенные физические величины, температурная зависимость которых вблизи точек переходов различной природы почти одинакова. Отсюда следует предположение об изоморфно-сти критических явлений термодинамические функции вблизи критических точек одинаковым образом зависят от температуры и параметра порядка при соответствующем выборе. термодинамических переменных. [c.21]

    При наличии ряда (семи) значений давления насыщенных паров вещества при различных температурах с постоянным шагом по температуре 3 уравнение (4.1) можно привести к виду [c.73]

    Существование таких семейств изомеров, обладающих практически одинаковыми АЯ° (а также одинаковыми АЯ и АЯ°), как показали В. М. Татевский и С. С. Яровой облегчает расчет указанных величин для различных изомеров. Так, для декана имеется 75 изомеров, но число семейств, различающихся по набору разных видов С — С-связей, равно всего 50, а для додекана, имеющего 355 изомеров, число семейств равно 137. В табл. VI, 21 приведены для различных ундеканов рассчитанные таким путем значения АЯ , АЯс и AGf для 298,15 К, причем параметры реакций образования отнесены к газообразному состоянию алкана, а теплоты сгорания даны для жидкого и для газообразного состояний. Описанный метод был использован В. М. Татевским (частично совместно с С. С. Яровым) для построения аналогичных систем расчета и других свойств алканов теплоты испарения при разных температурах, мольного объема, рефракции, логарифма давления насыщенного пара, констант равновесия в реакциях образования из простых веществ, магнитной восприимчивости. Было описано также обобщение метода для соединений других классов и предложено квантово-механическое обоснование его [c.232]

    Фракционный состав. Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя. [c.18]

    К веществам средней летучести применяют динамический метод, основанный на том, что давление насыщенного пара при температуре кипения равно внешнему давлению. Зависимость между р и I получают, доводя жидкость до кипения при различных внешних давлениях и определяя температуры кипения. В этом случае независимой переменной, устанавливаемой по желанию эксперимента- [c.64]

    Выводы о содержании частиц в растворе, основанные на расчетах свойств растворенных веществ из данных по давлению насыщенного пара над раствором, повышению температуры кипения и понижению температуры замерзания раствора, предполагают, что раствор идеален. Приложение теории идеальных растворов к реальным приводит к различного рода отклонениям, которые в конечном счете сказываются на значении расчетных констант равновесия, не являющихся действительными величинами. Однако отклонения от идеального поведения не могут объяснить столь сильного кажущегося уменьшения содержания электролита в растворе. [c.286]

    В зависимости от типа исследуемого вещества схема статического метода имеет различные варианты. Например, для определения давления насыщенного пара щелочных металлов [1] применялась схема, изображенная на рис, 9.25. Исследуемое вещество подается в предварительно эвакуированный и-образный сосуд 3 из дозатора 4. в сосуде / создается давление инертного газа, заведомо превышающее давление насыщения вещества при температуре опыта. [c.447]

    Вследствие различной реакционной способности л-ксилола и метилтолуилата для осуществления оптимальных условий протекания реакции окисления требуются разные температуры. Практически при совместном окислении этих продуктов процесс проводят в условиях, благоприятных для трудно окисляемого вещества. Давление поддерживают в пределах (6,06—15,15) 10 Па, т. е. значительно выше давления насыщенных паров л-ксилола при 140—160 °С, что исключает унос его из реакционной зоны с отработанным газом. [c.148]

    Линия a k соответствует двухфазному равновесию между жидкостью и паром. Как уже указывалось, оно является моновариант-ным, т. е. характеризуется одной степенью свободы. Это означает, что можно произвольно изменять только один из параметров состояния— давление или тем пературу, тогда как другой определяется из диаграммы. Из диаграммы также следует, что линия a k характеризует зависимость давления насыщенного пара данного вещества от температуры и ее же можно трактовать как зависимость температуры кипения вещества от внешнего давления. В этой связи кривая a k получила название кривой кипения или кривой испарения. Со стороны повышенных температур и давлений эта кривая заканчивается в критической точке с координатами Ть и Ри, характеризующей такое состояние вещества, в котором исчезает различие между жидкостью и паром. Это состояние нонвариантное, так как к обычным условиям равновесия добавляется условие идентичности фаз, которое уменьшает число степеней свободы на единицу. Нонвариантными для данного вещества будут также критическое давление и критический объем. Обычно при значениях параметров, превышающих критические, принято говорить о состоянии надкритическом, однофазном, избегая приписывать этому состоянию наименование жидкость или пар. Точки, ограничивающей кривую a k снизу, со стороны пониженных температур и давлений, не существует. Жидкость может пребывать в переохлажденном состоянии ниже точки плавления а. Линия a k i, являющаяся участком кривой a k, пролонгированным за тройную точку в область твердого состояния S, изображает зависимость давления насыщенного пара от температуры над переохлажденной жидкостью. Переохлажденная жидкость менее устойчива, чем твердая фаза при той же температуре. Поэтому давление паров над переохлажденной жидкостью выше, чем над твердой фазой при той же температуре (кривая a k i лежит выше кривой а а ]). Однако такой критерий различной устойчивости фаз применим только к однокомпонентным системам. У двух- и многокомпонентных систем эти отношения сложнее. [c.265]

    Разделение смесей с помощью ректификации, как уже говорилось в гл. I, зависит от разницы в летучестях веществ, которые должны быть разделены. Вообще говоря, летучесть соединения (которая в идеальном растворе, например в растворе, содержащем члены гомологического ряда, равна давлению насыщенного пара чистого вещества) обратно пропорциональна его молекулярному весу и температуре кипения. По мере того, как молекулярный вес членов гомологического ряда возрастает, число возможных соединений, имеющих одинаковую летучесть, увеличивается экспоненциально, и полное разделение жидкой смеси с помощью ректификации становится все более трудным, если не невозможным. В дополнение к этому дело осложняется тем, что одну и ту же или близкие летучести или температуры кипения могут иметь соединения различных классов. Например, углеводороды, содержащие шесть атомов углерода, -бензол и циклогексан, кипят соответственно при 80,1 и 80,8° [1]. По мере того, как разделение с помощью разгонки становится все более трудным, эффективность и общая разделительная способность лабораторных ректифицирующих колонок должна возрастать. Между тем лабораторные колонки эффективностью в 100 теоретических тарелок встречаются не так часто [2—4], а колонки, эффективность которых равна нескольким сотням теоретических тарелок, строятся лишь для особых целей [5]. Но даже при работе с колонками с]такой большой разделительной способностью для того, чтобы можно было достигнуть какого-либо разделения, требуется различие летучестей разделяемых веществ. [c.269]

    Существует ошибочное мнение, будто свойство па ров опускаться вниз определяется только молекулярной массой вещества Однако пары ртути (Л1 = 200,59) даже в неподвижном воздухе не опускаются вниз, а рассеиваются конвективными воздушными потоками (см гл 14) Следует иметь в виду, что в воздух попадает не изолированный пар вещества, а паровоз душная смесь Способность ее опускаться вниз или рассеиваться определяется степенью утяжеления воздуха парами которая в свою очередь представляет собой функцию давления насыщенного пара данного вещества при данной температуре и его молекулярной массы В табл 4 приведены сравнительные данные о степени утяжеления воздуха насыщенными парами различных жидкостей [c.160]

    Для неозона Д, неозона А, параоксинеозона, диафена ФП, бисалкофена БП, алкофена БП имеются данные [72] по давлению пх паров при различных температурах над 3%-ными растворами этих веществ в ряде каучуков (СКИ, СКД, СКМС-ЗОАРК, СКЭПТ, СКН-18, СКН-26 и СКН-40). Давлеппе насыщенного пара зависит не только от природы антиоксиданта, но и от структуры каучука. Практически для всех изученных антиоксидантов давление насыщенного пара над их растворами в бутадиен-нитрильных каучуках в 2—10 раз ниже, чем над растворами в каучуках, не имеющих полярных заместителей. [c.644]

    Для разделения веществ, принадлежащих к различным гомологическим рядам, следует использовать такую неподвижную фазу, которая вызывает существенный сдвиг линий lg FOTH— re (или g FOTH — КиП lg УОТН — lg Р°)> характеризующих один ряд, относительно аналогичной линии, характеризующей другой ряд. Этот сдвиг и является основным показателем селективности неподвижной фазы. Количественный мерой селективности неподвижной фазы здесь может быть предложенный Байером [49] параметр 0В, равный отношению приведенных удерживаемых объемов двух веществ (реальных или гипотетических), принадлежащих к разделяемым гомологическим рядам и имеющих одинаковые температуры кипения (или, точнее, одинаковое давление насыщенного пара при рабочей температуре) i [c.83]

    Диаграммы такого типа часто применяются для представления зависимости давления насыщенного пара различных жидкостей от температуры (рис. 1У-12). Вместо давления насыщенного пара удобнее использовать рп, что значительно расширяет пределы измерения на диаграмме. На оси абсцисс откладываются значения g рп стандартного вещества, а так как для него известна зависимость от t° , на ось сразу наносятся значения температур, соответствующие (такая шкала не будет равномерной). На оси ординат откладываются значения g р сравниваемой жидкости. Выгоднее пользоваться логарифмической шкалой, поскольку при этом можно непосредственно определять значения давлений (не нужен пересчет значений р с lgPn)  [c.88]

    Рассмотрим р—Г-диаграмму состояния воды (растворитель) и растворов, полученных добавлением в воду различных количеств растворенного вещества (рис. 66). Кривая ОА представляет собой зависимость давления насыщенного пара чистой воды над водой от температуры, а кривые ВС, DE и т. д. — давления насыщенного пара воды над растворами с различными концентрациями растворенного вещества. Они должны расположиться, очевидно, ниже кривой ОА, так как раствор, в соответствии с законом Рауля, обладает меньщим давлением насыщенного пара. Кривая ОН выражает температурную зависимость давления насыщенного пара воды над льдом. Кристаллы растворителя будут находиться в равновесии с раствором только тогда, когда давление насыщенного пара растворителя над кристаллами и над раствором одинаково, т. е. когда кривая ОН пересечется с кривой давления насыщенного пара над раствором данной концентрации. Температура, отвечающая этому условию, должна быть более низкой, чем температура замерзания чистого растворителя. Рассматривая бесконечно разбавленные растворы, считают отвечающие им бесконечно малые участки ОВ, ВВ, 0D, DD OF, FF кривых НО, ВС, DE и FG прямолинейными. Из подобия треугольников ВОВ, DOD, FOF следует, что понижение температуры замерзания пропорционально понижению давления пара и, следовательно, понижение температуры замерзания пропорционально концентрации растворенного вещества в растворе  [c.175]

    Справочник содержит выборочные значения различных термодинамических свойств металлов и сплавов при 298,15 К п высоких температурах и параметры фазовых переходов, в частности параметры процесса испарения (р ДС , ДЯ -) при разных температурах, В книге Ан. Н. Несмеянова сведены результаты определения давления насыщенного пара простых веществ различными методами, а также данные о молекулярнол составе пара. [c.78]

    Существуют два принципиально различающихся метода определения давления насыщенных паров чистого вещества а) динамический метод — определение температуры кипения при различных давлениях б) статический метод — определение давления паров при различных температурах. Методика проведения измерения подробно описана Киницем в сборнике Губен—Вейля [30]. Милаццо [31] приводит сведения о методах и приборах, применяемых дл-я измерения [c.54]

    Хотя уравнение Антуана и позволяет проводить экстраполяцию, однако при очень далекой экстраполяции точность рассчитанных значений Р п I снижается. Поэтому весь интервал кривой давления пара жидкого углеводорода от тройной точки до критической температуры разбивался ири наличии соответствующих точных данных на три (для углеводородов Сх — С4) и иа два (для Сд и выше) участка. В первом случае участок от тройной точки до нормальной температуры кипения описывался одним уравнением, а остальная часть до критической темиературы прп помощи двух уравнений. Во втором случае каждый из участков в отдельности от 0,35 (или от тройной точки, если последняя расположена при более высокой температуре) до 0,80 (для к-алкапов до 0,85) приве- денной темиературы и от 0,80 (или 0,85) ириведеино температуры до критической точки описывался своим уравнением. Для каждого из участков коэффициенты А, В п С подбирались таким образом, чтобы кривая давления пара для всего интервала, полученная из отдельных кривых, построенных указанным выше способом, имела по возмозкностн плавный ход. Для кристаллического состояния (ири наличии экспериментальных данных) подбирались свои коэффициенты уравнения Антуана, но с таким расчетом, чтобы точки пересечения кривой давления насыщенного пара кристаллического вещества с кривой давления насыщенного пара жидкости совпадали в тройной точке. Уравнение Антуана можно записать в таком виде, что ио нему молено вычислять температуру кипения углеводородов при различных давлениях  [c.163]

    В области, ограниченной линией ОЕ A.B,F. и осью координат v, индивидуальное вещество не может быть в твердом компактном состоянии и диспергируется (распадается) на ча тицы различной степени агрегированности от твердых ультрадисперсных частиц и кластеров (англ. luster - гроздь, скопление, рой) до отдельных молекул и атомов, т.е. паров вещества. С увеличением v степень агрегации уменьшается, а доля газовой (паровой) части смеси G. растет. Вещества, выбрасываемые в атмосферу с параметрами, соответствующими области S.+G., отнесены к третьему классу стандартной классификации (табл.1), т.е. к аэрозолям, содержащим твердые взвешенные вещества. Линия B.F. отвечает состоянию сухого насыщенного пара вещества, а область правее нее - состоянию перегретого пара (газа) G.. На диаграмме р-Т область десоли-дации S.+G. проецируется в линию ОЕ.. На диаграммах p-v и р-Т область твердого состояния индивидуального вещества S. располагается между линиями сублимации (возгонки) ОЕ., плавления E.D. и осью координат р, а на диаграмме T-v - она проецируется в линию ОЕ.. Кривая сублимации ОЕ одновременно представляет и значения давления пара над твердым веществом в условиях равновесия при соответствующих температурах (изотермы вертикальны). Линия равновесного состояния трех фаз Е.А В. на диаграммах p-v и T-v отображается в р-Т - координатах тройной точкой А.(Е В,). [c.17]

    Действие галогенного течеискателя основано на резком увеличении эмиссии положительных ионов щелочных металлов в чувствительном элементе при появлении в пробном газе галогенов, т. е. веществ, в состав которых входят элементы группы галоидов фтор, хлор, бром, иод. Обычно в качестве пробных веществ используют пары соединений, содержащих фтор—фреоны (хладокы) различных марок 12, 13, 22 или 133. Это легколетучие жидкости, давление их насыщенного пара при комнатной температуре (6- 30) X ХЮ Па. Вещества эти не имеют запаха, безвредны, неагрессивны, используются в качестве хладоагентов в бытовых холодильниках. [c.89]


Смотреть страницы где упоминается термин Давление насыщенных паров веществ при различных температурах: [c.114]    [c.114]    [c.19]    [c.54]    [c.113]    [c.162]    [c.41]   
Смотреть главы в:

Основы расчета вакуумной сублимационной аппаратуры -> Давление насыщенных паров веществ при различных температурах




ПОИСК





Смотрите так же термины и статьи:

Давление насыщенного пара

Давление насыщенных паров

Температура на давление насыщенного пара

Температура насыщенного пара



© 2025 chem21.info Реклама на сайте