Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и свойства поливинилхлорида

    Растворимость и другие свойства перхлорвинила зависят от молекулярной массы и степени хлорирования Нарушение регулярности структуры макромолекул поливинилхлорида при введении дополнительных атомов хлора приводит к ослаблению сил межмолекулярного взаимодействия, что способствует увеличению растворимости хлорированного полимера Так, хлорированный поливинилхлорид легко растворяется в сложных эфирах и кетонах [c.158]


    Полезно сопоставить свойства поливинилхлорида и полиэтилена в связи с различиями в их структуре. В поливинилхлориде имеется более сильное межмолекулярное взаимодействие, обусловленное присутствием в цепи атомов хлора, что приводит к получению более твердого и жесткого материала с гораздо более высокой температурой стеклования. Кроме того, из-за влияния атомов хлора поливинилхлорид значительно полярнее полиэтилена и обладает более высокой диэлектрической проницаемостью. Рентгеноструктурные данные показывают, что степень кристалличности поливинилхлорида очень мала (5%) и что промышленный полимер имеет почти целиком атактическую структуру с лишь небольшими включениями коротких синдиотактических сегментов. Опытами по восстановлению промышленного поливинилхлорида было также установлено наличие у него значительной, хотя и переменной по величине, степени разветвленности. [c.259]

    Значительная часть книги посвяш,ена структуре и свойствам поливинилхлорида, его химическим превращениям. Описаны методы синтеза и свойства привитых и блоксополимеров на основе поливинилхлорида. [c.2]

    СВЯЗЬ СВОЙСТВ ПОЛИВИНИЛХЛОРИДА со СТРУКТУРОЙ [c.218]

    Улучшение механических свойств аморфных полимеров также связано с созданием оптимальной структуры. Например, структура получаемого поливинилхлорида имеет ярко выраженный глобулярный характер. Полимер с такой структурой не может обеспечить высокую механическую прочность, необходимую для конструкционных изделий. Создавая определенные условия переработки поливинилхлорида (температура, напряжения сдвига, пластификация), можно осуществить преобразование глобулярной структуры в фибриллярную. При этом механическая прочность поливинилхлорида возрастает. [c.7]

    Введение в состав звеньев макромолекулярных цепей боковых групп с большим объемом также сказывается на структуре и свойствах полимера. Так, ацетатная группа в поливинилацетате гораздо больше по своему объему, чем атом хлора в поливинилхлориде. Большой объем ацетатной группы препятствует сближению цепей в поливинилацетате и его структура получается рыхлой. Результатом этого является отличие физикомеханических свойств поливинилацетата от свойств поливинилхлорида температура стеклования поливинилацетата равна 28° С, а поливинилхлорида — 85° С прочность поливинилацетата пе выше 3—3,5 кгс мм"-, а способность к высокоэластическим деформациям очень велика выше 40° С он способен удлиняться на 700—800% [29]. [c.57]

    Структура и свойства поливинилхлорида [c.220]


    Исследование влияния проницаемости свободных полимерных пленок из поливинилхлорида, полиэтилена и фторопласта на скорость окисления металла при отсутствии адгезионной связи покрытия с подложкой показало, что скорость окисления металла во влажной неагрессивной среде не зави сит от природы защитной полимерной пленки, так как контролирующим фактором процесса окисления металла является не диффузия влаги через пленку, а торможение анодного процесса ионизации металла. Во влажной среде, содержащей химически агрессивные вещества, проникающие через пленку и активирующие анодный процесс, защитные свойства пленок определяются их влагопроницаемостью, т. е. в этом случае защитные свойства покрытий зависят от химической природы и структуры полимерного материала. Из исследованных материалов наиболее плотную упаковку имеет фторопласт, а наименее плотную — поливинилхлорид, повышенная влагопроницаемость которого обусловлена его линейной структурой и присутствием в нем пластификатора. В результате проведенных исследований была предложена количественная оценка защитных свойств полимерных пленок величиной 0., показывающей, во сколько раз скорость окисления металла под защитным покрытием меньше скорости окисления незащищенного металла в тех же условиях. [c.28]

    Всевозрастающее значение приобретает химия полимеров. Полимеры— химические соединения с большой молекулярной массой от нескольких тысяч до многих миллионов единиц. Большинство таких макромолекул состоят из повторяющихся группировок, звеньев, например целлюлоза, поливинилхлорид, поликапроамид, а также полимеры живых организмов белки, нуклеиновые кислоты. Если выделить вещества с молекулами из таких отдельных группировок или фрагментов, полностью сохранив их строение, то будут утеряны почти все полезные свойства полимеров. Именно способность макромолекул приобретать в процессе увеличения, рск та полимерной цепи или объемной пространственной структуры особые качества выделила науку о полимерах в самостоятельную ветвь органической химии. Полимеры, пожалуй, наиболее многочисленный класс химических соединений, исчисляемый миллионами. Это и природные высокомолекулярные соединения и синтетические каучуки, химические волокна, лаки, краски, иониты, меи и, конечно, пластмассы. [c.32]

    При совместной пластикации СКН и ПВХ при повышенных температурах образуются привитые сополимеры ПВХ с СКН [95], которые по ударной вязкости превосходят в 2—4 раза винипласты из поливинилхлорида. При изучении электрических свойств изделий, изготовленных на основе продуктов совместной пластикации ПВХ с СКН, наблюдается рост электропроводности, что указывает на образование ионных структур привитых сополимеров. На возникновение химических связей между полимерами указывают результаты исследования характеристической вязкости механической смеси ПВХ с СКН-18, СКН-26 и СКН-40 и соответствующих продуктов пластикации. [c.179]

    Коэффициент диффузии воды на ранних стадиях адсорбции для анализируемого пластика при заданной температуре просто определяется графически из линейной зависимости M от 2. С помощью этого уравнения была проведена оценка коэффициентов диффузии для полиметилметакрилата (ПММА), поливинилхлорида (ПВХ) и полистирола (ПС). Для этих пластмасс были получены воспроизводимые данные в ходе проведения процессов сорбции — десорбции в течение нескольких последовательных циклов при этом изменений в структуре полимеров практически не наблюдалось. Следует, однако, отметить, что происходит необратимое изменение свойств полимеров, способных к образованию водородных связей. [c.22]

    Основные научные работы посвящены исследованию растворов электролитов и полимеров. Изучал (с 1930) электропроводность растворов электролитов в полярных и неполярных растворителях показал зависимость характера кривых прово.аи мости растворов от диэлектрической проницаемости растворителя. Затем (с 1935) занялся исследованием электрических свойств полярных полимеров, в частности поливинилхлорида и пластифицированных композиций на его основе. Выявил зависимость между диэлектрической проницаемостью полимеров и их структурой. Изучал также (с 1945) растворы полиэлектролитов, характер взаимодействия простых ионов в растворе друг с другом и с молекулами растворителя. [c.533]

    В наше время часто ту или иную новую науку — кибернетику, ядерную физику или молекулярную биологию — называют наукой века . К таким наукам относится и старейшая наука химия, изучающая превращения вещества, результатом развития которой явилось создание новых соединений, открывших дорогу технической революции, таких как неизвестные ранее, но крайне нужные в наше время вещества — красители, антибиотики, каучуки, пластмассы, синтетические волокна, высококалорийное топливо и т. п. Уже давно используются такие природные высокомолекулярные соединения, как целлюлоза, крахмал, белки, кожа, шерсть, шелк, мех, каучук, обладающие многими ценными свойствами. Постепенно ученые научились придавать полимерам нужные механические и физические свойства. Изучив химическую природу полимеров и возможности ее направленного изменения, стали получать новые ценные материалы (например, вискозу) путем модификации природных полимеров. Более того, сложнейшие по структуре природные полимеры, а также и совершенно новые, которые природа не синтезирует (полиэтилен, полипропилен, полистирол, поливинилхлорид, фенолформальдегидные смолы, полисилоксаны и др.), созда- [c.4]


    При пиролизе некоторых полимеров в определенных условиях образуются структуры больших систем конденсированных ароматических колец с интересными электрическими свойствами 10, 115]. Если предварительно подвергнуть окислению пространственный сополимер стирола и дивинил-бензола, то выход продукта типа графита повышается от 6 до 47%. Большая часть кислорода выделяется при температурах ниже 700° в виде СО или СОг, при более высоких температурах конденсация продолжается с выделением водорода. Интенсивность сигнала электронного парамагнитного резонанса максимальна для полимера, нагретого до 500°, что характерно для некоторых бирадикальных конденсированных ароматических систем [115]. Степень графитизации сильно зависит от природы исходного полимера например, поливинилхлорид склонен в большей степени давать графитизирован-ный уголь, чем поливинилиденхлорид [43]. Пиролиз полиакрилонитрила в присутствии амина как катализатора протекал по следующей схеме (согласно данным инфракрасных спектров) [66]  [c.269]

    Эффективность пластификатора определяется как его строением, так и молекулярной и надмолекулярной структурой полимера. Гибкоцепные полимеры (поливинилацетат, например), как правило, пластифицируются по механизму внутрипачечной пластификации, т. е. свойства полимера изменяются пропорционально количеству пластификатора, без экстремумов [5]. Полимеры, обладающие хорошо выраженной вторичной структурой (например, поливинилхлорид), в зависимости от количества введенного пластификатора пластифицируются по межпачечному или внутрипачечному механизму. При введении небольших количеств пластификатора проявляется межпачечйый экстремальный, а при введении больших количеств внутрипачечный механизмы [6]. [c.242]

    Свойства поливинилхлорида зависят в значительной степени от температуры полимеризации, что связано с изменением структуры получающегося полимера. В ИК-спектрах это находит свое отражение в том, что отношение интенсивностей полос >боз/ бэо, Об15/ бэо и Вбза/Овдо увеличивается при понижении температуры. На основании этого сделан вывод об увеличении степени синдиотактичности в поливинилхлориде по мере снижения температуры полимеризации. Подробно рассмотрены данные ИК-спектров образцов поливинилхлорида, полученных при различных температурах, и связь значений интенсивностей полос со структурой полимера. Для выяснения некоторых особенностей ИК-спектров поливинилхлорида в указанной работе приводится ИК-спектр дейтерированного поливинилхлорида, полученного радиационной полимеризацией мочевино-хлорвинильного комплекса В этих условиях образуется стереорегулярный поливинилхлорид Сакурада и Намбуполучили комплекс, соединяя насыщенный раствор мочевины с раствором винилхлорида в метиловом спирте. Полимеризация этого комплекса была проведена при —75° С при мощности дозы 10" рентген час и времени облучения 50— 70 час. Получен высококристаллический поливинилхлорид, ограниченно растворимый в органических растворителях. Растворимая фракция полимера дает рентгенограмму, совпадающую с рентгенограммой поливинилхлорида, полученного обычной радикальной полимеризацией мономера при температурах ниже 0° С. [c.469]

    Поливинилхлорид, полученный обычным способом, атактичен и обладает невысокой степенью кристалличности. Он стеклообразен и сравнительно хрупок. Свойства поливинилхлорида могут быть улучшены путем сополимеризации его, например, с винилацетатом, в процессе которой образуется более мягкий сополимер (винилит), обладающий лучшей способностью к формованию. Поливинилхлорид можно также пластифицировать посредством смешения его с веществами, летучесть которых невелика, например с трикрезилфосфа-том и ди-н-бутилфталатом. Эти вещества при растворении в полимере нарушают его стеклообразную структуру. Пластифицированный поливинилхлорид сравнительно эластичен, и его широко применяют для изготовления электроизоляционных материалов, покрытий из пластика и т. д. [c.500]

    Но может быть получен не только полипропилен регулярной структуры. Полистирол, поливинилхлорид, поливннилацетат и некоторые другие полимеры могут быть построены по такому же принципу. Это открытие последних лет позволит ученым создать волокна и пластмассы новых замечательных свойств. [c.120]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    В стеклообразном состоянии структура тела от температуры меняется мало, поэтому, как превило, незаметно изменяются его диэлектрические свойства. На рис. 20 видно, что объемное удельное сопротивление непластифицированного поливинилхлорида практически не меняется до 80° С, т. е. во всей области, соответствующей стеклообразному состоянию (температура стеклования Тс непластифицированного поливинилхлорида (80,— 85° С). [c.67]

    Большинство полимеров относится к диэлектрикам. Однако их диэлектрические свойства лежат в широких пределах и зависят от состава и структуры макромолекул. Диэлектрические свойства в значительной степени определяются наличием, характером и концентрацией полярных групп в макромолекулах. Наличие у макромолекул галогенных, гидроксидных, карбоксидных и других полярных групп ухудшает диэлектрические свойства полимеров. Например, диэлектрическая проницаемость поливинилхлорида в [c.362]

    Исключительно большое значение в последние годы приобрела радиационно-химическая технология, изучающая и разрабатывающая методы и устройства для наиболее экономичного осуществления с помощью ионизирующих излучений физико-химических процессов с целью получения новых материалов, а также придания материалам и готовым изделиям улучшенных (или новых) эксплуатационных свойств. Наибольшего успеха радиационно-химическая технология (РХТ) достигла в связи с разработкой процессов радиационной модификации полимеров (особенно полиэтилена и поливинилхлорида). Радиационная модификация (т. е. изменение свойств под действием излучения) позволяет создать, например, в полиолефинах более жесткую структуру, повысить термостойкость, что дает возможность изготовленные из них конструкционные материалы эксплуатировать при высоких температурах вплоть до температуры термолиза. Наряду с этим улучшаются и электрофизические свойства. Облученный полиэтилен используют для изоляции высокочастотных кабелей вместо дорогого тефлона. Такая замена позволяет сэкономить до 200 руб. на 1 км кабеля. В нашей стране осуществлен процесс радиационной вулканизации изделий на основе силоксановых каучуков с помощью у-излучения. Облучая пропитанную мономером древесину низкого качества (оси.пу, березу), получают древесио-пластические компо- [c.93]

    ММР и молекулярная масса влияют а физико-механические свойства полимеров непосредственно или косвенно, определяя кристаллическую структуру, плотность, степень ориентации. Исследования зависимостей прочности при растяжении, удлинения при разрыве, прочности при изгибе полистирола, полиэтилена, полипропилена, поливинилхлорида и других по -меров показали, что прочность растет при увеличении Мш и Мп до некоторых критически значший, а затем сохраняется постоянной. Если значения Мш и М выше критических, то прочностные характеристики полимера не зависят от ММР. [c.144]

    Пластификаторы — специальные вещества, введение которых полимер обеспечивает улучшение его физих о-механических свойств. Увеличение производства полимерных материалов вызывает необходимость соответствующего робта выпуска пластификаторов. Около 80% всех пластификаторов используется в производстве эластичных сортов поливинилхлорида. В США объем производства пластификаторов с 1960 по 1969 г. увеличился в 2,3 раза. В последующие годы прирост производства пластификаторов замедлился и за период 1969—74 гг. составил около 30%, а в 1975 г. в связи с экономическим кризисом выпуск пластификаторов снизился против 1974 г. на 15% [Ц. В табл. 23 приведены данные о структуре потребления пластификаторов в США [2]. [c.240]

    В предыдущих разделах было показано, что параметры, хара ктеризующие акустические свойства полимерных материалов, в значительной степени зависят от их структуры. Это особенно важно для исследования аморфных полимеров, для которых прямые структурные методы, как правило, не дают достаточной информации. Между тем сведения о надмолекулярной организации аморфных полимеров, получаемые в результате акустических исследований, обычно скудны. Это обусловлено, в частности, тем, что акустические измерения зачастую проводятся в сравнительно узком интервале температур. Причиной, препятствующей получению пп-формации о структуре полимеров, является и различие в применяемых методах акустических измерений, затрудняющее сопоставление экспериментальных данных. В связи с этим были предприняты [19] исследования акустических свойств некоторых широко распространенных аморфных полимеров в широком интервале температур методом свободных крутильных колебаний. Объектом исследований служили следующие материалы атактический полистирол, поливинилхлорид, полиметилметакрилат, поликарбонат, полисульфои. [c.277]

    В соответствии с представлениями о структуре искусственной кожи с гигиеническими свойствами [1] в качестве пленкообразующего были выбраны гидрофильные полимеры — карбоксилсодержащие каучуки с высокими физико-механическими показателями, а для порообразования был использован метод вымывания водорастворимых солей, примененный впервые в 1944 г. П. Ф. Сапилевским при получении пористых поливинилхлоридных покрытий [2]. Отсутствие в те годы научно обоснованных требований к структуре искусственной кожи с гигиеническими свойствами и небольшой экспериментальный материал, касавшийся процесса порообразования, ограничивали его возможности. Создание грубых сквозных пор в гидрофобном полимере — поливинилхлориде — не давало возможности получить нужный комплекс гигиенических свойств [3.  [c.343]

    Материал, вошедший в настоящую книгу, представляет собой большую часть докладов, представленных на Симпозиуме, специально посвященном многокомпонентным системам, который проводился в 1971 г. в рамках 159-го собрания Американского Химического общества. Ряд докладов, посвященных узко-прикладным вопросам, не вошли в перевод. Среди статей сборника выделяется ряд обзорных работ и исследований теоретического плана, в которых рассматриваются общие подходы к проблеме придания стойкости к ударным нагрузкам хрупким полимерам введением в них каучуков, применение принципа температурно временной суперпозиции релаксационных явлений в двухкомнонентных системах, механизмы армирования полимерами, оценка оптимальных размеров элементов структуры в некристаллизующихся блоксополимерах и т. д. Несомненный интерес представляют оригинальные исследования, посвященные изучению образования межфазных связей в композициях различных эластомеров, оценка размеров частиц субстрата в привитых сополимерах, изучение комплекса свойств сополимеров различных типов, сопоставление характеристик ряда привитых и блоксонолимеров. Весьма перспективны результаты технологического плана, содержащиеся в работах, посвященных созданию новых ударопрочных прозрачных композиций, разработке нового принципа стабилизации поливинилхлорида прививкой на него полибутадиена, развитию методов оптимального использования коротких волокон и неорганических соединений различного тина для модификации свойств полимерных композиций. [c.8]

    Нет, однако, сомнений в том, что поливинилхлорид, полученный при низкой температуре, отличается по своим физическим свойствам, в особенности по кристаллизуемости, от полимера, синтезированного при комнатной температуре [8, 14]. Таламини и Видотто [15] высказали предположение, что кристаллиты могут быть образованы г-блоками из четырех или пяти звеньев, но в структуре, описываемой статистикой Бернулли с / 0,4, в такие блоки входит не больше 0,1—0,2 мономерных звеньев. Сейчас имеется достаточно доказательств, что цепи винильных полимеров могут кристаллизоваться несмотря на высокую степень конфигурационной нерегулярности. Вероятно, повышенная способность к кристаллизации обусловлена, главным образом, уменьшением числа разветвлений в полимерах, приготовленных при низких температурах [13, 14, 16—18], а не относительно небольшим увеличением доли синдиотактических последовательностей (например, Рт составляет 0,46 и 0,37 для полимеров, полученных соответственно [c.162]

    Разинская И. НШтаркман Б. П., Батуева Л. И. и др. Фазовая структура и свойства полимерных смесей на примере системы полиметилметакрилат — поливинилхлорид.— ВМС. Сер. А, 1979, 21, № 8, с. 1860—1872. [c.350]

    Важным свойством переходных форм углерода является их склонность к графитации. Трехмерное упорядочение атомов углерода в структуру графита, происходящее при высокотемпературной обработке графитирующихся материалов, является сложным многостадийным процессом. По склонности к графитации углеродные материалы делятся на графитирующиеся, для которых трехмерное упорядочение достигается при температурах 2100— 2300°С, и неграфитируюшиеся, состояние которых не изменяется вплоть до 3000° С. Их принадлежность определяется природой исходных веществ при формировании продуктов пиролиза и крекинга. К графитируемым веществам относятся нефтяные и пеко-вые коксы, коксы из поливинилхлорида и коксующихся углей. Сахарный уголь, каменные угли, богатые кислородом, пиролизный кокс из хлористого поливинилидена не графитируются даже при 3000° С. В неграфитирующихся углеродных материалах неориентированные ароматические монослои сшиты термически прочными полиеновыми или поликумуленовыми цепочками углерода в пространственный полимер, гомогенная графитация которого сильно затруднена (см. рис. 5). Неграфитирующиеся материалы могут быть подвергнуты гетерогенной кристаллизации, которая связана с конденсацией паров углерода и протекает с заметной скоростью при температурах >3000° С. [c.24]

    Представляет интерес поведение поливинилхлорида при температуре экструзии. Термические реакции приводят к образованию сшитого полимера с разветвленной прострапственной структурой, которая одновременно деструктируется под механическим воздействием. Каргин и Слонимский с сотр. [44] назвали это явление химическим течением и высказали предположение, что этот процесс необходимо учитывать при выборе оптимальных условий обработки и предсказании свойств образующегося полимера [44]. [c.491]

    Изучение волокон сыграло важную роль в развитии химии высокомолекулярных соединений (гл. 8). Пионерские работы Штаудингера по выяснению структуры целлюлозы и натурального каучука (1920 г.) привели к представлению о том, что эти вещества состоят из длинноценочечных молекул высокого молекулярного веса (т. 4, стр. 83), а не из коллоидальных ассоциа-тов небольших молекул. Исследование Штаудингера, выводы которого были позднее подтверждены данными по рентгеноструктурному изучению целлюлозы (Мейер и Марк, 1927 г.), положило начало пониманию макромолекулярной природы полимеров. Вскоре после этого Карозерс с сотрудниками разработали рациональные методы синтеза волокнообразующих полимеров. Приблизительно в конце прошлого века были получены гидратцеллюлозные волокна — вискозное и медноаммиачное (т. 4, стр. 93), а в 1913 г. появилось сообщение о возможности получения волокна из синтетического полимера (поливинилхлорида). Однако это изобретение не было реализовано в промышленности. Первым промышленным чисто синтетическим волокном был, по-видимому, найлон-6,6 (т. 1, стр. 172), производство которого началось в 1938 г. Вслед за ним очень быстро были выпущены найлон-6, волокно ПЦ (из хлорированного поливинилхлорида), виньон (из сополимера винилхлорида с ви-нилацетатом, 1939 г.), саран (из сополимера винилхлорида с винилиденхлоридом, 1940 г.), полиакрилонитрильные волокна (1945 г.) и, наконец, терилен (из полиэтилентерефталата, 1949 г.) (т. 1, стр. 170). В последующие годы не было выпущено ни одного нового многотоннажного волокна происходило лишь расширение производства и улучшение свойств уже существующих волокон. Вместе с тем разработаны и продолжают разрабатываться многочисленные волокна специального назначения, что свидетельствует о большом размахе исследований в этой области. [c.282]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    Для характеристики полимеров используют понятие степени кристалличности, или коэфф. кристалличности. Степень кристалличности показывает, какая часть полимера закристаллизована и входит в состав кристаллич. областей. Значение этой величины в зависимости от условий кристаллизации и способа обработки для большинства полимеров колеблется от 20 до 80%. Встречаются случаи, когда степень кристалличности меньше 20% (поливинилхлорид, пек-рые каучуки) и больше 80% (кристаллы полиэтилена). Она снижается при уменьшении регулярности цепи, напр, степень кристалличности полиэтилена низкой плотности меньше, чем полиэтилена высокой плотности. Наличие в структуре полимеров кристаллических и аморфных областей является причиной их основных специфич. свойств. Наряду с большой прочностью, к-рой характеризуются все кристаллич. тела, кристаллические полимеры при определенных темп-рных условиях обладают способностью к сравнительно большим обратимьш деформациям благодаря существованию в их структуре аморфных участков. Плавление кристаллич. полимеров, в отличие от низкомолекулярпых веществ, происходит в большом темп-рном интервале. [c.590]


Библиография для Структура и свойства поливинилхлорида: [c.349]   
Смотреть страницы где упоминается термин Структура и свойства поливинилхлорида: [c.2]    [c.191]    [c.318]    [c.147]    [c.265]   
Смотреть главы в:

Синтетические полимеры и пластические массы на их основе 1964 -> Структура и свойства поливинилхлорида

Синтетические полимеры и пластические массы на их основе Издание 2 1966 -> Структура и свойства поливинилхлорида




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2025 chem21.info Реклама на сайте