Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы обнаружения кальция

    Быстрые и чувствительные методы обнаружения кальция в лечебных препаратах основаны на том, что при действии на окись кальция желтого водного раствора родизоната натрия или [c.738]

    Если при расшифровке спектрограммы образца последние линии определяемого элемента не обнаружены, это еще не означает, что элемент отсутствует в пробе. Возможно, что содержание его слишком мало и данным методом он обнаружен быть не может. Например предел обнаружения кальция при данной методике его определения 0,01%. Последние линии кальция на спектрограмме не появились. Результат анализа следует выразить так — кальций не обнаружен, предел обнаружения 0,01%- [c.183]


    Чрезвычайно чувствительный метод обнаружения сурьмы основан на наблюдении флуоресценции кристаллофосфора из окиси кальция, активированного сурьмой. Если нанести на прокаленный и охлажденный королек из окиси кальция эфирный экстракт сурьмы и вновь его прокалить, то королек флуоресцирует желто-зеленым светом. По интенсивности флуоресценции королька можно судить о количестве сурьмы, содержащейся в анализируемом растворе. [c.344]

    Полистирол, полученный методом окислительно-восстановительной полимеризации с сульфитом натрия, содержит концевые сульфогруппы такие полимеры растворяются ib бензоле с образованием растворов, вязкость которых может быть увеличена в несколько раз при действии следов катионов таких металлов, как натрий или кальций. Это служит одним из методов обнаружения кислотных концевых групп. Наибольшее увеличение вязкости, вызванное нейтрализацией концевых групп, достигается в неполярных растворителях (например, в бензоле) и может быть совсем незаметным в присутствии полярных растворителей или следов циклогексиламина . Экспериментальные данные об использовании этого эффекта для увеличения прочности на разрыв пластифицированного полимера. пока отсутствуют, но теоретически это возможно. [c.323]

    Метод основан на фотометрировании дублета спектральных линий натрия 589,6 и 589,0 нм (3 5i/2—з/2 а = 2,1 эВ), излучаемых его атомами в пламени светильный газ — воздух. Факторы специфичности при определении натрия в присутствии калия, лития и кальция составляют соответственно л-10 , л-10 и /г-10 Предел обнаружения натрия Ы0 %- Метод ограничи- [c.41]

    Метод основан на последовательном фотометрировании дублетов спектральных линий калия 4 51/2—4 P°i/2, 3/2 769,9, 766,5 нм ( а = 1,62 эВ) и лития 2 Si/2—22Р 1/2,3/2 670,8 нм ( в = 1,85 эВ) , излучаемых атомами калия и лития а пламени светильный газ — воздух. Факторы специфичности интерференционных светофильтров при определении калия в присутствии лития, натрия и кальция составляют 10 , а лития в присутствии калия и натрия— 10 —10 что обусловливает хорошую избирательность анализа смеси калия и лития методом фотометрии пламени. Предел обнаружения калия и лития — 5-10 %. [c.45]

    Предел обнаружения методом фотометрии пламени составляет 0,002—5 мкг/см Для щелочных металлов этот метод наиболее чувствителен из всех существующих методов их определения, за исключением радиохимических. Это справедливо также для кальция и стронция, если отсутствует анионный эффект. Определению меди, серебра, галлия, индия и таллия почти не мешают другие компоненты, поэтому фотометрию пламе [c.377]


    В качестве титрантов могут применяться сильные кислоты (ацидиметрия) или сильные основания (алкалиметрия). Прямым титрованием определяют концентрацию кислот или оснований или содержание элементов, входящих в их состав. Обратным титрованием или косвенными методами находят содержание некоторых солей (например, солей аммония или кальция). Применяя специальные приемы, титруют смеси кислот с их солями, смеси солей и т. д. Характеристики метода предел обнаружения — 0,10% правильность — 0,5% отн. информативность — 10 бит. [c.163]

    Судя по атомной массе, аргон должен был занимать в периодической системе место около хлора, калия и кальция. Однако в этом месте все клетки системы были надежно заняты известными химическими элементами. После обнаружения гелия на Земле Рамзай пришел к выводу, что существует целая группа химических элементов, которая располагается в периодической системе 1 ежду щелочными металлами и галогенами. С помощью периодического закона и методом Д. И. Менделеева, было определено число неизвестных благородных газов Т4- X свойства, в частности атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов. Всего лишь за четыре последующих года было открыто пять новых элементов. Большинство благородных газов выделено из воздуха. [c.502]

    Пример 1. Сотрудником лаборатории была разработана схема анализа редкого минерала уранинита с использованием комплексонометрического метода конечного определения основных компонентов- минерала урана, свинца, тория и суммы редкоземельных элементов. Схема, отработанная на искусственных смесях, учитывала возможность присутствия в уранините малых количеств кальция и магния и включала этап их совместного выделения и последующего раздельного. комплексонометрического определения. Данные предварительного эмиссионного спектрального анализа естественного образца уранинита, представленного для апробирования разработанной схемы, подтверждали наличие в его составе высоких содержаний урана, свинца, тория и редкоземельных элементов, а также небольших (0,3—0,8%) количеств магния, железа и алюминия. Кальций методом эмиссионного спектрального анализа в образце минерала обнаружен не был. Однако при неоднократных анализах по разработанной схеме он уверенно обнаруживался, хотя и в небольших количествах (0,2—0,4 %). Поскольку чувствительность метода эмиссионного спектрального определения кальция несомненно выше, чем комплексонометрического, следовало признать, что разработанная схема содержала систематическую погрешность привнесения кальция извне на каких-либо этапах анализа. [c.58]

    Определение натрия в пентаоксиде ванадия [2711. Метод применен для определения 2-10 —2 10 % натрия (калия, кальция) в пентаоксиде ванадия предел обнаружения натрия составляет 0,05 мкг/мл, относительная погрешность определения 10—12%. Спектр возбуждают в пламени воздух—ацетилен и регистрируют спектрофотометром на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Используют резонансную линию натрия 588,995-589,593 нм. [c.130]

    Чувствительность атомно-абсорбционного определения кальция несколько ниже, чем эмиссионного, но довольно высокая. Чувствительность эмиссионного обнаружения элементов, аналитические линии которых расположены в видимой области спектра, превосходят чувствительность обнаружения этих элементов абсорбционным методом [22]. При определении кальция эмиссионным методом р (%) = 6,2, атомно-абсорбционным — р (%) = 5,1 (показатель чувствительности р (%) = —lg(%) определяемого вещества). [c.147]

    Основные трудности определения серы в нефтях и нефтепродуктах методом НАА возникают из-за малой эффективности регистрации у-квантов с Е-( = 3102,4 кэВ полупроводниковым детектором и невозможности использования сцинтилляционных детекторов больших размеров ввиду низкой разрешающей сиособности, не позволяющей разделить аналитические -линии (3102,4 кэВ серы и 3084,5 кэВ кальция-49), что может привести к завышению результатов, если не учесть содержания Са в пробе. Для уменьшения влияния °Са рекомендуется подобрать время облучения, при котором отношение активностей 8/ Са будет максимальным. С другой стороны, предпочтительней использовать полупроводниковый детектор, так как при увеличении представительности пробы можно достичь более низкого предела обнаружения и исключить влияние кальция. [c.44]

    Исследование фторида кальция. Полученный этим методом хорошо промытый и слабо прокаленный фторид кальция следует потом превратить в сульфат кальция для того, чтобы проверить его чистоту и чтобы одновременно качественно (по характерному запаху выделяющегося газа) установить, что это действительно был фторид кальция. Если присутствие фтора будет таким образом доказано, но масса сульфата кальция окажется не соответствующей массе фторида кальция, то нужно растворить сульфат кальция в горячей азотной кислоте и испытать на фосфор молибдатом аммония. Если фосфат не будет обнаружен, то загрязнением могла быть кремнекислота или силикат кальция, но которое вещество из них, — решить трудно. [c.1022]


    Галогены проще всего обнаружить, вводя небольшую пробу вещества, нанесенную на конец медной проволоки, в пламя горелки (проба Бейльштепна). При наличии в веществе галогена пламя окрашивается в зеленый цвет. Проба Бейльштейна очень чувствительна и дает положительный результат даже тогда, когда присутствуют лишь следы галогенсодержащих примесей. Более надежным методом обнаружения галогена в веществе является прокаливание пробы с оксидом кальция и осаждение образующегося галогенид-иона в виде галогеннда серебра обработкой азотнокислым раствором нитрата серебра. [c.32]

    В боратном и хлоридно-аммиачном буферном растворах ионы щелочноземельных металлов и магния образуют с фталеинкомнлек-соном красно-фиолетовые комплексы. Эта реакция использована для обнаружения кальция капельным методом [707]  [c.24]

    Используя эти приемы, Бергер и Элверс [5561 предложили методы обнаружения ионов Сс1, Со, Си, Ре, Оа, 1п, Мп, N1, Рс1, и и 2п с помощью ПАН-2. Для обнаружения кальция предложен хлорин-дазон С [814, 815]. Обнаруживаемый минимум 0,005 предельное разбавление 1 10. Реагент позволяет обнаруживать также ионы Сс1, Со, Си, N1 и 2п при предельном разбавлении 1 2-10 . [c.183]

    ПАР и ПАН-2 использованы для обнаружения Сс1, Си, РЬ и 2п [877] при хроматографическом разделении на бумаге, ПАР и ПАН-2 — для обнаружения В1, Сё, Со, Си, Мп, N1, РЬ, У(У), и(У1) [736] и 2п (ПАН-2) [658] при их разделении методом тонкослойной хроматографии. При анализе воды и лекарственных препаратов ионы Сё, Со, Си, Hg, N1, РЬ и 2п разделяют на катионообменных бумагах Амберлит 5А-2 или У А-2 , а затем обнаруживают при помощи ПАН-2 или ПАР [97]. Фуимото [637] отмечал, что сорбирование ионов смолами, а затем обнаружение при помощи ПАН-2 или ПАР понижает предел обнаружения В], Hg(И), N1, Рс1, Т1(П1) и У(1У, V) до рО < 8,7, в то время как без сорбции рО = 6,5—7,0 рВ — отрицательное значение логарифма предельного разбавления). Пиридиновые азосоединения широко применяются в качестве проявителей в тонкослойной хроматографии. Используют пластинки с гипофосфитом циркония [704] (разделяют и обнаруживают с помощью ПАН-2 лантан и иттрий), силикагелем [879] (разделяют и обнаруживают Со, Си, N1 с помощью ПАН-2), с целлюлозой МЫ-ЗОО-НК и силикагелем [736] (разделяют В , Сс1, Со, Си, Мп, N1, РЬ, У(У) и и(У1), подвижный растворитель СН3СОСН3—1-СЭН7ОН—СНзСООН—НС —НаО, проявитель — ПАН-2 или ПАР). На пластинках Силуфол на основе силикагеля [646] разделяют Со, Си, Ре, N1 и затем обнаруживают с помощью ПАН-2. Метод применяют для определения элементов в нитратах бария и стронция, хлоридах кальция, аммония и гидрокарбонате аммония. На целлюлозе МЫ-ЗОО-НК, пропитанной хлороформным раствором анионообменника — хлоргидрата Прайамина 1М-Т, отделяют цинк и обнаруживают его реагентом ПАН-2 [658]. Разработан метод обнаружения РО4 , В1, 5Ь, Н 2,6-диамино-З-фенилазо-пиридином [687]. [c.184]

    Принципиально иной метод обнаружения р.з.э. описан в работе [111 в нижнюю часть бесцветного водородного пламени вносят окись кальция если она содержит редкоземельный элемент, то разгорается люминесценция и по ней выявляется присутствие того или иного р.з.э. Автор указывает, что метод настолько чувствителен, что позволяет обнаруживать 0,001у иттрия. Возникновение люминесценции автор объясняет возбуждением медленными электронами, нрисутствуюпщми в водородном пламени. [c.163]

    Часть осадка хлоридов переводят в нитраты многократным выпариванием с азотной кислотой и растворяют их в минимальном количестве воды. В полученном растворе обнаруживают ионы свинца, мышьяка и ртути (в случае, если первоначальный осадок хлоридов был темного цвета и ион ртути по свечению каломели не был обнаружен). В каплю раствора вносят медную проволоку и выделившуюся ртуть отгоняют в капилляре, растворяют в азотной кислоте и идентифицируют по свечению перла оксида кальция. Затем из нейтрализованного раствора обнаруживают свинец реакцией с пиридином и иодидом калия по образованию люминесцирующего желто-коричневым цветом осадка состава Pb( 5H5N)2l2. Реакцию проводят в микропробирке. Свинец может быть обнаружен также по све- чению перла оксида кальция или реакцией с морином в спиртовом растворе капельным методом. Обнаружение мышьяка при относительно большом его содержании осуществляется по люминесценции соединения с ферроцианидом калия, при малых содержаниях — реакцией выделения металлического золота . для этого небольшое количество исследуемого раствора подщелачивают едким натром и вводят крупинку сплава Деварда. Выделяющийся мышьяковистый водород улавливают фильтровальной бумагой, смоченной раствором хлорида золота, которое при этом восстанавливается до металлического, давая черное или синеватое пятно в зависимости от содержания мышьяка. [c.187]

    Как указано выше, в этих осадках не было обнаружено кристаллогидратов и безводного сульфата кальция. Правда, чувствительность рентгенографического фазового анализа невелика, и наличие в осадке 8% кристаллогидратов или безводного Са504 могли не обнаружить. Более чувствительным методом обнаружения этих кристаллов в осадке является изучение его растворимости по СаЗО . Если сульфат кальция находится в осадке в виде смешанных кристаллов, то его растворимость по СаЗО будет меньше растворимости чистой соли Са304, поскольку активность сульфата кальция в смешанных кристаллах ниже, чем в чистой соли. [c.56]

    Методы обнаружения излучений. Выше было показано, что радиоактивное излучение действует на фотопластинку. Оно также вызывает флуоресценцию многих соединений. Некоторые твердые кристаллические вещества, например сульфид цинка (обманка с малым содержанием Си), алмаз, кальцит, флуорит и многие органические вещества сцинтилляторы), обладают способностью сверкать, или сцинтиллировать, в тех местах, которые бомбардируются быстро движущимися электрически заряженными частицами, например а-лучами. Эти сцинтилляции могут быть замечены с помощью лупы или микроскопа. При использовании экрана, покрытого такими флуоресцирующими веществами спинтарископ), можно подсчитать частицы, испускаемые в единицу времени определенным количеством радиоактивного вещества. Сцинтилля-ционный метод в свое время был первым визуальным доказательством существования индивидуальных атомов. [c.741]

    Опыты с ДНК, выделенной из клеток опухолей, также свидетельствуют о существовании онкогенов. Метод обнаружения клеточных онкогенов получил название переноса геиов или трансфекции . Он основан на том, что некоторые гены, присутствующие в опухолевых клетках, могут вызывать трансформацию нормальных клеток в культуре. Из опухолевых клеток выделяют ДНК, осаждают фосфатом кальция и добавляют к клеткам-реципиентам (обычно в этой роли выступает линия мыщиных фибробластов NIH/3T3). Через 1—2 недели под микроскопом наблюдают образование фокусов трансформации. Клетки, составляющие фокус, меняют свою морфологию из распластанных они становятся округленными. Из трансформированных клеток выделяют ДНК, и опыт повторяют. Так делают несколько раз, при этом уменьшается количество ДНК, не участвующей в переносе признака трансформации, и, следовательно, облегчается идентификация специфических генов (при помощи гибридизации по Саузерну (см. гл. 36)). С помощью этого метода было идентифицировано около 20 клеточных онкогенов некоторые из них сходны с геном ras вируса саркомы мыщей. Эти клеточные онкогены либо вообще не отличаются от нормальных генов, либо имеют небольшие структурные особенности (см. ниже). В первом случае при опухолевом перерождении может меняться регуляция их экспрессии. [c.359]

    Флуориметрический метод с использованием 8-хинолилгидразо-на 8-оксихинальдинового альдегида позволяет определить 5-10 % кальция в NaJ [581. Предел обнаружения 0,1 мкг кальция в 5 мл раствора при навеске 1 г NaJ. Определению 0,2 мкг кальция не мешают соли щелочных металлов, а также 10-кратный избыток стронция, 100-кратный — бария и магния. Равные количества РЬ, Fe(III), Мп, Си, d, Zn, In, 10-кратный избыток Со, Fe(II), Та, 100-кратный избыток Ве, r(VI), 1000-кратный избыток W, Pt(IV) Ni, Bi гасят люминесценцию комплекса. [c.188]

    Теоретические основы наиболее распространенных современных методов спектрального анализа изложены в [441]. Структура электронных оболочек атома хрома — 15 25 2р 35 3р 3й 45 — определяет сложный характер его спектра. Он состоит из 1133 спектральных линий [477]. Наиболее интенсивные линии хрома расположены в видимой области и имеют длины волн 425,43, 427,48 и 428,97 нм. Для определения малых количеств хрома используют линию 425,43 нм [178, 186]. Однако в присутствии кальция она непригодна для определения хрома из-за влияния интенсивной линии кальция 428,93 нм. В УФ-области имеется ряд менее чувствительных линий 340,53, 357,86 и 389,34 нм. Во многих случаях пользуются также линиями 278,07, 283,56, 284,32 и 284,98 нм. Например, пределы обнаружения хрома по линии 283,56 нм равны 1-10 % при возбуждении спектра в обычной дуге и 5-10 % — в дуге Столвуда [283]. [c.72]

    I в слабокислой среде чувствительность 0,5 мкг в анализируемом объеме [48]. Определение нитрида А. и ортоалюмината лантана-метатитаната кальция выполняется весовым методом [49]. Кроме того, нитрид А. определяется фотометрически с хромазуролом 5 чувствительность метода 0,05 мкг в пробе (Кривда, Макеева). Описано также определение спектральным методом с пределом обнаружения в воздухе 0,2 мг/м [34] и методом газожидкостной хроматографии (Яворская, Гринберг). В воде. Спектрографическое определение после экстракции [c.221]

    Метод предварительного испарения использован для определения микропримесей металлов в оргапохлорсиланах (ОХС) [271]. Для очистки графитовых электродов их обычно обжигают в дуге и пропитывают раствором полистирола. Но при анализе ОХС полистирольное покрытие разрушается в процессе концентрирования из-за высокой химической активности ОХС. Авторы применили полиорганосилоксановый лак (ПЛ), обладающий более высокими химической и термической стабильностью. При использовании электродов без покрытия, покрытых полистиролом и ПЛ, соотношение сигналов равно примерно 1 2 3. Электроды с шейкой (диаметр канала 5 мм, глубина 4 мм) обжигают 10 с в дуге переменного тока силой 10 А, заполняют 1%-ным толуольным раствором ПЛ и сушат под ИК-лампой. Затем в канал электрода вводят 0,05 мл 2%-ного водного раствора хлорида натрия (буфер) и сушат под ИК-лампой. Подготовленные электроды на подставке помещают в бокс из органического стекла. Бокс продувают азотом 20—30 мии, затем электроды устанавливают в нагревателе и греют до заданной температуры (на 20—30 °С ниже, чем температура кипения основы, но не выше 150 °С). Для нагрева электродов использована нихромовая спираль в защитном (от коррозии) кожухе. В каждый электрод пипеткой постепенно вводят 1 мл образца. Эталоны готовят растворением хлоридов определяемых элементов в смеси (9 1) деионизированной воды и хлороводородной кислоты. В электроды вводят по 0,1 мл приготовленных эталонов и испаряют их при 70—80 °С. Для возбуждения спектров используют дугу переменного тока силой 10 А, экспозиция 40 с. Достигнуты следующие пределы обнаружения (в мкг/мл) медь и магний — 0,09, алюминий — 0,12, марганец— 0,41, железо и никель—1,5, кальций — 5,0. Эти же авторы при анализе полиорганосилоксановых лаков пробу смешивают с эталоном и толуолом в соотношении 7 1 2, вводят в канал электрода и испаряют под ИК-лампой [198]. [c.163]

    Для определения фтора в сточных водах в качестве реагента использован кальций, так как его соединение с фтором практически не растворимо-в воде, а реакция образования фторида отличается высокой специфичностью. К пробе добав.чяют разбавленный раствор хлорида кальция. После короткого подогрева и охлаждения смесь тщательно перемешивают и фильтруют. Затем в фильтрате определяют кальций атомно-абсорбционным методом, содержание которого обратно пропорционально концентрации фтора. Абсолютный предел обнаружения фтора составляет 1 мкг при относительном стандартном отклонении 7—9% [Зб б]. [c.260]

    Аналогично можно определить хлор по канту полосы СаС1 593,4 нм. Но предел обнаружения хлора не превышает 1%- При испарении из канала электрода рекомендуется наряду с кальцием добавлять в пробу угольный порошок. При добавлении к пробе стронция можно определить фтор по канту полосы SrF 577,2 нм с пределом обнаружения 0,01% [6]. Если в пробе наряду с кальцием присутствует стронций, то в спектре появляются две полосы aF 529,1 нм и SrF 577,2 нм, вследствие этого чувствительность анализа несколько снижается [11]. Для успешного применения этого метода нужен в пробе большой избыток кальция (стронция). [c.262]

    При изучении микроэлементов эмбинских нефтей установлено, что в них содержатся ванадий, никель, медь, марганец, титан, галлий, германий, кальций, магний. Нами определены индий и бериллий в зольных остатках нефтей месторождений Косчагыл, Каратон, Тереньузюк. Колориметрический метод анализа Ве основан на реакции с бериллоном, чувствительность составила 4 10- %. Колориметрическое обнаружение индия заключается в измерении интенсивности окраски оксихинолята индия, растворенного в хлороформе. Чувствительность метода равна Ы0" % [c.292]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    Кайзер показал, что, используя реакцию с карбидом кальция и концентрирование, можно достичь предела обнаружения, равного 10 частей на биллион [38]. Метод был применен для определения воды в полиоргано-силоксанах, хладоагентах и других соединениях. [c.227]

    При сравнении ряда методов в 1964 г. был сделан вывод, что для малых количеств фтор-иона наилучшим является титрование раствором ТЬ(МОз)4- Для обнаружения 5—60 мг фтор-иона наилучшим является комплексометрическое определение избытка соли кальция после осаждения СаРг (см. комплексо-метрию). Удовлетворительные результаты дает осаждение в виде РЬС1Р с меркурометрическим определением избытка хлор-иона и титрование раствором соли алюминия, особенно в присутствии эриохромцианина Н. [c.62]


Смотреть страницы где упоминается термин Методы обнаружения кальция: [c.651]    [c.322]    [c.308]    [c.473]    [c.211]    [c.89]    [c.161]    [c.106]    [c.567]    [c.166]    [c.41]    [c.208]   
Аналитическая химия кальция (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы обнаружения кальция капельные реакции

Методы обнаружения кальция реакции осаждения

Методы обнаружения кальция флуоресцентные реакции

Методы обнаружения кальция цветные реакции



© 2025 chem21.info Реклама на сайте