Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление сульфидов

    Раствор моноэтаноламина с образовавшимися в результате взаимодействия сероводорода с моноэтаноламином сульфидами и бисульфидами поступает в десорбер 11 на регенерацию моноэтаноламина. При температуре около 115° С и пониженном давлении сульфиды и бисульфиды диссоциируют с выделением сероводорода и восстановлением моноэтаноламина. Отрегенерированный и охлажденный раствор моноэтаноламина возвращается насосом 18 в абсорбер 10. [c.67]


    Несмотря на то, что осерненные нефтяные масла способствуют окислению стали в условиях сверхвысоких давлений, сульфид железа является необходимым, хотя и второстепенным, Компонентом несущей смазочной пленки. [c.50]

    СТВ,ИИ сульфидных катализаторов, например сульфидов никеля и вольфрама,. пр,и 320—350° и давлении водорода 200 ат. [c.14]

    Парафин низкотемпературной гидрогенизации. При каталитической гидрогенизации смолы швелевания бурых углей на стационарном сульфидном никель-вольфрамовом катализаторе (27% сульфида вольфрама + 3% сульфида никеля на активированной окиси алюминия) под давлением водорода 300 ат происходит деструктивная гидрогенизация кислородных и сернистых компонентов смолы. При этом битумы, смолы и другие высокомолекулярные сернистые и кислородные соединения превращаются в углеводороды. Эти реакции необходимо проводить при более мягких температурных условиях, в противном случае возможно, что в результате термического разложения асфальтены и смолы будут отлагаться на катализаторе еще до того, как произойдет их восстановительное разложение. Это создает опасность необратимого загрязнения катализатора и постепенного падения его активности. [c.50]

    В топливах имеются сероорганические соединения, которые при высоких температурах и давлениях на контакте трения могут разлагаться с выделением серы. Сера, реагируя с металлом поверхностей трения, образует сульфиды. Химически активными по отношению к металлическим поверхностям при трении являются также фосфор, хлор и др. [c.62]

    В присутствии катализаторов адсорбционного типа термическая устойчивость сернистых соединений существенно снижается. Это обстоятельство положено в основу целого ряда промышленных процессов каталитической сероочистки. Нециклические сернистые соединения (меркаптаны, сульфиды и дисульфиды), содержащиеся в прямогонных бензино-лигроиновых фракциях, легко разлагаются на олефин и сероводород при парофазном контактировании с отбеливающими глинами [191, 192], с окисью алюминия [193—195] или с алюмосиликатным катализатором крекинга [196, 197]. Соответствующие технологические процессы проводятся при температуре порядка 340—430° С и давлении около [c.250]

    Сероводород присоединяется к тройной связи нитрилов с образованием тиоамидов при перемешивании бензольного раствора нитрила с избытком водного раствора сульфида натрия при 70 С в присутствии четвертичной аммониевой соли и под давлением от 1 до 2 атм [1100, 1472]  [c.237]


    Развитие коррозии обусловлено диффузией ионов железа в газовую среду через поверхностную пленку, которая обогащается серой. При этом вначале образуется нестойкое соединение Ре 2, которое при повышении температуры распадается с выделением элементной серы и значительно более термостойкого FeS. Сульфид железа, покрывая поверхность металла, защищает ее от быстрого разрушения. Термодинамическая возможность существования сульфида железа (а следовательно, и сероводородная коррозия железа) определяется температурой и парциальным давлением сероводорода в газовой среде. [c.148]

    Подобный результат мы получим для всех реакций, в которых только один из компонентов находится в газообразном состоянии. Сюда относятся, в частности, процессы диссоциации карбонатов, кристаллогидратов, аммиакатов, некоторых окислов, сульфидов и др. Если продукты диссоциации не образуют с исходным веществом твердых (или жидких) растворов, то давление диссоциации зависит только от температуры и не зависит от количества той или иной из конденсированных фаз .  [c.274]

    Осернение катализатора выполняется при температуре 150— 350 °С, давлении 2—5 МПа в потоке циркулирующего водородсодержащего газа, содержащего (по объему) 0,5 — 5,0 % HjS, либо с помощью сераорганических соединений (меркаптаны, сульфиды, дисульфиды), а также легкими сернистыми нефтепродуктами.  [c.155]

    МПа. В присутствии сернистых примесей пригоден катализатор из оксидов или сульфидов никеля и вольфрама, но для осуществления процесса требуются более высокие температура (320— 360°С) и давление (л 30 МПа). [c.501]

    Для сероочистки ириродиого газа применяются цеолиты типа МаА (4А), СаА (5А), МаХ (13Х). Как следует пз рпс. 4.78, наибольшей адсорбционной емкостью почти во всем интервале парциальных давлений сульфида водорода и этплмер-каптапа обладает цеолит МаХ. При давлениях до 1 мм рт. ст. величина адсорбции па цеолитах СаА и МаХ примерно одинакова. Следует, однако, отметить, что несмотря на лучшие адсорбционные характеристики цеолита МаХ по индивидуальным сернистым соедипеппям, целесообразность выбора того пли иного цеолита рис. 4.78 для решения конкретных задач во многом определяется составом природного газа. В отличие от [c.387]

    Сульфид индия(Ш) 1п28з. При пропускании сероводорода в слабо кислый раствор сульфата индия выпадает желтый осадок сульфида индия, легко растворимый в азотной кислоте. При длительном кипячении с разбавленной кислотой получается модификация кирпичного цвета, малорастворимая в азотной кислоте. При сплавлении индия с серой образуется сульфид киноварного цвета. In2Ss имеет уд. вес 4,90. Выше 850° он заметно летуч вследствие разложения на Ih2S и S. По данным Штубса, под давлением сульфид плавится при 1095°. [c.416]

    Молибден образуется в атомных реакторах в сравнительно большом количестве, но наиболее долгоживущий радиоактивный изотоп Мо имеет период полураспада лишь 67 час. Молибден в растворе обычно находится в шестивалентном состоянии в виде комплексного окоианиона. Анион молибдена способен к конденсации в поликислоты или, в зависимости от условий, в гетерополикислоты. С некоторыми катионами они образуют нерастворимые соли, которые не экстрагируются органическими растворителями. При обработке горячего кислого раствора сероводородом медленно выделяется нерастворимый суль-4>ид M0S3. Полностью осаждение происходит лишь в том случае, если применяется сероводород под давлением. Сульфид молибдена растворим в щелочах и сульфиде аммония. [c.96]

    В табл. 5 приведены данные по изучению зависимости процесса карбонилЬобразования железа от количества присутствующей серы [93]. При высоком давлении сульфиды железа медленно, но почти полностью превращаются в карбонил [94  [c.52]

    На базе этого метода построено в настоящее время получение изоок-танола из изопентена. Отделение кобальта от продуктов гидроформилирования возможно простым нагреванием до 150—160° под давлением 7 — 10 ат водорода. Кобальт затем отфильтровывается в виде осадка. Для восстановления альдегидов в спирты можно, кроме никеля, использовать также хромит меди или устойчивый против действия серы катализатор, состоящий из сульфида никеля и сульфида вольфрама. В этом случае восстановление ведут при 200° и 200 ат давления водорода. [c.218]

    Так как во время расщепления сероводорода -практически не выделяется, то опасность обессеривания активных компонентов катализатора (сульфида вольфрама) водородом, находящимся под высоким давлением и при высокой температуре гидрогенизации, очень велика. При этом неизбежно весьма значительное и недолустимое для технологического процесса снижение активности катализатора. Поэтому на стадии расщепления специально добавляют сероводород в количестве около 3 /сг на 1 7- поступающего сырья. [c.42]

    Смесь хлористых амилов, водного (не слишком концентрированного) раствора сульфгидрата натрия и этанола перемешивают в автоклавах 1 при 140—150° в течение 5 час. После завершения реакции содержимое автоклавов переводят в куб 2, где под небольшим избыточным давлением (не более 0,5 ат) отгоняют сероводород. Сероводород улавливается в абсорбере 3, состоящем из трех колонн. Первая колонна орошается циркулирующим амилсульфидом для улавливания амиленов. Вторая колонна орошается 15%-ным, а третья 3%-ным раствором едкого натра. Когда содержание щелочи в растворе, орошающем третью колонну, снизится до 1,75%, а содержание сульфида натрия возрастет до 21%, поглотительный раствор насосом перекачивается в расходный бак 4 для раствора сульфигидрата натрия. Содержимое второй колонны переводится в третью, а из бака 5 подается свежий 15%-ный раствор едкого натра для орошения второй колонны. После третьей колонны включен адсорбер, заполненный активированным углем, для улавливания последних следов органических сернистых соединений. Реакционная смесь перегоняется с водяным паром в кубе 2. Водный остаток после обработки хлором для разложения всех дурно пахнущих [c.228]


    Из жидких алифатических углеводородов наилучшим исходным материалом для сульфохлорирования являются н-парафины типа н-додекана и октадекана. Правда, и средние члены гомологического ряда, как н-гексан и н-октан, реагируют легко и сравнительно однозначно. Однако подобные углеводороды не являются подходящим промышленным сырьем, так как в чистом виде они мало доступны и слишком дороги. Они могут быть получены из соответствующих спиртов нормального строения каталитической дегидратацией последних в олефины, которые з.атем под давлением гидрируют, например в присутствии никелевого катализатора, в соответствующие парафины, или восстановлением спиртов нормального строения в одну ступень в насыщенные углеводороды, которое осуществляется, например, пропуска-нояем их в смеси с водородом над сульфидными катализаторами, лучше всего над смесями сульфидов никеля и вольфрама при температуре 300—320° и давлении 200 ат. [c.396]

    Установки деструктивной гидрогенизации углей представляли собой многоступенчатый сложный процесс с дорогостоящим оборудованием, проводимый при высоких давлении (30 — 70 МПа) и температуре (420—500 °С), вначале на малоактивном и дешевом нер1>генерируемом железном катализаторе, позднее на активных катслизаторах на основе сульфида вольфрама с использованием водорода, получаемого дорогим малопроизводительным периодическим железопаровым методом. [c.203]

    Окисление кислородом воздуха применяется для легкоокисляе-мых соединений, например сульфитов, гипосульфитов, гидросульфитов, сульфидов, этилмеркаптана, гидразингидрата. При температуре 60—120°С, давлении 0,1—0,8 МПа и расходе воздуха 80—150 м /мз стоков эффективность очистки сточных вод от сульфидов достигает 90—95 %. Кислород воздуха применяют при очистке сточных вод от железа, окисляя двухвалентное железо в трехвалентное с последующим отделением от воды гидроксида железа. Процессы окисления воздухом значительно интенсифицируются в присутствии катализаторов. [c.493]

    Сульфид меди [71], активированный путем превращения части его поверхности в сульфат меди, действует как катализатор низкомолекулярной полимеризации изобутилена при 150° и давлении от 30 до 26 ат. При этом с выходом около 60% получается смесь, состоящая из 2,2,4-триметилпентенов, которые н дентифицировались путем каталитической гидрогенизации, давшей 2,2,4-триметилпентан. [c.206]

    Иногда путем гидрогенизации возможно разделять сложные близкокипящие углеводородные смеси, так как гидрированные компоненты значительно отличаются по своим свойствам от негидрированных, чем и пользуются для разделения их при помощи физических или химических методов. Цапример, антраценовую лепешку (побочный продукт, выделяемый из каменноугольной смолы, содержащий антрацен, фенантрен, карбазол и другие полициклические углеводороды) можно так прогидри-ровать, что прогидрируется только антрацен. Продукт гидрогенизации антрацена 9,10-дигидроантрацен можно выделить из смсси перегонкой либо избирательной экстракцией. Подходящими условиями для этого процесса являются температура 300°, давление водорода 42 ат, катализатор сульфид никеля или сульфид молибдена [30]. [c.243]

    В качестве катализаторов менее активных сульфидов и окислов металлов шереходной группы (МоЗа, У32, N13 и т. д.), которые обычно применяются, требуются более высокие рабочие температуры для достишендя удовлетворительных скоростей реакции. Применение высоких давлений водорода, необходимых для гидрогенизации ароматических углеводородов, сопряжено с высокими капитальными затратами на оборудование, что тормозит внедрение процесса в этом направлении. [c.277]

    Успех подобной переработки бензинов зависит от избирательного воздействия водорода на неуглеродные соединения и скорости селективного гидрирования олефинов в присутствии ароматических соединений. Во время войны применялись процессы над никелевым катализатором при низком давлении (4— 10 кПсм ) и над сульфидом молибдена при высоком давлении (211 кГ/см ). В настоящее время практикуется частичное гидрирование крекинг-бензинов для осуществления химической стабилизации и предварительной обработки сырья, направляемого на каталитический риформинг. [c.94]

    Некоторый интерес представляет обработка циклических фракций каталитического крекинга водородом для того, чтобы получить продукты, менее стойкие к повторному каталитическому крекингу. Ароматические углеводороды большей частью превращаются в нафтеновые на этот факт указывает то, что процесс гидрирования легко принимает направление очистки. В табл. П-81 приводятся результаты каталитического крекинга газойля прямой перегонки, циклического дистиллята и гидрированных циклических фракций. Обычно несколько экономичнее гидрирование проводить при низком давлении (52,0 кПсм ) при 370° С, применяя в качестве катализаторов сульфиды металлов. При этом уменьшается содержание серы, некоторые конденсированные полициклические ароматизированные углеводороды превращаются в ароматику с простыми кольцами и нафтены, и в результате при крекинге получается бензин удовлетворительного качества [226]. При помощи гидрирования можно превратить низкосортные масляные дистилляты в очищенные фракции парафинистого характера, но, как известно, при этом значительно уменьшается выход фракции и уровень вязкости. В табл. П-9 приведены продукты, полученные гидрированием двух дистиллятов масляных фракций при 400° С. Гидрированные фракции имеют низкое содержание серы и улучшенный цвет [223—226, 200, 228—231]. [c.96]

    Подобно парафинам, нафтеновые углеводороды с хорошей селективностью изомеризуются в присутствии металлов и сульфидов металлов при 300—450° С и под высоким давлением водорода. Конечные продукты являются близко-равновесными смесями [494—496]. Метилциклопентан и циклогексан превращаются друг в друга метилциклогексан дает смесь 1,1-, 1,2- и 1,3-диме-тилциклопентанов и этилциклопентанов этилциклогексан преобразуется в 1,1- и 1,2-диметилциклогексаны, 1,1,2- и 1,2,3-три-метилциклопентаны наряду со следами изопропилциклопен-тана [494]. [c.124]

    Переходя к краткой характеристике отдельных методик, остановимся на определении теплот горения органических соединений. Важной частью калориметра в этом случае является калориметрическая бомба, предложенная Берт-ло для определения теплот горения в кислороде под давлением 20—30 атм. В калориметрической бомбе проводятся сожжения органических вещестн, металлов, металлических сульфидов, нитридов, хлоридов проводятся также реакции образования нитридов, сульфидов, силицидов и др. [c.76]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Процессы гидроочистки бензинов, дизельных и остаточных топлив широко используются в промышленности. Их осуществляют также в неподвижном слое катализатора под давлением водорода. Катализатор активирует гидрогенолиз С—8-связей и удаление серы из жидких углеводородов в виде Но8, который затем абсорбируется соединениями основного характера. Необходимость глубокой очистки от серы (нанример, современные катализаторы платформинга эффективны нри содержании серы в сырье около 1 /оо) заставляет осуществлять процесс гидроочистки в жестких условиях, так что он обязательно сопровождается гидрокрекингом, т. е. гидрогенолизом С—С-связей. Это указывает ыа необходимость учета гидрокрекинга при моделировании процессов гидроочистки. В нефтяных фракциях присутствуют различные сероорганические соединения, причем по скорости удаления их можно разложить в ряд меркаптаны > сульфиды >тиофены [42]. Кроме того, скорость гидрогенолиза зависит и от молекулярной массы сероорганического соединения высокомолекуля )ные соединения подвергаются гидрогенолизу со скоростями, во много раз меньшими, чем низкомолекулярные, так что необходимо ужесточение режима при переходе к более тяжелому сырью. [c.364]

    Фракция С3-С4, содержащая 1,0% мае. сероводорода с давлением 0,95 МПа и температурой 30-40 С подается в нижнюю часть с экстрактора К-501 для очистки от сероводорода 15%о-ным раствором моноэтаноламииа с содержанием сульфидов не более 0,04 моля Н23/моль М ЗЛ, подаваемом в верхнюю часть экстрактора насосом Н-501 из емкости регеперивованного раствора Е-501. [c.89]

    Результаты проведенных исследований [30] положены в основу процесса очистки сернисто-щелочных сточных вод от сульфида натрия (процесс Серокс-У/). Сущность процесса заключается в окислении сульфида натрия кислородом воздуха при температуре 70...80 С и давлении 0,4...0,6 МПа в присутствии гетерогенного катализатора УВКО- [c.153]

    Рассмотрение реакций серосодержащих соединений с водородом показывает, что их взаимодействие ведет к разложению молекулы с разрывом связей углерод — сера и образованию соответствующего углеводорода — алифатического, нафтенового, нафтено-ароматического или ароматического. На глубину разложения влияют условия реакции с повышением давления глубина превращения возрастает такое же влияние оказывает увеличение количества водорода при повышении температуры глубина превращения несколько снижается. Однако термодинамические расчеты, проведенные для ряда сульфидов и производных тиофена, показывают, что при применяемых обычно в гидрогенизац1ион ых процессах температуре и концентрации водорода возможно превращение на 90—997о [1]. [c.293]

    Наибольшее распространение в производстве смазочных масел получила гидроочистка в сравнительно мягких условиях под давлением 3—7 МПа (чаще при 4—5 МПа), при 250—400°С. Процесс применяется главным образом для очистки от соединеннй серы, азота, кислорода, а также от смолистых и асфальтовых веществ. Катализаторы гидроочистки состоят из гидрирующих ко.мпонентов, анесенных на окисный носитель. В качестве гидрирующих компонентов применяют элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева в виде металлов, их окислов или сульфидов, а носителем чаще всего служит окись алюминия. Наиболее распространенные катализаторы состоят из окислов кобальта и молибдена на окиси алюминия (алюмоко-бальтмолибденовый) и окислов никеля и молибдена на окиси алюминия (алюмоникельмолибденовый). [c.304]

    Описаны дальнейшие разработки процесса гидрокрекинга в ФРГ ( M.1 , 1 ). Процесс осуществляется в одну или две стадии в широком интервале условий в зависимости от качества сырья. В двухступенчатом процессе давление на обеих стуненях одинаковое — 100 кгс/см . Разработаны новые катализаторы. Катализатор WSa на терране заменен сульфидом железа, а также Ni на алюмосиликате. В качестве носителей испытаны AI2O3 и FejOg, активированные HF, в качестве гидрирующих агентов — металлы VI и VIII групп периодической системы [c.71]

    Вследствие опасности отравления катализаторов внимание исследователей привлекает в первую очередь обеспечение их стабильности. Известно много публикаций, в которых утверждается, что созданы стабильные к отравлению катализаторы. Сообщалось о создании катализаторов, способных работать при 100 кгс/см на сырье с содержанием 1000—2000 млн азота. В одном из рекламных сообщений указывается, что частичное восстановление металла в катализаторе Ni + W на AijOj -f SiOj (6% восстановленного Ni и 19% W в виде сульфида) повысило его азотоустойчивость. В присутствии этого катализатора удалялось 92,5% азота (содержание азота в перерабатываемом газойле 0,319% давление 70 кгс/см ) против 80% на алюмокобальтмолибденовом катализаторе через 90 суток он еще удалял 75% азота. [c.323]

    Подробный обзор о лабораторной перегонке иод вакуумом металлов и сплавов, не содержащих железа, приведен в работе Шпендлеве [116]. Хорслей [117] описал аппаратуру для разгонки щелочных металлов. В соответствии с этими работами металл расплавляют в вакууме, фильтруют и затем перегоняют преимущественно ири давлении до 10" мм рт. ст. Пары металла конденсируют в конденсаторе, охлаждаемом циркулирующим маслом. Для получения чистого тантала Паркер и Вильсон [118] использовали хлорид тантала ТаС ., (температура кипения 240° С при 760 мм рт. ст.). Безобразов с сотр. [118а] разработал кварцевый аппарат диаметром 40 мм и высотой разделяющей части 1250 мм для аналитической перегонки высококипящих веществ с температурой кипения до 1000°С (сера, селен, теллур, цинк, кадмий, сульфид мышьяка и др.). [c.260]

    Основой действия противозадирных присадок следует считать образование при соответствующих условиях (давление, температура) квазисмазочных слоев, являющихся продуктами химического взаимодействия металла поверхностей трения с различными реакционноспособными функциональными группами в молекуле присадок. Чаще всего эффективность действия противозадирных присадок обеспечивается за счет образования сульфидов и хлоридов металлов и различных соединений фосфора с металлом. [c.135]

    Гидрирование этилеиа в этан было впервые осуществлено в середине XIX в. Фарадеем, применившим в качестве катализатора платиновую чернь. Впоследствии для гидрирования олефинов использовали платину, скелетный никелевый катализатор (никель Ренея), никель на носителях, медь, смешанные оксидные катализаторы (медь-хромитный и цинк-хромитный) и многие другие гетерогенные контакты.. Наиболее типичны для промышленной практики металлический никель и никель, осажденный ыа оксиде алюминия, оксиде хрома или других носителях. В их присутствии высокая скорость реакции достигается при 100—200 °С и давлении водорода 1—2 МПа. Если исходное сырье содержит сернистые соеди-Г ения, рекомендуется применять катализаторы, стойкие к сере (сульфиды никеля, вольфрама и молибдена) при 300—320°С и 5-30 МПа. [c.496]

    Альдегидная группа гидрируется значительно легче кетонной. Восстановление альдегидов часто можно провести в мягких усло-вТГях — при 50—150°С (с никелем и хромитами) или при 200— 250°С (с сульфидами металлов) гидрирование кетонов требует боле жестких условий — соответственно 150—250 и 300—350°С. Для ускорения реакции и повышения равновесной степени конверсии недут процесс под давлением в интервале 1—2 МПа с нике- [c.501]

    Процессы гидродеароматизации направлены на удаление ароматических углеводородов из прямогонных фракций и легкого газойля каталитического крекинга путем перевода их в нафтены с целью получения компонентов реактивных топлив и растворителей. Для гидрирования ароматических углеводородов использовали никельвольфрамсульфидные катализаторы, обладающие низкой активностью. Для повышения гидрирующей способности к обычным катализаторам добавляли или Р(1, гидрирующие способности которых на один-два порядка выше сульфидов Мо и №. В присутствии электроноакцепторной матрицы-цеолита металлический катализатор защищается от отравления сернистым ядом. Возникновение дефицита электронной плотности на атомах металла, взаимодействующих с сильнокислотными протонными центрами носителя по донорно-акцеп-торному механизму, сдвигает равновесие сульфидирования влево. Электроноакцепторная защита эффективна для металлов групп и Рс1 при содержании серы в сырье до 0,5%. Избыточная расщепляющая активность катализатора, возникающая в результате введения Р1, может быть подавлена селективной щелочной обработкой катализатора. Электроноакцепторная защита металла реализована в катализаторах гидродеароматизации ГТ-15 и ГТ-15М. Эти катализаторы обеспечивают высокую степень гидрирования при содержании серы в сырье до 0,5%. Для продуктов с более высоким содержанием серы применяют катализаторы типа 269 и 269М в оксидной форме и НВС-30 в сульфидной форме системы Mo(W), Перечисленные катализаторы позволяют снизить давление процесса до 5 МПа без изменения степени гидрирования при удвоенной объемной скорости. [c.179]


Смотреть страницы где упоминается термин Давление сульфидов: [c.260]    [c.452]    [c.161]    [c.373]    [c.285]    [c.146]    [c.37]    [c.169]    [c.16]    [c.95]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.460 , c.461 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.460 , c.461 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.460 , c.461 ]




ПОИСК





Смотрите так же термины и статьи:

Давление диссоциации сульфида железа

Давление диссоциации сульфидов металлов

Давление паров диссоциированного сульфида железа

Давление паров сульфидов аммония

Реакция ацетилена с сульфид-ионом под давлением



© 2025 chem21.info Реклама на сайте