Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма III определение бромом

    Броматометрический метод особенно удобен для определения мышьяка(1П) и сурьмы(П1). Броматометрическое определение сурьмы применяют при анализах баббитов. Этим методом пользуются также при анализе некоторых органических соединений, так как многие органические соединения способны к реакциям бромирования, протекающим при действии свободного брома, например  [c.413]


    При определении фосфора в сурьме берут две навески по 1 г тонкорастертого препарата, помещают каждую в кварцевую чашку емкостью 50 мл, приливают 5 мл 6н. соляной кислоты и по каплям при охлаждении 2 мл брома. Чашку помещают на электроплитку, находящуюся в боксе из оргстекла, накрытую кварцевой или графитовой пластиной, и упаривают содержимое чашки досуха. Сухой остаток растворяют в 2 мл 6 н. соляной кислоты и 1 мл брома и вновь упаривают досуха. Эту операцию повторяют два раза (в последний раз бром не добавляют). Остаток растворяют в 2 мл 5 н. соляной кислоты и проводят определение фосфора, как указано при приготовлении эталонных растворов (стр.142 ). Содержание фосфора находят по градуировочному графику. Данные (не менее четырех) параллельных определений обрабатывают методами математической статистики. [c.143]

    Точку эквивалентности при броматометрическом титровании устанавливают различными методами. При определении сурьмы (также мышьяка и др.) нередко применяют необратимые индикаторы, чаще всего метиловый оранжевый после введения небольшого избытка бромата выделяется свободный бром, который окисляет индикатор, что сопровождается исчезновением красного окрашивания. Можно также прибавить в конце титрования немного иодида калия и раствор крахмала. Свободный бром реагирует с К1  [c.432]

    Образующийся бром может бромировать органические соединения, например краситель метиловый оранжевый и нейтральный красный (необратимые редокс-индикаторы) шш хинолиновый желтый (бромируется обратимо). По исчезновению окраски красителей судят о конечной точке титрования. Реакцию проводят в кислой среде (pH = 1). Достоинством метода является устойчивость и чистота бромата калия. Броматометрия — лучший метод определения сурьмы и олова  [c.690]

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]


    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    С целью установления возможного источника битума в [368] проведен НАА прибрежных морских битумов. Использование более короткого времени облучения (по сравнению с предыдущими методиками) также позволило установить в исследуемых образцах битумов концентрации брома, кобальта, хрома, сурьмы, скандия, цинка, ванадия и никеля. Здесь же показано, что полиэтиленовая ампула, применяемая для упаковки образцов, содержит в своем составе примеси, мкг кобальта — 0,0194 цинка — 0,232 хрома — 0,09 брома — 0,042 скандия — 0,0017 сурьмы — 0,0097. Для определения четырех элементов в арабской нефти-367 использовали сочетание двух детекторов Ое(Ь ) для ванадия, брома, натрия и Ма1(Т1) для серы. Основным мешающим элементом для анализа был алюминий, который содержится в контейнере. Применение НАА в [369] позволило установить концентрацию ртути в 29 образцах нефтяных остатков, собран- [c.91]

    Химико-спектральное определение алюминия, висмута, железа, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра, сурьмы, титана, хрома и цинка в броме, азотной, бромистоводородной, соляной и фтористоводородной кислотах..................513 [c.528]

    В лабораторной практике важнее прямое галогенирование ароматических углеводородов как в ядре, так и в боковой цепи. Здесь также найдены закономерности, о которых будет сказано ниже (стр. 89). Хлор и бром вводятся в общем без затруднений в данном случае при содействии переносчиков. Наоборот, иод действует замещающе только при вполне определенных условиях, когда образующийся при реакции иодистый водород удаляется окислением или связывается каким-либо иным путем. Элементарный фтор на органические вещества обычно действует разрушающе, так что фторпроизводные, за малыми исключениями, могут получаться только обходным путем. Кроме самих галогенов, иногда применяются соединения, содержащие галоген, как, например,пятихлористый фосфор, пятихлористая сурьма, хлористый сульфурил. [c.84]

    Из элементов, обычно сопутствующих меди в природе, только железо, мышьяк и сурьма мешают ее иодометрическому определению. Правда, влияние и этих элементов легко устранить. Железо переводят в нереакционноспособное состояние, связывая в комплекс фторид- или пирофосфат-ионами. Так как эти ионы образуют с железом (П1) более устойчивые комплексы, чем с железом (И), потенциал этой системы падает до значения, при котором окисление иодид-иона становится невозможным. Мешающее влияние мышьяка и сурьмы устраняют в процессе растворения пробы, переводя их в состояние окисления +5. Обычно горячая концентрированная азотная кислота, применяемая для растворения, переводит элементы в желаемое состояние окисления, но если есть сомнение, можно добавить небольшое количество брома избыток брома затем удаляют кипячением. Как уже указывалось, мышьяк (V) не окисляет иодид-ионы, если раствор не слишком кислый. Аналогично ведет себя сурьма. Таким образом, влияние этих элементов можно устранить, поддерживая рН З. Мы видели, однако, что при рН>4 окисление иодид-ионов медью(П) протекает не полностью. Поэтому при определении меди в присутствии мышьяка или сурьмы важно поддерживать pH в интервале 3—4. Для создания буферного раствора в этом интервале pH удобно применять [c.407]

    Для раздельного определения сурьмы(III) и мыщьяка(1П) при совместном присутствии можно применять бихромат калия [12]. Применяют и другие окислители церий (IV), перйодат калия, иод, хлористый и подпетый бром, соединения кобальта(III), перманганат, а также тиооксин, описанные в разделе Мыщьяк . В разделе Ванадий описано титрование сурьмы(III) раствором ацетата свинца на ртутном капающем электроде. [c.264]

    Препятствующие анализу вещества. Мышьяк, церий, железо, таллий, кадмий, ртуть, олово и другие элементы, образующие с родамином окрашенные комплексы, мешают определению. Ионы фтора и брома, связывая сурьму, разрушают родаминовый комплекс. Нитрит, бром и другие сильные окислители, разрушая родамин, мешают определению сурьмы. [c.222]

    При определении олова и сурьмы в сплавах для подшипников можно также отделить сульфиды свинца и меди,к фильтрату, содержащему тиоантимонат и тиостаннат натрия, прибавить перекись водорода и соляную кислоту или же хлорную воду и соляную кислоту и полученные хлориды пятивалентной сурьмы и четырехвалентного олова титровать, как указано выше. Применять бромную воду и соляную кислоту нельзя, так как ионы брома восстанавливают пятивалентную сурьму. [c.69]


    Кулонометрическое титрование электрогенерированным бромом широко применяется при определении ионов металлов и некоторых неорганических анионов, в частности, тал- / иа ЛИЯ [579, 580], мышьяка [418, 419, 449, 581—587], сурьмы [398, 588, 589], железа [449, 572, 587, 590—594], селена [595], ортофосфатов [596], фосфитов 564] и иодидов [597]. [c.71]

    На этом свойстве основано [83] объемное определение степени разветвленности парафиновых углеводородов. При этом методе треххлористую сурьму, обр азова вшую ся и результате иэбирагельного хлор И рова-НИ5Г третичных атомов водорода, титруют броматом калия в присутствии бром-иона и метилоранжа. [c.184]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    По появлению брома в растворе, который может быть обнаружен по обесцвечиванию метилового оранжевого (необратимое окисление инцикатора), устанавливают конечную точку титрования. Препараты бромата калия могут быть получены в чистом виде, растворы его устойчивы. Применяют фомат калия для определения сурьмы(1П), мышьяка(111), олова(11) и цр. [c.142]

    Бромометрию часто применяют в органическом и фармацевтическом анализе. Бромометрическое определение фенолов предложено в 1876 г. В. Коппешааром. Бромометрическое определение обычно заканчивают иодометрическим определением с применением в качестве индикатора раствора крахмала. Мышьяк (III) бромом количественно окисляется до мышьяка (V), сурьма (III) —до сурьмы (V), железо (II) — до железа (III). Сернистая кислота, тиосульфат натрия и сероводород окисляются бромом до серной кислоты и ее солей. [c.415]

    Косвенный метод определения сурьмы по иодокрахмальной реакции [469]. Метод включает экстракцию 8Ь бензолом в виде ЗЬ1з из раствора, 10 N по Н2ЗО4, реэкстракцию ЗЬ1з из органической фазы водой, окисление в водном растворе 1- бромом до 10з, [c.43]

    Аналогично порошкообразному железу реагирует и окись кальция. Для наиболее эффективного поглощения мышьяка и сурьмы были применены слой медных опилок и MgO. Дистилляцию небольших количеств ртути удобно проводить в стеклянных трубках, используемых для гравиметрического определения воды по способу Пенфильда. Можно успешно применять разложение неорганических веществ в токе газа [93J, Чаще этот метод термического разложения выполняют в токе кислорода, который вызывает повышение температуры и очень эффектививно реагирует с рядом элементов. Прокаливанием в токе кислорода в кварцевой или стеклянной трубке отгоняют ртуть в элементном виде и конденсируют ее на охлаждаемой поверхности трубки. Окислы серы поглощают раствором брома в 3 Af H l, где они окисляются до серной кислоты. [c.139]

    При определении ЗаО -ионов раствор Вга в солянокислой среде титруют раствором NajSaOg при этом на окисление 1 моль NaaSiOg расходуется [8, 9] почти точно 1 г-экв брома (S2O3"— S0 ). у Стандартный раствор Brg в ледяной уксусной кислоте применяют [15] для потенциометрического определения сурьмы (III), ртути (I), железа (II) и таллия (I) в среде ледяной уксусной кислоты, к которой добавляют ацетат натрия. Ошибка во всех случаях была несколько более 1%. При определении Se и1"-ионов этим же методом получены менее удовлетворительные результаты [15], [c.87]

    Одним из вариантов исиользования электрогенерированных галогенов в кулонометрическом анализе являются методы, основанные на превращении галогенов в соответствующие гипогало-гениты [385, 386]. В этом случае сначала генерируют хлор, бром или иод в ячейке для внешнего генерирования [387], а затем вводят полученный галоген в щелочной буферный раствор, содержащий определяемый компонент. Таким путем определяют аланин, аминомасляную кислоту, амины, аммиак, борогидриды щелочных металлов (ион 10 пригоден только для определения последних), а также роданиды, арсениты, сурьму и другие восстановители. [c.49]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Разложение сурьмяных руд для определения в них серы — очень сложная операция. Изложенный ниже метод выполнения этого разложения является видоизменением метода, предложенного для анализа пири-тов. Этот метод дал при анализе стибнитов хорошие результаты. Переносят 1,373 г (факторная масса) тонко измельченной пробы в чашку. Покрывают ее часовым стеклом и обрабатывают 10 мл 10%-ного раствора брома в чётыреххлористом углероде, вводя его осторожно через носик чашки. Затем медленно прибавляют 5 мл брома и оставляют стоять 1 ч, время )0Т времени перемешивания. Ох,лаждают чашку в ледяной воде, прибавляют ЛЬ мл азотной кислоты и оставляют стоять еш е 30 мин, изредка перемешивая. Прибавляют 15 мл концентрированной соляной кислоты, Оставляют стоять при комнатной температуре около 30 мин, затем медленно нагревают, чтобы удалить четыреххлористый углерод, и выпаривают до сиропообразной консистенции (не перегревать и не выпаривать досуха ). Прибавляют 10 соляной кислоты и снова выпаривают до сиропообразной консистенции. Затем цриливают 20 мл соляной кислоты, нагревают до растворения растворимых веществ и переносят в коническую колбу емкостью 500 мл. Объем полученного раствора не должен превышать 100 мл. Затем всыпают 5 г железных стружек и оставляют стоять около 1 ч, чтобы практически вся сурьма была выделена. Фильтруют и тщательно промывают осадок водой. Фильтрат разбавляют до 1600 мл и осаждают сульфат бария, прибавляя 125 мл 6%-ного раствора ВаОа -2НЗО из капельной воронки со скоростью Ъ млъ минуту. Оставляют стоять на ночь, фильтруют через тигель Гуча, умеренно промывают осадок холодной водой, высушивают и прокаливают . [c.320]

    Метод основан на окислении серы до сульфатной при растворении металла в смеси соляной кислоты и брома, удалении сурьмы в виде бромида, восстановлении 504 до смесью нодистоводородной кислоты и гипофосфита натрия с последующей отгонкой сероводорода в токе азота. Определение заканчивается фотометрическим методом по реакции образования сульфида свинца. [c.239]

    При определении свинца и меди в пробах, содержащих сурьму, после разложения пробы нeoбxoди io удалить основную массу сурьмы выпариванием с бромом и бромистоводородной кислотой. Отделять сурьму в виде метасурьмяной кислоты нельзя, так как с осадком теряется часть свинца и меди. [c.455]

    На основании результатов изучения процессов горения различных полимеров установлено 1) самогаше-ние материала может происходить вследствие испарения с его поверхности большого количества негорючих частиц или образования на поверхности защитных полимерных пленок, не поддерживающих горения 2) введение фосфора в состав полимера способствует увеличению доли эндотермич. процессов ( охлаждению материала) и образованию в ряде случаев прочного кокса (чем быстрее коксуется полимер, тем выше его О.), введение галогенов приводит к понижению темн-ры пламени в газовом слое у поверхности полимера и ингибированию воспламенения 3) О. галогенсодержащих полимеров в зависимости от природы галогена уменьшается в ряду Вг>С1 > F 4) совместное присутствие в полимерном материале атомов фосфора и галогена (особенно брома), галогена и сурьмы оказывает синергич. действие на повышение О. (при определенном соотношении соответствующих пар) у близких по химич. природе полимеров О. повышается с увеличением термостойкости 6) О. определяется химич. структурой полимера напр., при введении ароматич. звеньев, замене группировок Р—О— С на Р—С, при уменьшении длины алкильной цепи у атома фосфора О. полимера возрастает 7) с повышением плотности упаковки макромолекул О. у близких по химич. природе полимеров возрастает. [c.202]

    Раствор помещают в эрленмейеровскую колбу и прибавляют к нему, каждый раз встряхивая, маленькими порциями восстановленное железо (Ferrnm redu tum) до исчезновения желтой окраски, после чего в раствор вносят еще 5—10 г восстановленного железа. Колбе дают постоять около 3 часов, неоднократно взбалтывая ее содержимое. По истечении этого времени осаждение сурьмы и меди можно считать законченным. Восстановление можно ускорить осторожным нагреванием. Фильтруют через сухой, быстро фильтрующий фильтр и, взяв 50 мл фильтрата, разбавляют водой и нейтрализуют соляную кислоту углекислым натрием. Фильтр прорывают оттянутой стеклянной палочкой, смывают осадок возможно малым количеством воды в 1/2 литровую колбу для титрования, растворяют приставший к фильтру остаток в смеси соляной кислоты с бромом, давая стечь раствору в ту же колбу, и удаляют избыток брома осторожным нагреванием. К полученному таким образом раствору прибавляют для объемного определения олова 2 — 3 г обезжиренных алюминиевых стружек или крупного алюминиевого порошка, затыкают колбу пробкой с двумя отверстиями и умеренно нагревают, все время пропуская ток углекислоты. Время от времени в колбу прибагляют несколько капель концентрированной соляной кислоты до тех пор, пока не растворится почти весь алюминий. Прибавив еще 50 мл соляной кислоты, нагревают до растворения губчатого олова. Затем охлаждают в токе углекислоты, прибавляют несколько миллилитров крахмального раствора и 15 капель раствора индикатора и, продолжая пропускание углекислоты, титруют раствором хлорного железа до появ. ения неисчезающей при взбалтывании голубой г краски (ср. стр. 398, 532). [c.531]

    Осадок сернистых металлов промывают и, растворив в азотной кислоте (1 1), выпаривают с серной кислотой. Свинец обычным способом отфильтровывают и взвешивают в виде PbSO .Медь и кадмий осаждают вместе счастью цинка сероводородом в виде сернистых металлов. Их отфильтровывают, хорошо промывают, обливают на фильтре теплым раствором сернистого натрия, после чего оставшиеся на фильтре сульфиды обрабатывают разбавленной серной кислотой (1 10). При этом сернистые кадмий и цинк переходят в раствор [а сернистая медь остается на фильтре]. При не очень ответственных анализах фильтрат после обработки сернистым натрием можно употребить для определения сурьмы и олова. Лучше,, однако, воспользоваться для этого отдельной навеской, применяя приводимый ниже метод Blumentha Гя. Оставшийся на фильтре осадок растворяют вместе с фильтром в смеси азотной и серной кислот, после чего определяют в этом растворе медь либо колориметрически (см. т. П, ч. 2 вып. 1, стр. 371), либо, если содержание меди велико,—электролитически (см. там же, стр. 57). В сернокислом фильтрате, содержащем кадмий, этот последний отделяют от цинка двукратным осаждением на холоду из раствора,, содержащего 8% по объему серной кислоты определяется кадмий, как это описано при Кадмии (см. т. II, ч. 2, вып. 1, стр. 286), в виде сернокислого кадмия. Фильтрат от сероводородного осадка кипятят, для удаления сероводорода, окисляют бромом, охлаждают, пересыщают аммиаком и вновь нагревают до кипения. Выделившуюся гидроокись железа отфильтровывают, растворяют в соляной кислоте и, восстановив хлористым оловом, титруют марганцовокислым калием. Если железо хотят определить весовым путем в виде окиси, надо растворить Fe(OH)g в соляной кислоте, вторично осадить аммиаком, отфильтровать и прокалить осадок. Однако, если в материале присутствует алюминий, весовой метод неприменим, и железо, выделенное осаждением в виде гидроокиси, следу ет оттитровать [КМпО ]. [c.584]

    Поэтому более надежным является прямое определение этих загрязняющих примесей из отдельных навесок. Для определения м ы ш ь я к а растворяют 50—100 г сырого цинка в разбавленной азотной кислоте, удаляют кипячением азотистую кислоту, прибавляют 2 мл 10 /о-ного-раствора хлорного железа и нейтрализуют сперва концентрированным, а затем разбавленным раствором соды до тех пор, пока не выделится углекислый цинк. Дав осесть в теплом месте, отфильтровывают осадок и растворяют его в соляной кислоте. Прибавив к раствору еще 200 мл разбавленной соляной кислоты, подвергают его перегонке с сернокислым гидразином, осаждают в приемнике мышьяк сероводородом и взвешивают его в виде AsgSg (см. стр. 45) можно также нейтрализовать содержимое приемника и в присутствии избытка двууглекислдй соли оттитровать мышьяк. иодом (см. стр. 46). Для определения сурьмы 50 г сырого цинка растворяют в смеси брома с соляной кислотой, удаляют кипячением бром и пропускают в горячий, не слишком кислый раствор сероводород до тех [c.585]

    Во второй части книги описаны следующие методы, в которых применяется титрованный раствор тиосульфата определение мышьяка (V), сурьмы (V), гексацианоферратов (П1), хлора, брома, гипохлоритов, иодатов, броматов, кобальта в виде С02О3, меди, никеля в виде NI2O3, золота (П1), кислорода в присутствии гидроокиси марганца (П), озона, перекиси водорода, селена (VI), теллура (VI), селена (IV), таллия (III), сульфида цинка после добавления избыточного количества иода (обратным титрованием) и т. д. [c.571]

    Хендриксон и Сендэл [30] определяли спектрофотометрически в силикатных горных породах 0,3 мкг Мо. Для извлечения молибдена из раствора авторы осаждали его сероводородом, используя 1В качестве коллектора сурьму для отделения вольфрама осаждение проводили в присутствии винной кислоты. Осадок растворяли в едком натре, затем суль-фцд раз рушали бромам и далее анализ ве.ти обычным спЬг собом. Рений не мешал определению. [c.163]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    Медные концентраты предложено растворять в смеси бромоводородной кислоты и брома [5.1875], халькопирит (медный колчедан) — в смеси 1 ч концентрированных азотной и 3 ч хлороводородной кислот с бромом [5.1876], сульфо-шпинелн — в смеси брома с азотной кислотой или со смесью (1 3) азотной и хлороводородной кислот [5.1877], а сульфидные никелевые руды [5.1878] илиЗпЗз [5.1879] в смеси брома с четыреххлористым углеродом. Пириты при определении серы окисляют смесью четыреххлористого углерода и брома (3 2) с последующей обработкой раствора азотной кислотой [5.1880]. Преимуществом этих методов бромирования является возможность дистилляции бромидов мышьяка, сурьмы, селена и других элементов из раствора [5.1881 ]. [c.265]

    Ре ", Zn , N1 +, Со " " и другие, при определенных pH раствора образуют с 8-оксихинолином хорошо фильтрующиеся кристаллические осадки, при растворении которых в кислотах (например, соляной кислоте) выделяются стехиометрическне количества 8-оксихинолина. Последний, естественно, легко можно титровать электрогенерированным бромом [566—569]. Если принять во внимание, что 1 ммоль двухвалентного металла в осадке оксихинолината требует 8 мэкв брома, а 1 ммоль трехвалентного металла—12 мэкв брома, то открываются широкие возможности определения милли- и микрограммовых количеств различных катионов, образующих внутрикомплекс-ные соединения с указанным реагентом. Такой способ сводится к осаждению катиона избытком 8-оксихинолина, растворению отмытого от свободного реагента осадка в кислоте и последующему кулонометрическому титрованию выделившегося реагента электрогенерированным бромом. Можно применять также стандартный раствор 8-оксихинолина и титровать остаточный реагент после отделения осадка. Описанными способами определяют микро- и ультрамикроколичества кобальта [570] и ниобия [571], а также алюминий в хромате калия, сурьме [467], селене [572], ацетате натрия и вольфрамовой присадке [573] и бериллий в металлическом галлии [574]. [c.68]


Смотреть страницы где упоминается термин Сурьма III определение бромом: [c.519]    [c.82]    [c.20]    [c.90]    [c.308]    [c.337]    [c.204]    [c.122]    [c.280]    [c.167]    [c.166]    [c.171]    [c.463]   
Новые окс-методы в аналитической химии (1968) -- [ c.87 ]




ПОИСК







© 2025 chem21.info Реклама на сайте