Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерного магнитного резонанса времена релаксации ядерных

    Оценим чувствительность метода СПЯ для регистрации спектров ЭПР короткоживущих РП. При комнатной температуре в полях порядка нескольких тесла, которые применяются в современных экспериментах по ядерному магнитному резонансу, равновесная поляризация спинов протонов порядка 10 В этих условиях удается регистрировать спектр ЯМР, если в образце находится порядка 10 протонов. Значит, спектрометры ЯМР позволяют измерить поляризацию порядка = 10 - 10 = 10 . Пусть г - время жизни РП, оно порядка наносекунд, а Т, - время релаксации поляризованных ядер - это время порядка секунд. Если стационарная концентрация РП равна N, то стационарная концентрация поляризованных ядер равна [c.132]


    Экспериментальные методы исследования ядерного магнитного резонанса позволяют непосредственно наблюдать сигнал резонанса и измерять продольное Х и поперечное Тз времена релаксации. В опытах по ядерному резонансу исследуемое вещество (образец) помещается в цилиндрическую катушку индуктивности настроенного высокочастотного контура, связанного с генератором высокой частоты. Перпендикулярно оси катушки прикладывается сильное постоянное магнитное поле Яо, поляризующее ядерные моменты в образце. [c.217]

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Использование спектроскопии ядерного магнитного резонанса (ЯМР) как критерия ароматичности уже обсуждалось (см. гл. 2.4). Относительно большие времена релаксации ароматических ядер и наличие в той же области химических сдвигов сигналов С олефинов затрудняют точные структурные отнесения для ароматических систем при использовании спектроскопии ЯМР С, если только не имеется подходящих модельных соединений [7]. Химический сдвиг ядер бензола равен 128,5 м. д. (относительно тетра-метилсилана), а для класса аренов в целом химические сдвиги лежат в области ПО—170 м. д. Теоретическая обработка химических сдвигов ароматических систем проведена достаточно полно, и имеются сводные данные 1Ю влиянию заместителей на химиче-сдвиги С в замещенных бензолах. [c.321]

    Сведения об изменении молекулярной подвижности в граничных слоях полимеров могут быть получены также с применением метода ядерного магнитного резонанса. Имеются многочисленные данные [230], показывающие, что исследования релаксационных процессов в полимерах, проведенные методами диэлектрической релаксации или ЯМР, дают в общем аналогичные результаты. В ряде наших работ на объектах, уже рассмотренных выше, была исследована спин-решеточная релаксация протонов в полимерах и олигомерах, находящихся на поверхностях частиц наполнителей [215—218]. Для примера рассмотрим данные о температурной зависимости времени спин-решеточной релаксации Г] для полистирола и образцов, содержащих аэросил и фторопласт-4 (рис. III.27). Наблюдаются две области релаксации — высокотемпературная и низкотемпературная. Для высокотемпературной области минимум Ti смещается в сторону высоких температур по мере уменьшения толщины поверхностного слоя, и сдвиг достигает 20 °С. В то же время низкотемпературный процесс смещается в сторону низких температур. Для ряда исследованных систем были установлены [c.129]


    Спектроскопия ядерного магнитного резонанса. Для расчета констант устойчивости могут быть использованы следующие три параметра, получаемые из спектров ЯМР химический сдвиг, константы спин-спинового взаимодействия и время релаксации в присутствии парамагнитных ионов. Наиболее часто используются первые два параметра. [c.148]

    Методы, которые дают информацию о У-структуре, — это методы, использующие излучение или частицы, которые взаимодействуют с жидкостью только в течение короткого периода времени и обмениваются регистрируемой долей своей эиергии с молекулами в жидкости. Инфракрасная и рамановская спектроскопия так же, как и неупругое рассеяние нейтронов, удовлетворяет этим требованиям и является главным источником информации о У-структуре жидкости (рис. 4.2). Рассеяние нейтронов дает информацию о промежутках времени продолжительностью 10 " с. Поскольку это время совпадает с периодом Тп, рассеяние нейтронов является полезным методом исследования природы перемещения временных положений равновесия. Исследования релаксации диэлектрической поляризации и ядерного магнитного резонанса применяются для определения среднего времени между перемещениями. Порядок, в котором ниже рассматриваются свойства воды, основан на временном масштабе, о котором дают информацию указанные методы. [c.159]

    Термин решетка относится к молекулярной структуре (образец и растворитель, жидкий, газообразный или твердый), построенной из прецессирующих ядер. Все эти молекулы двигаются поступательно, колеблются и имеют магнитные свойства. Поэтому в решетке возникает слабое флуктуирующее магнитное поле. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с высшего уровня на низший. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергий (спин-решеточная релаксация, иногда называемая продольной релаксацией), а ядро возвращается с верхнего уровня на нижний. Благодаря этому процессу ограничивается время жизни возбужденного состояния, т. е. поддерживается избыток ядер на нижнем уровне. Другими словами, именно спин-решеточная релаксация позволяет наблюдать явление ядерного магнитного резонанса. [c.72]

    Большую информацию о подвижности структурных элементов дают методы диэлектрической релаксации, парамагнитного зонда [36], ядерного магнитного резонанса [9], с помощью которых можно оценить время релаксации (время корреляции), т. е. подвижность звеньев, молекулярных цепей и надмолекулярных структур. [c.442]

    Для определения чисел гидратации был использован также и метод ядерного магнитного резонанса, при помощи которого определяли время релаксации и химический сдвиг. [c.72]

    Уменьшение степени гидролиза при переходе сверху вниз по группе элементов симбатно уменьшению времени, необходимому для обмена молекул НгО, непосредственно связанных с ионом металла, с другими, несвязанными молекулами НгО. Времена половинного обмена во всех случаях меньше 1 сек, так что для исследования таких процессов нужно пользоваться специальными методами. Один из таких методов основан на изучении ядерного магнитного резонанса О - (см. стр. 170). Если в этих опытах молекула воды, связанная с ионом, обменивается за время не меньше 10 сек, то линию ЯМР О такой молекулы можно отличить от линии О в объеме растворителя. Такая линия была обнаружена для гидратированного иона Ве +, что указывает на обмен со временем половинного обмена больше 10 сек. Однако отсутствие такой линии в случае Mg + показывает, что время половинного обмена должно быть меньше 10 сек. Более точные количественные данные можно получить с помощью релаксационно-спектральных измерений по Эйгену, хотя эти опыты являются менее непосредственными. В интересующем нас методе используется поглощение звука. Акустические времена релаксации связаны с константами скоростей, так что по изменению частот поглощения звука можно получить кинетические данные. Такие опыты с растворами электролитов позволяют получать сведения о скоростях ассоциации катионов с анионами. Интерпретация данных основывается на разумном предположении о том, что сначала гидратированный катион и анион образуют ионную пару, содержащую молекулу воды между двумя ионами. Затем ионная пара перегруппировывается, при этом удаляется промежуточная молекула воды, и эта стадия является определяющей скорость [c.190]

    Среди других факторов, влияющих на параметры спектров ядерного магнитного резонанса (ЯМР), важную роль играют времена продольной (Г,) и поперечной (Fj) релаксаций. Эти величины чувствительны к окружению молекулы и к ее движению и, следовательно, могут быть использованы для получения информации о структуре и динамических свойствах системы. [c.175]


    Для изучения структуры модельных вод использовали метод ядерного магнитного резонанса, позволяющий получить информацию о динамике движения молекул, энергии активации [69,70]. Измеряли время спин-решеточной релаксации (T ), отражающее период, необходимый для достижения равновесия ориентации ядерных магнитных моментов в направлении поля [71], находящийся в зависимости от расположения молекул воды и позволяющий регистрировать их изменения при фазовых переходах, сопровождающихся изменением структуры воды [72]. [c.221]

    Метод непрерывного воздействия позволяет измерять время релаксации Т1, используя явление насыщения системы ядерных магнитных моментов. Однако для Т1<10 с абсолютные измерения слишком затруднительны и ненадежны. Время релаксации Тг как величину, обратную ширине линии, можно определять только в том случае, если линия не расширена неоднородностью постоянного поля. При использовании импульсных методов измерение времени релаксации удобнее и точнее производить по неустановившимся процессам в системе ядерных магнитных моментов, которые возникают после прекращения действия коротких интенсивных импульсов высокочастотного поля. Напряженность постоянного магнитного поля и частота высокочастотного поля остаются неизменными, удовлетворяя условию резонанса в соответствии с формулой (8.2). [c.220]

    Ядра, обладающие магнитным моментом большим, чем /г — 1, /2 И Т. д., имеют, кроме магнитного, электрический квадрупольный момент. Время релаксации таких ядер слишком мало для того, чтобы можно было получить узкие сигналы. Правда, для них возможно применение другого варианта радиоспектроскопии — ядерного квадрупольного резонанса (ЯКР). Для этого вещество переводят в кристаллическое состояние (если надо, охлаждая жидким азотом) и для полученных сигналов определяют только их резонансную частоту. Это дает информацию и о химическом окружении квадрупольного атома, и о свойствах кристаллической решетки. [c.219]

    Мак-Колл с сотр. [27] измерил методом ядерного магнитного резонанса времена релаксации для нефракционированных образцов разветвленного нолиэтилеиа, обладающих различной шириной распределения по молекулярным весам, и обнарунлил определенную корреляцию мея ду формой релаксационной кривой и степенью полидисперсности образца, однако преобразования кривой релаксации в кривую распределения не проводилось. [c.403]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Магнитные поля. Компьютерная томофафия на основе ядерного магнитного резонанса (ТР-томофафия) Протонная плотность, время релаксации Для диагностики всех органов и систем [c.185]

    Крейлик и Вейссман нашли константы скорости реакции 2,4,6-три-третичнобутилфеноксила с фенолом такого же строения. Определение констант производилось методом ядерного магнитного резонанса по уширению линий гидроксильных ядер водорода за счет присутствия неспаренных электронов, уменьшающих время релаксации протонов, а также при осуществлении элементарных актов реакции передачи атома водорода от молекулы к радикалу. Уширение этих линий является мерой частоты передачи атома водорода между частицами, если, конечно, ввести поправку на уширение за счет межмолекулярных соударений с радикалами, не приводяш,их к актам реакции. Найденная таким образом константа скорости при 30 С в ССи равна 5-10 см 1сек, а энергия акти- [c.92]

    То, что вода, содержащая примеси, обладает струк- турной релаксацией, подтверждено методами ядерно-магнитного резонанса (ЯМР), определением спин-эха. О Болгарские физики А. Держанский, В. Константинов (ои Г. Клисуранов пропускали непрерывный поток дистиллированной воды через аппарат с электромагнитами. После этого аппарат периодически включали и выключали. Из аппарата вода непрерывно поступала в установку ЯМР, частоту магнитного поля которой Меняли. Это приводило к изменению прецессии протонов воды, сопровождаемой поглощением определенной, точно измеряемой энергии. Величина такого сигнала релаксирует— медленно затухает. Релаксация зависит от взаимодействия протона со структурированной средой, т. е. водой. Опыты показали, что после предварительной магнитной обработки время протонной релаксации возросло на 0,1% (что считается существенным). [c.17]

    Эксперименты по ядерному магнитному резонансу, проведенные в последние годы в ферромагнетиках и антиферромагнетиках [1], показывают, что для теоретического объяснения экспериментально наблюдаемых значений времени релаксации и ширины линии нужно знать детальное движение эле -тронных спинов в переходном слое между доменами. В связи с этим изучались элементарные возбуждения в переходном слое и влияние их на ядерный магнитный резонанс в ферромагнетиках — Винтером [2], а в антиферромагнетиках (СиСЬ 2НгО, NiF2) — Паулем [3]. Авторы этих работ при изучении элементарных возбуждений в переходном слое пользовались микроскопическим гамильтонианом в форме Гайзенбер-га, в то время как затухание и размагничивающие эффекты учитывали феноменологически. [c.125]

    После того как в результате исследований с полющью колебательных спектров и дифракционных методов были получены сведения о расположении ядер в люлекулах фторидов ксенона, стало возможным использовать другие физические методы, которые позволяют установить пространственное и энергетическое распределение электронов в этих молекулах. Такие соединения очень удобны для изучения методом ядерного магнитного резонанса [16], поскольку естественное содержание ядер Р(5 = 2) составляет 100%, 12 Хе (5=1/2)25%, 131Хе(5 = 3 2) 25%. Между ядрами охе и Р может иметь место только магнитное взаимодействие, однако в случае ядер Хе и Р возможно также взаимодействие между квадрупольным моментом и любым градиентом электрического поля, существующим в области ядра ксенона. Полностью разрешенный спектр ЯМР молекулы Хер4 для ядер Р содержит две линии, обусловленные взаимодействием с Хе. Если бы молекула была построена в виде тетраэдра, в спектре следовало ожидать появления четырех линий за счет взаимодействия между Хеи Р однако в результате квадрупольной релаксации они должны слиться в одну линию. Простой вид спектра свидетельствует об эквивалентности всех атомов фтора, однако, как уже отмечалось выше, не следует забывать о масштабе времени, к которому относятся опыты по ядерному магнитному резонансу. На основании ширины линий можно также установить, что среднее время жизни атома фтора, связанного с атомом ксенона (по спектрам в растворе НР), больше [c.405]

    Ядерный магнитный резонанс атома водорода и всех парамагнитных молекул осложняется влиянием электронного спина. Это связано с тем, что время спиновой релаксации электрона в некоторых случаях весьма мало. Сверхтонкое взаимодействие не только аномально сильно сдвигает частоту ЯМР по сравнению с частотой свободного протона, но также может и сильно уширить линию ЯМР. В результате свертонкого взаимодействия энергии уровней ядерного спина изменяются во времени и линии ЯМР в спектрах жидких и твердых тел часто становятся настолько широкими, что их трудно или вообще невозможно обнаружить. Несколько более подробно этот вопрос рассмотрен в гл. 12, а теперь вернемся к рассмотрению атома гелия, спектр ЯМР которого гораздо более типичен. [c.39]

    ХПЯ имеет большое значение как метод структурной хими п существенно дополняет метод электронного парамагнитного резонанса и обычные варианты ядерного магнитного резонанса. ХПЯ позволяет определять знаки константы СТВ и -факторы радикалов, энергии обменного взапмодействия в радикальных парах, величины и знаки констант спин-спинового взаимодействия в молекулах, времена ядерной релаксации в радикалах. В этом разделе мы обсудим наиболее интересную и новую структурную информацию, полученную с помощью ХПЯ- [c.253]

    Болгарские физики А. Держанский, В. Константинов и Г. Клисуранов исследовали методом ядерно-магнитного резонанса влияние магнитной обработки на воду. Дистиллированная вода пропускается через магнитный аппарат, работающий в определенном режиме (каждые 7 сек он включался и отключался), затем она попадает в магнитное поле, на которое накладывается определенная частота. Это ивменяет прецессию (вращение) протонов воды таким образом, что происходит некоторое поглощение энергии, точно измеряемое. Величина такого сигнала релаксиру-ет — медленно затухает, время же релаксации зависит от взаимодействия протона со структурированной средой, т. е. водой. Опыты показали, что после предварительной [c.23]

    Наблюдение производится методом ядериого магнитного ре-.юнанса. Объект помещается в сильное магнитное поле. Спины ядер начинают прецессировать вокру вектора напряженности магнитного поля с определенной частотой. Затем подается слабое магнитное ноле, вектор напряженностн которого нерпендн-кулярен начальному вектору. Это поле меняется с некоторой частотой. Прн совпадении частот прецессии н слабого поля система начинает сильно поглощать энергию — наступает резонанс. Затем слабое поле выключается и система релаксирует к равновесному состоянию. По скоростям релаксации определяются значения Т , и То и затем рассчитываются времена корреляции броуновского движения. С помощью ядерной магнитной релаксации их можно измерять в широком диапазоне температур и частот. Измеренные времена корреляции позволяют определить размер частиц. Метод ядерной магнитной релаксации применим не всегда, поскольку нужно учитывать релаксацию молекул как дисперсной фазы, так и дисперсионной среды. Интерпретация результатов оказывается затруднительной. Метод применим для высокодисперсных систем с частицами от молекулярных размеров до десятков нанометров. Исследования нефтяных систем этим методом только начинаются [140]. Проведенные этим методом исследования дисперсности масляных фракций нефти и их фенольных растворов позволили установить, что размеры образующих их ССЕ составляют величины порядка 10 нм [141]. [c.99]

    При низких температурах, когда электронное время релаксации увеличивается, линии ЯМР ядер, окружающих парамагнитный центр, расщепляются. При этом зачастую а> АЩ и спектр усложняется. Как правило, такие спектры реп-гстрируют методом двойного электрон-ядерного резонанса. Другой случай проявления сверхтонкого взаимодействия в спектрах ЯМР реализуется в магнитно-упорядочепных соединениях - ферро-, ферри- и антиферромагнетиках (примечание редактора перевода). [c.33]

    Смысл явления ХПЯ заключается в том, что при проведении химической реакции в магнитном поле в тех случаях, если реакция идет с промежуточным образованием свободных радикалов, в спектрах магнитного резонанса продуктов может обнаруживаться или аномально большое поглощение, или радиоизлучение, которое может быть зафиксировано в течение времени ядерной релаксации (1—30 с). Наличие ХПЯ в продукте может служить признаком того, что он образовался в результате рекомбинации свободнора-дикальной пары, а вид спектра дает возможность судить о природе этой пары. Использование ХПЯ позволило подтвердить свободно-радикальный характер некоторых перегруппировок, а также сделать вывод о механизме распада азосоединений, С помощью метода ХПЯ удается различить, про.чодят реакции карбенов через синглетное или триплетное состояние карбена. В ряде случаев метод ХПЯ позволяет не только сделать качественные выводы о механизме процесса, но и оценить скорости быстрых элементарных стадий. Так, при помощи ХПЯ были измерены скорости взаимодействия бензильного радикала с ССЦВг и ССЦЗОгС [44, 1971, т. 93, с. 546 44, 1972, т. 94, с. 2007]. В настоящее время изучение ХПЯ все шире используется при исследовании механизмов реакций [11, [c.208]

    Открытие явления значительного ускорения релаксации ядерного спина в присутствии парамагнитных ионов было поворотной вехой в истории магнитного резонанса и привело к значительно более глубокому пониманию процессов релаксации в жидкостях и твердых телах. Мощное влияние этих ионов обусловлено главным образом большими локальными магнитными полями, создаваемыми электронным спином на ядрах. Так как магнитный момент электрона примерно в тысячу раз больше, чем магнитный момент большинства ядер, то локальное поле Не может достигать 10 ООО э (разд. 13.2). Другим важным фактором является короткое время релаксации электронного спина для многих парамагнитных ионов, что приводит к быстрой флуктуации Не и индуцирует быстрые переходы между состояниями ядерного спина. Броуновское движение также юдyлиpyeт анизотропные магнитные взаимодействия обычным образом и дает вклад в релаксацию независимо от того, связаны ли ядра с самилш ионами или с другими ядрами в растворе. [c.295]

    Напротив, в области больших Тс осциллирующие члены эффективно уменьшают величину интеграла по времени и основной вклад в скорость поперечной релаксации дает первый член в квадратных скобках в (III. 85). В результате при возрастании Тс время поперечной релаксации уменьшается и при некоторых Тс второе из условий (III. 86) нарушается. В книгах по магнитному резонансу [13, гл. III 14, гл. 2 8] показано, что форма линии, рассчитанная на основании уравнений Блоха (111.83), имеет Ло-ренцову форму (III. 80). Отсюда и следует утверждение, высказанное на стр. 221, о том, что линия ядерного магнитного резонанса имеет Лоренцову форму только в жидких средах. [c.225]

    Метод спинового эха в настоящее время широко используется в ядер-ном магнитном резонансе. Впервые явление спинового эха обнаружил Хан [91, 92], исследуя поведение ядерной спиновой намагниченности под действием двух мощных радиочастотных импульсов, разделенных интервалом времени т оказалось, что в этом случае через промежуток времени 2х после первого импульса возникает сигнал (рис. 55, а), амплитуда которого зависит от т и определяется временем поперечной релаксации ядерных спинов. Хан [91, 92], а позднее Карр и Парселл [93] усовершенствовали метод спинового эха и дали феноменологическую теорию, а Дас, Саха и Рой [94] — квантово-механическую теорию явления спинового эха. Развитые в этих работах представления полностью приложимы и для спинового эха свободных радикалов в случае одно-родпо-уширенных линий ЭПР. [c.158]

    Измерение магнитного резонанса протонов позволяет определить такие величины, как например второй момент, форму линии, время продольной и поперечной релаксации, па основании которых мо/кно судить о подвижности и взаимном расположении протонов. Если известно время релаксации при различных температурах, то можно вычислить энергию активации и время корреляции механизмов движения. При помощи ядерного магнитного резонанса можно прямым методом измерить коэффициент самодиффу-зии и энергию активации этого процесса. [c.113]

    Как указывалось выше, спектр ЯМР многих парамагнитных веществ не удается получить из-за того, что наличие неспаренного электрона приводит к уширению сигнала вследствие взаимодействия по дипольному механизму и взаимодействия электронного и ядерного спинов. Поскольку магнитный момент электрона примерно в 10 раз больше магнитного момента ядра, добавление парамагнитных ионов приводит к появлению сильных магнитных полей, очень эффективно вызывающих диполь-ную спин-решеточную релаксацию, так что понижается (см. раздел, посвященный химическому обмену и другим факторам, влияюшим на ширину линий). Если волновая функция, описывающая неспаренный электрон, имеет конечное значение у ядра, то возникает взаимодействие электронного спина со спином ядра. Оно также приводит к появлению у ядра флуктуирующего магнитного поля, укорачивающего Т1. Если электронная релаксация очень медленная, время жизни иона в данном спиновом состоянии будет большим и должны наблюдаться два резонанса, соответствующих 5= /2- Такое положение осуществляется не особенно часто. Если время жизни парамагнитного состояния очень мало, магнитное ядро будет реагировать только на усредненное по времени магнитное поле двух спиновых состояний электрона и в спектре должен наблюдаться лишь один пик. Часто электронная спиновая релаксация имеет скорость, промежуточную между этими двумя предельными случаями, что в результате приводит к укорочению и очень большому уширению сигналов. Если электронная релаксация очень быстрая, уширение минимально и главным результатом присутствия неспаренных электронов явится изменение магнитного поля, влияющего на магнитное ядро. Это приводит к очень большому химическому сдвигу (достигающему иногда 3000—5000 гц) резонанса в ЯМР-спектре. Такой сдвиг называется контактным ЯМР-сдвигом. [c.323]

    В реальных веществах ЯМР наблюдается не строго на одной частоте, как это следует из ур-ния (4), а в нек-ром интервале частот. Форма линии может также отличаться от приведенной на рис. 3. Конечная ширина линии обусловлена различием условий прецессии соседних магнитных ядер в веществе. Эти условия определяются структурой, агрегатным состоянием вещества и рядом других факторов. Поэтому спектры ЯМР стали полезным инструментом при исследовании внутреннего строения и межмолекулярных взаимодействий в твердых, жидких и газообразных соединениях. Важным фактором, определяющим ширину и форму линии ЯМР, является механизм установления равновесного распределения ядерных моментов образца в поле Но- Пока образец находится вне магнитного поля, ориентации векторов х отдельных ядер хаотически распределены по всем направлениям вследствие теплого движения атомов и молекул. При внесенип образца в поле Яо часть векторов л ориентируется по полю, а часть ( меньшая) — против поля, за счет избыточной тепловой энергии. В этом случае, согласно правилам квантовой механики, ядра могут иметь только определенные, дискретные зйаче-ния энергии, Е1 и 2- Переход к распределению в поле Яо требует нек-рого времени. Такие процессы установления носят название релаксационных и проходят через взаимодействие релаксирующих частиц между собой и с окружающей средой. В теории ЯМР рассматривается два механизма релаксации. Первый характеризуется временем установления теплового равновесия между магнитными ядрами и окружающими атомами и молекулами (спин-решеточная релаксация). Второй характеризуется временем установления равновесия в самой системе магнитных ядер (спин-сниновая релаксация). Встречающиеся в экспериментах значения Т1 лежат в интервале от 10 до 10 сек. Для твердых тел Т1 больше, чем для жидкостей и газов. Релаксация ограничивает время жизни ядра в данном состоянии. Это приводит к конечному интервалу частот, в к-ром наблюдается резонанс [c.545]

    Физический смысл времен Т и Тг был рассмотрен ранее (см. (Х.2.17)). Причиной, определяюш ей ядерную спин-решеточную релаксацию, является движение молекул и возникаюш ие при этом движении переменные магнитные поля. Возвра-ш ение системы ядерных спинов к тепловому равновесию происходит за счет передачи поглош енной от радиочастотного поля энергии своему окружению — решетке . Для этого необходимо, чтобы в спектре внутреннего движения имелись частоты со 10 Гц для ядер Н , равные частоте резонанса (и ее удвоенному значению). В то же время на Тг влияют частоты внутреннего движения, превышаюш ие выраженную в шкале частот ширину резонанса. [c.285]


Смотреть страницы где упоминается термин Ядерного магнитного резонанса времена релаксации ядерных: [c.378]    [c.10]    [c.12]    [c.291]    [c.237]    [c.216]    [c.260]    [c.397]    [c.316]    [c.304]    [c.304]    [c.345]   
Быстрые реакции в растворах (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Время ядерной магнитной

Время ядерной релаксации

Резонанс г ядерный магнитный

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте