Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр детектирование

    В последние годы разработаны способы, позволяющие значительно повысить эффективность разделения и количественного анализа методам ТСХ за счет нанесения на пластины очень малых (до 100 нанограмм) проб, перехода к круговой ТСХ и применения сканирующих пластинку устройств, фотометрирующих и регистрирующих интенсивность спектров рассеяния или флуоресценции сорбированных соединений или работающих на иных физических принципах детектирования [156]. [c.20]


    Микроволновые и радиочастотные спектры. В отличие от оптических спектральных приборов в радиоспектроскопе нет диспергирующего устройства, подобного призме или дифракционной решетке. Радиоспектроскоп — полностью электронный прибор очень высокой чувствительности. Его обязательными частями являются источник излучения, отражательный клистрон (область с V — = 1,5 — 0,5 см ), поглощающая ячейка, прибор для измерения частоты, детектор излучения СВЧ, усилитель детектированной мощности и индикатор. [c.150]

    Недостатками стационарных методов является малая вероятность обнаружения сигнала для многих образцов спектры ЯКР не обнаруживаются, а иногда и в принципе не могут быть обнаружены. Нередко возникают трудности с детектированием, большой длительностью эксперимента и низкой чувствительностью. [c.111]

    Детектором, указывающим на разделение, в колоннах создателя хроматографии служило поглощение разделяемыми компонентами света в видимой области света, т. е. цвет компонента. В случае бесцветных соединений для их детектирования используют другие свойства и методы поглощение в ультрафиолетовом и инфракрасном свете, показатель преломления света, различные ионизационные, химические й электрохимические методы, масс-спектр, спектры флуоресценции, ядерный магнитный резонанс и до. [c.8]

    Поскольку только свободные радикалы дают ЭПР-снектры, этот метод можно использовать для их детектирования и определения их концентрации. Кроме того, по расщеплению сигналов в спектре ЭПР (за счет близости протонов) можно получить информацию о распределении электронов, а отсюда и о строении свободных радикалов 120]. Большинство свободных радикалов являются короткоживущими частицами, но, к счастью, для получения спектра ЭПР их время жизни обычно бывает достаточным. Так, удается получить спектры радикалов, время жизни которых значительно меньше 1 с [121]. Отсутствие сигнала в ЭПР-спектре еще не означает, что радикалы действительно отсутствуют, просто их концентрация может оказаться слишком низкой для прямого наблюдения. Б подобных случаях применяют метод спиновой ловушки 22], заключающийся в добавлении такого соединения, которое, взаимодействуя с очень реакционноспособными радикалами, образует более устойчивые радикалы, регистрируемые ЭПР. В качестве [c.240]

    Для детектирования свободных радикалов имеется и другой магнитный метод, использующий обычный спектрометр ЯМР. Этот метод стал применяться после того, как было открыто явление химически индуцированной динамической поляризации ядер [126, 127]. Если спектр ЯМР снимать в ходе реакции, то одни сигналы могут усиливаться либо в положительном, либо в отрицательном направлении, а другие могут ослабевать. Когда это наблюдается для продукта реакции, это означает, что по крайней мере часть такого продукта образуется через промежуточный свободный радикал [128]. К примеру, возник вопрос, участвуют ли радикальные интермедиаты в реакции обмена между этилиодидом и этиллитием (реакция 12-38). [c.241]


    Детектирование интермедиата. Во многих случаях интермедиат нельзя выделить, но его наличие можно определить с помощью ИК-, ЯМР- или других спектров [Па]. Так, при нитровании бензола (т. 2, реакция 11-2) детектирование иона МОг+ с помощью КР-спектров убедительно подтверждает образование этого иона в качестве интермедиата. Образование свободнорадикальных и триплетных интермедиатов часто можно зафиксировать с помощью спектров ЭПР и химически индуцируемой динамической поляризации ядер (см. гл. 5). [c.284]

    Имеется много данных, свидетельствующих в пользу такого механизма, в частности 1) выделение интермедиата 138 [511] 2) детектирование структуры 137 по С- и Ы-ЯМР-спектрам [512] 3) выделение побочных продуктов, которые могут образоваться только из промежуточного соединения 136 [513] 4) эксперименты с соединением, меченным изотопом N, показали, что в виде аммиака элиминирует атом азота, который расположен дальше от кольца [514]. Оказалось, что основная функция катализатора заключается в ускорении превращения исходного соединения 134 в структуру 135. Реакцию можно провести и без катализатора. [c.212]

    Спектральные детекторы. Вытекающий из колонки растворитель часто содержит разделяемые вещества, многие с характерным спектром поглощения. Для их определения предложены спектральные методы, основанные на измерениях поглощения света веществом в определенной части спектра, например в ультрафиолетовой, видимой или инфракрасной. Поскольку детектирование ведется непрерывно и нет возможности осуществить измерение во всем спектре поглощения, определяют лишь поглощение при фиксированной длине световой волны, которую выбирают таким образом, чтобы детектор был пригоден для измерения концентрации возможно большего числа веществ. [c.49]

    При обсуждении процессов переноса энергии мы чаще всего предполагали, что заселение более высоких, чем для молекулы-донора, энергетических уровней молекулы-акцептора (т. е. положительная величина Д ) может происходить, только когда энергия активации реакции равна Д . В самом деле, триплет-триплетный перенос энергии в растворе впервые был продемонстрирован на примере тушения фосфоресценции диацетила, которое наблюдалось лишь для партнеров, чей триплетный уровень расположен ниже, чем для молекулы диацетила. Предположение об участии в процессе тушения триплет-триплетного обмена энергией было доказано в последующих экспериментах прямым детектированием трип-летных состояний акцепторных молекул по их спектрам поглощения. Существует, однако, несколько наиболее интересных случаев, когда энергия активации много меньше, чем этого требует эндотермичность реакции, хотя перенос энергии при этом менее эффективен. Например, скорость переноса на молекулу [c.128]

    В приборе используются светофильтры из стекла УФС-1, УФС-2, УФС-3, которые не пропускают видимую часть спектра. Прибор снабжен фотоэлектронным умножителем ФЭУ-20. Пучок света флуоресценции определенной интенсивности, возникаюш,ий в кювете с раствором, проходит через вторичный интерференционный светофильтр и попадает на катод фотоэлектронного умножителя. Эти вторичные узко полосные светофильтры выделяют часть спектра, характерную для исследуемого вещества. Напряжение, возникающее в фотоумножителе, усиливается резонансным усилителем и после детектирования [c.483]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]

    Вам может показаться, что данный раздел относится только к специалистам, поскольку квадратурное детектирование-это некоторая инструментальная методика, предназначенная для повышения чувствительности. Если вас интересуют только одномерные спектры, то такую точку зрения вполне можно допустить. Однако проблемы, которые мы намерены сейчас рассмотреть, снова появятся в слегка измененном виде в двумерной спектроскопии ЯМР, и иам будет намного легче ориентироваться в инх, если мы сначала разберемся с одномерным случаем. Кроме того, прн регистрации одномерных спектров с очень большим динамическим диапазоном неидеальность систем квадратурного детек-тирования может вызывать появление квадратурных отражений. Метод подавления этих отражений служит введением в теорию фазовых циклов, которая чрезвычайно важна в многоимпульсных экспериментах. Если вы впервые знакомитесь со спектроскопией ЯМР, то вам лучше пока пропустить этот раздел. Вернитесь к нему позже, когда почувствуете необходимость разобраться в этом материале. [c.117]


Рис. 4.22. Такое помещение опорной частоты детектора позволяет решить проблему отрицательных частот, но при однофазном детектировании на спектр будет накладываться дополнительный шум (находящийся справа от опорной частоты Рис. 4.22. Такое помещение <a href="/info/122712">опорной частоты</a> детектора позволяет решить проблему <a href="/info/748592">отрицательных частот</a>, но при однофазном детектировании на спектр будет накладываться дополнительный шум (находящийся справа от опорной частоты
    Однако на практике довольно сложно так часто изменять фазу приемника (тем чаще, чем больше ширина спектра). Удобный выход из этой ситуации состоит в использовании двух детекторов, как при обычном квадратурном детектировании, и только одного АЦП (рис. 4.25). Изменение фазы приемника на 90° достигается переключением АЦП с одного детектора на другой. Сдвиги на 180 и 270 можио получить умножением на — 1 данных со сдвигом О и 90° соответственно. В этом эксперименте, так же как и в двухканальном детектировании, могут получаться квадратурные отражения, подавить которые можно с помощью аналогичных фазовых циклов, [c.125]

    Теоретический анализ /25/ показывает, что распределение интев-сивности в спектре рассеянного света имеет сложный характер и зависит от кинетических свойств среды, в частности сяг наличкх в ней релаксационных процессов. Подробные исследования этих деталей спектральной картины рассеянного излучения потребовали разработки специальной методики, основным элементом которой является использование одночастотного лазера с предельно узкой линией собственного излучения. Необходимость в этом возникает в особенности при высоких температурах исследуемой жидкости (с ростом температуры компоненты триплета сближаются), при рассеянии под малыми углами и при изучении тонких деталей спектрал1 ой картины. Для этих исследований была создана специальная оптическая кювета, предназначенная для температур до 600° К под давлением до 50 МПа. Ра >-работанная система фотоэлектрической регистрации с синхронным детектированием обеспечивала высокую стабильность и чувствительность установки. [c.10]

    Детектирование световых биений осуществляется фотоумножителем (7), переменная составляющая тока которого усиливается широкополосным усилителем (8) и подается на вход анализатора спектра (10), На двухкоординатном самопишушем устройстве (11) спектр может быть записан по точкам. [c.27]

    Задачей исследователя является выделение сигнала, соответствую-вдего определенной кинематической паре, С этой целью вибросигнал обра-батьшается различными методами представляется в виде спектра S(f), v(f), a(j) частотной фильтрацией, стробированием, детектированием, огибающей сигнала и другими. [c.219]

    В случае ИКС-детекторов последовательно регистри] )ую1ся ИК-спектры элюируемы - лз колонки соединений. Поток газа-носителя поступает в кювету, в которой молекулы поглощают ИК-излучение с точно определенной частотой. Чувствительность детектирования зависит от наличия в органических соединениях тех или иных функциональных фупп. Если молекула хорошо поглощает ИК-излучение, то aнaлитичe ш сигнал может быть получен при поступлении в кювету 1 нг вещества. Современные компьютеризованные ИК-спектрометры с преобразованием Ф>рье дают возможность сравнгаать полученные спектры с библиотечными, позволяя тем самым идентифицировать вещества, дополняя масс-спектры Следует заметить, что комбинация ГХ с ИКС и МС является в настоящее время самым мощным инструментом для идентификации суперэкотоксикантов. [c.262]

    Масс-спектры, получаемые при отрицательной химической ионизации, более просты, чем при ионизации электронным ударом. Кроме того, обраювание отрицательных ионов позволяет повысить чувствит( льность детектирования соединений с высоким сродством к электрону по сравнению с масс-спектрометрией положительных ионов в 1(1-100 раз, причем линейная зависимость величины сигнала от количества вещества сохра 264 [c.264]

    В последние годы в комбинации с время-пролетным масс-спектромстром начала использоваться капиллярная хроматография [230]. Кривые полной ионизации в зависимости от времени позволяли надежно регистрировать появление каждого компонента, выходящего из колонки, а по полным масс-спектрам можно было характеризовать вещества различных типов. Удавалось идентифицировать компоненты, не разделяемые на хроматограмме, если они не принадлежали одному гомологическому ряду. Чувствительность детектирования была оценена по ССЦ в 10 —10 сек, а надежность идентификации— 10 —10 з сек. [c.128]

    Существует значительное число модификаций методов, основанных на детектировании электрохимически генерированных промежуточных продуктов посредством получения их оптических спектров в ультрафиолетовой, видимой или инфракрасной областях поглощения света. Идентификация продуктов реакции производится по длинам волн и интенсивностям характеристических полос поглощения. Наибольшую информацию о природе частиц можно извлечь из данных ИК-спектрометрии, однако ее сравнительно невысокая чувствительность, определяемая небольшими значениями коэффициента молярной экстинции е, требует достаточно высоких концентраций интермедиата, труднореализуемых в случае короткоживущих частиц. Дополнительные осложнения при использовании ИК-спектрометрии связаны с трудностями применения в качестве растворителей воды и других гидроксилсодер-жащих соединений, сильно поглощающих в исследуемой области частот. В силу названных причин ИК-спектрометрия для изучения промежуточных продуктов электродных реакций используется относительно редко. Большим достоинством видимой и УФ-спектро-фотометрии является высокая чувствительность метода. Однако в этой области спектра низка специфичность поглощения, т. е. полосы многих хромофоров перекрываются. Пики поглощения находящихся в растворе частиц, как правило, очень широкие, и спектры сильно искажаются примесями, поглощающими свет в той же области спектра. Поэтому применение УФ-спектрометрии для установления структуры частиц оказывается малоэффективным. Значительно чаще такие измерения используются для изучения кинетики накопления или исчезновения промежуточных продуктов. [c.220]

    По методам индикации спектров эти спектрометры делят на группы 1) индикация на постоянном токе 2) детектирование с последующим усилением на низкой частоте 3) модуляционный метод 4) супергетеродинный метод 5) метод спинового эха. В первом методе, использованном Е. К- Завойским, сверхвысокочастот- [c.210]

    Следует учесть, однако, что если речь идет не о детектировании иавестных веществ, а о записи полных масс-спектров в оптимальных условиях, то требуемое количество вещества должно быть не менее 10 -г 10 г. [c.199]

    Такая техника масс-фрагментографии возникла еще в конце 60-х годов практически сразу же после появления первых моделей серийных хромато-масс-спектрометров. Другой прием, сформировавшийся лишь в начале 80-х годов, — масс-фрагментография высокого разрешения — позволяет опознавать в сложных смесч < только соединения, содержащие интересующие исследователя элементы, но требует разрешения прибора не менее Зч-5-IO . В этом случае селективность детектирования обусловлена не наличием характеристических пиков в спектрах наследуемых [c.202]

    Матричная изоляция обеспечивает больший (примерно на 1 — 1,5 порядка) предел детектирования в сравнении с приборами, укомплектованными кюветой-световодом регистрируемые спектры не искажены межмолекулярньши взаимодействиями исследуемых соединений (образование ассоциатов), и, наконец, исключается опасность термического разложения анализируемых веществ в разогретой до 200—250 °С кювете-световоде. Несмотря на эти достоинства, приборы с матричной изоляцией используются [c.209]

    Этот способ детектирования можно усовершенствовать, если масс-спектрометр оборудовать, например, четырьмя ловушками, которые непрерывно фиксируют концентрации различных масс. Лишь для очень трудных и сложных задач по идентификации используют дорогостоящие времяпро-летные масс-спектрометры. При этом масс-спектры во всей области масс снимаются с такой скоростью (примерно 10 ООО спектров в 1 сек), что не улавливают концентрационных изменений внутри отдельных зон веществ масс-спектрограммы (ср. Гольке, 1962 Дорси, Хант и О Нил, 1963). [c.356]

    Большинство аминокислот практически не поглощает свет в доступной для регистрации области, так что их приходится окра-тпвать нпнгидрином. Этот метод окраски будет подробно рассмотрен в приложении 2, посвященном аминокислотным анализаторам. Пептиды и белки поглощают свет в области 206—215 нм за счет пептидной связи и в широкой области спектра с максимумом вбли- и1 280 нм за счет присутствия в них ароматических аминокислот. Азотистые основания и нуклеиновые кислоты хорошо поглощают вблизи 260 нм. Поэтому не удивительно, что основной метод детектирования в хроматографии белков и нуклеиновых кислот — это регистрация поглощения света в ультрафиолетовой области спектра. Соответствующие приборы мы будем для краткости именовать УФ-детекторами. [c.82]

    Детектирование по флуоресценции применяют в биологии, медицине, форма-кологии, при анализе пищевых продуктов и контроле загрязнения окружающей среды. Флуоресцентными свойствами, т.е. способностью излучать свет (в видимой области спектра) под действием ультрафиолетового излучения, обладают многие биологически-активные вещества лекарства, витамины, стероиды. Красители, соединения с сопряженными связями, в том числе полиядерные ароматические углеводороды, также можно определять с помощью флуориметрического удетектора, при этом чувствительность определения велика. [c.155]

    Кроме детекторов, описанных выше, для ВЭЖХ используют и другие приборы электрохимический, инфракрасный, детектор с диодной матрицей, масс-спектро-метрический, транспортный с пламенно-ионизационным детектированием, радиоактивный, по диэлектрической проницаемости, электронозахватный, кулонометрический и др. Одни из них обладают высокой селективностью или чувствительностью, другие дают важную качественную информацию. Рассмотрим более подробно некоторые из них. [c.156]

    ИК-детекторы. Детекторы, основанные на поглощении в инфракрасной области спектра, в ВЭЖХ применяют сравнительно недавно и в достаточной степени ограниченно. Главной причиной такого положения является несовместимость ИК-детектора с основными растворителями, применяемыми в адсорбционной и обращенно-фазной хроматографии, а также сравнительно невысокая чувствительность. Практически для детектирования можно использовать только некоторые полосы с наиболее высокими молярными коэффициентами поглощения, а в качестве подвижной фазы — главным образом хлорированные углеводороды. В частных случаях, например при детектировании по поглощению карбонильной группы или двойной связи, для работы пригодны очень многие растворители в широком диапазоне полярности — от гексана до ацетонитрила и метанола. [c.158]

    Схема реального импульсного спектрометра должна содержать устройство для детектирования сигнала (рис, 2.5). В гл. 4 (разд. 4,3.5) мы увидим, что существуют различные способы детектирования. Здесь же мы можем представить его как- вычитание из сигнала частоты, которая ниже, чем частота самого низкочастотного ожидаемого сигнала в спектре. Выходной сигнал детектора, содержащий частоты от О до 5000 Гц для нашего протонного спектра на 500 МГц, направляется к АЦП. Теперь нам предстоит решить, как часто и как долго нужно вестн выборку для этого сигнала. [c.33]

    Химики, использующие фурье-спектроскопию ЯМР от случая к случаю, часто ие хотят вникать во все дета ш детектирования, оцифровки, запоминания и преобразования данных, которые рассматриваются в разд. 2.4. Для многих простых приложений ими действительно можно пренебречь, поскольку налагаемые методом ограничения не препятствуют интерпретации результатов на простом качественном уровне. Например, пусть протонный спектр шириной Юм,д. занимает лист бумаги длиной 50 см. Прн рабочей частоте прибора 500 МГц это означает, что спектр записал в масштабе 100 Гц/см. Точки данных, воспроизводящие спектр, в этом случае располагаются на расстоянии 0,4 Гц друг от друга. Следовательно, на каждом сантиметре рисунка расположено 500 точек, которые образуют практически сплошную линию. Влияние оцифровки здесь незначительно, и в этом случае для нас не важно, что спектр может не быть непрерывной шнией. Для рутинных анализов или проверок чистоты образцов таких спектров вполне достаточно. Но как только мы беремся за решение действительно сложных структурных задач, этот подход уже не может нас удовлетворить. [c.41]

    Такое наблюдение сигнала называется квадратурным детектированием. Реально оно состоит в использовании двух фазочувствительных детекторов с одинаковыми опорными частотами, ио с различающимися на 90 фазами (рис. 4.19). Для простоты предположим, что первый настроен иа регистрацию косинусной компоненты намагниченности, а второй-синусной (на практике каждый из них регистрирует смесь обеих компонент). Оба сигнала оцифровьшаются отдельно друг от друга и становятся действительной и мнимой частями комплексного спектра. После выполнения комплексного преобразоваиня Фурье мы получим правильно распределенные положительные и отрицательные частоты. Чтобы понять, почему это происходит, нам пришлось бы углубиться в математику преобразования Фурье дальше, чем это нужно неспециалисту. Одиако мы вполне можем понять происходящее на качественном уровне, если используем одно из известных свойств преобразования Фурье сохранение симметрии функции. [c.119]

    Проблемы квадратурного детектировануя. Как это обычно бывает, использование квадратурного детектирования помимо повьпиения чувствительности создает и некоторые сложности. Основная проблема состоит в том, что мы рассчитываем на исчезновение ненужных пиков при сложении двух сигналов, полученных из разных блоков прибора. Это будет достигаться только при точном равенстве амплитуд сигналов в двух каналах и различии их фаз точно иа 90°. В действительности же это идеальное условие недостижимо, и в спектрах присутствуют небольшие остаточные сигналы от неполного подавления так называемых [c.121]

    Влияние продольной релаксации. В нашем предварительном обсуждении последовательности OSY я умышленно опустил вопросы, связанные с продольной релаксацией. Причина, по которой я так поступил, состоит в том, что продольная релаксация приводит к появлению дополнительных сигналов в спектре их устранение вызвало бы некоторое дополнительное усложнение, а мне не хотелось бы отвлекать вас от основного вопроса-концепции меченых частот. Понять то, как релаксация по осн z влияет на вид спектра, совсем не трудно это иллюстрируется рис. 8,17. Здесь изображена такая же диаграмма, как на рнс. 8,1, за исключением того, что учтено неизбежное затухание сигнала в течение времени ij. Второй импульс, помимо того действия, которое он совершает над поперечной намагниченностью и которое мы уже обсудили, должен вернуть эту г-компонеиту намагниченности в плоскость X — >% где оиа вызовет появление сигнала. Поскольку эта компонента намагниченности не прецесснровала в течение времени ij (она была направлена по оси z), после второго преобразования Фурье появятся сигналы с частотой Vj, равной нулю. Таким образом мы получим копию спектра на линии = 0 этн нежелательные сигналы называются аксиальными пиками. Еслн спектр получен в режиме квадратурного детектирования по Vj (см. ниже), то линия Vj = О проходит через его центр, поэтому данный эффект весьма нежелателен (рис. 8,18). [c.282]

    Квадратурное детектнровавие по V . Те же самые соображения, что побудили пас поместить опорную частоту приемника в центре спектра (см. гл. 4), оказываются существенными и для двумерного случая, С самого начала, в сущности, я молчаливо подразумевал, что квадратурное детектирование касается периода (2, т.е. нормального периода регистрации. Сейчас нам придется столкнуться с проблемой распознавания положительных н отрицательных модуляционных частот по координате у. По прямой аналогии с одномерным экспериментом этого можно достичь, измеряя такие два сигнала в период 1 , чьн опорные фазы отличаются на 90". Как вндим, хорошо в двумерной спектроскопии. ЯМР то, что почти все проблемы здесь аналогичны тем, которые мы уже обсуждали, поэтому для тех, кто уже работал с одномерными методами или понимает их, переход к двумерным методам не будет сопряжен с трудностями. Единственная проблема при этом состоит в том, чтобы разобраться, что означает опорная фаза по координате г,. Однако, немного подумав, мы можем заключить, что это относительная фаза двух импульсов (см. также рис. 8.20а н 8.205), [c.284]

    Причина, почему я уделил столько времени этому, в общем все-такн техническому вопросу, состоят в том, что использование этих методов для квадратурного детектирования по Vj еще не достаточно широко распространено. В то же время широко распространена практика регистрации спектров с помощью тех процедур (о них пойдет речь ниже), в которых компоненты поглощения и дисперсии смешиваются сложным образом. Многие сложности н недостатки двумерной спектроскопии, характерные для альтернативного подхода к квадратурному детектированию по V,, отсутствуют в спектрах, полученных по одному из описанных выше методов. Поэтому следует ожидать, что они постепенно получат широкое распространение. Однако в момент написания преобладающее большинство спектров, приведенных в литературе, да и большая часть двумерных спектров в этой книге получены не таким способом. Сейчас, в переходный период, если вы сами являетесь пользователем спектрометра, у вас может появиться желание оснастить этими фазочувствительными методиками эксперимент OSY нлн другие двумерные эксперименты. Описанный здесь подход применим для любого двумерного эксперимента, в котором именно амплитуда сигнала модулируется как функция [c.287]


Смотреть страницы где упоминается термин Спектр детектирование: [c.254]    [c.262]    [c.266]    [c.134]    [c.90]    [c.614]    [c.120]    [c.121]    [c.125]    [c.238]    [c.294]    [c.303]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.709 ]




ПОИСК







© 2024 chem21.info Реклама на сайте