Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осаждение обратимость

    Электрохимические преобразователи информации различаются по своему функциональному назначению и по механизму работы, т. е. по принципам, которые положены в основу их действия. По последнему признаку выделяют три основных типа электрохимических преобразователей 1) преобразователи, основанные на закономерностях диффузионных процессов в обратимых окислительно-восстановительных системах (иногда эти преобразователи называют концентрационными или жидкофазными) 2) преобразователи, использующие закономерности обратимых и необратимых фазовых переходов на электродах (электроосаждение и растворение металлов, выделение газов, образование и восстановление окислов, осаждение нерастворимых солей, явления пассивации и растворения металлов и др.) 3) преобразователи, основанные на электрокинетических явлениях (электроосмос, потенциалы течения и др.). [c.216]


    Метод осадочной хроматографии разработан Е. Н. Гапоном и Т. Б, Гапон в 1948 г. [23]. Основным фактором, определяющим разделение смеси веществ в осадочной хроматографии, является последовательное образование труднорастворимых осадков в определенном порядке. Однако последовательное выпадение осадков в зависимости от их растворимости служит основой хорошо известного в аналитической химии метода дробного осаждения, не являющегося хроматографическим методом. Для осадочной хроматографии характерно не только последовательное образование осадков, обладающих различной растворимостью, но и многократность процесса их образования и растворения. Последнее обусловлено высокоразвитой поверхностью образующихся осадков и обратимостью процесса. Многократность элементарных актов образования и закрепления осадка, а также его растворения наряду с различием в произведениях растворимости и определяет возможность разделения смеси веществ методом осадочной хроматографии. К его достоинствам относятся простота проведения эксперимента, наглядность получения результатов разделения, быстрота метода, а также широкий выбор осадителей. [c.160]

    Измерение электродных потенциалов лежит в основе потенциометрии. Потенциометрия применяется, например, для определения конечных точек титрования (потенциометрическое титрование). В зависимости от типа используемых при титровании реакций различают потенциометрическое титрование по методу осаждения, комплексообразования, нейтрализации и окислительно-восстановительное потенциометрическое титрование. В первых двух разновидностях потенциометрического титрования используют электроды, обратимые по отношению к ионам, которые входят в состав осадка или комплексного соединения. Потенциал таких электродов определяют относительно какого-либо электрода сравнения в ходе постепенного добавления титранта. Потенциометрическое титрование, например, очень удобно для определения анионов, образующих нерастворимые соли с ионом серебра. При этом часто в качестве индикаторного используют серебряный электрод. [c.276]

    Порядок расположения металлов по степени их необратимости, а следовательно, по величине металлического перенапряжения практически НС зависит от того, осаждается ли металл на твердом одноименном катоде или на разбавленной амальгаме соответствующего металла. Выделение металлов группы железа и на ртутном катоде сопровождается значительно большей поляризацией, чем у всех других металлов, приведенных в табл. 22.1. Оно протекает здесь еще менее обратимо, чем на твердых катодах. Однако эти металлы почти не способны образовывать амальгамы, и их осаждение в случае применения ртутных катодов совершается на плохо связанных между собой мелких кристаллических островках. [c.461]


    Индикаторные электроды в реакциях осаждения и комплексообразования являются более или менее избирательными. Это объясняется тем, что виды ионов, входящих в состав осадков и комплексов, самые разнообразные, а индикаторный электрод должен быть обратимым хотя бы относительно одного вида. Между тем не всегда можно располагать электродом, обратимым относительно этих видов ионов, из-за большой электролитической упругости растворения ряда металлов либо по другим причинам. [c.31]

    Как показали исследования, высокомолекулярные вещества, выделенные из раствора высаливанием, после отмывки их от электролитов могут быть снова переведены в раствор (явление обратимо). Коллоиды, которые при устранении фактора, вызвавшего коагуляцию, способны переходить из состояния геля в состояние золя, носят название обратимых коллоидов. Однако высокомолекулярные вещества могут при определенных условиях осаждаться и необратимо. Такое необратимое осаждение высокополимеров, в частности белков, иод влиянием высокой температуры, цри воздействии концентрированных кислот и щелочей, дубильных веществ, лучистой энергии называется денатурацией. При денатурации происходит не только осаждение полимеров, но и изменение их химической природы. Белки при денатурации становятся нерастворимыми и в большинстве случаев утрачивают способность к набуханию. [c.383]

    Потенциометрическое титрование при контролируемом токе (1 0) целесообразно применять в тех случаях, когда титруемый или титрующий компонент принадлежит либо к необратимой системе независимо от того, присутствует или нет его сопряженная форма, либо к обратимой - но в отсутствие сопряженной формы (например, в реакциях осаждения, комплексообразования). [c.95]

    С точки зрения термодинамики растворение вещества рассматривается как обратимый процесс, складывающийся из двух противоположных процессов прямого — собственно растворения и обратного — выделения растворенного вещества из раствора. Для твердых веществ обратным процессом является кристаллизация (осаждение) вещества из раствора. По мере растворения вещества его концентрация в растворе увеличивается, и тем чаще его частицы сталкиваются с поверхностью осадка. Это приводит к кристаллизации вещества из раствора, скорость которой возрастает. Когда скорость кристал- [c.195]

    Реакции осаждення принадлежат к числу обратимых ионообменных реакций. Они протекают в том случае, если противоположно заряженные ионы двух растворимых веществ-электролитов образуют малорастворимое вещество. Реакции осаждения заканчиваются установлением гетерогенного равновесия ионы в растворе— осадок малорастворимого вещества [c.121]

    Частицы ВМС, входящие в состав коацерватных капель, по-видимому, отделены друг от друга тонкими гид-ратными оболочками. Это подтверждается тем, что явление коацервации обратимо. При изменении условий, вызвавших коацервацию (уменьшение концентрации электролита, изменение pH, температуры), коацерват-ные капли могут исчезнуть и система вновь перейдет в однофазную. В то же время изменение условий в сторону усиления процесса дегидратации макромолекул высокополимера может привести к разрушению коацерватных капель и полному осаждению растворенного вещества. [c.229]

    Эта реакция является обратимой и, чтобы сместить ее равновесие в сторону образования борной кислоты, реакцию проводят при охлаждении реакционной смеси. (С понижением температуры растворимость борной кислоты уменьшается и увеличивается полнота ее осаждения). Дли реакции используют концентрированную хлористоводородную кислоту (с указанной плотностью). [c.143]

    Под влиянием электролитов и нерастворителей происходит процесс выделения ВМВ из раствора, называемый высаливанием. Внешне такой процесс сходен с коагуляцией, однако если для коагуляции золей требуются малые количества электролита и процесс коагуляции необратим, то для разрушения раствора ВМВ требуется большая концентрация электролита, при этом протекает обратимый процесс и наблюдается неподчинение правилу Шульце—Гарди. В основе механизма высаливания ВМВ лежит процесс дегидратации. Ионы введенного электролита и молекулы спирта как бы отнимают большую часть растворителя от макромолекул полимера. Концентрацию электролита, при которой наступает быстрое осаждение полимера, называют порогом высаливания ВМВ. [c.467]

    В последние годы появились мембранные электроды, приготовленные из смеси инертного связывающего материала и того или другого осадка. Они обратимы относительно одного из ионов, входящих в состав осадка мембраны, и успешно используются в прямой потенциометрии и в потенциометрическом титровании для определения этих ионов по методу осаждения и комплексообразования. [c.61]


    В осадочной хроматографии основной фактор, определяющий разделение веществ,— процесс образования труднорастворимых осадков в определенном порядке, обусловленном их растворимостью. Для осадочной хроматографии характерно многократное повторение актов образования и растворения осадков по мере фильтрации раствора. В этом ее принципиальное отличие от дробного осаждения. Многократность процесса обусловливается большой поверхностью колонки и обратимостью процессов образования и растворения более растворимых осадков. [c.239]

    Эти же цепи при определенных условиях можно использовать для установления температуры аллотропического превращения. Если повысить температуру до значения, при котором а-модификация переходит в р-модификацию, то оба -)лектрода окажутся в одной и той же модификации и э.д.с. системы будет равна (или близка) нулю. Э.д.с. системы может отличаться от нуля потому, что свободная энергия двух электродов, изготовленных из металла одной и той же модификации, не обязательно должна быть одинаковой. Это наблюдается, например, в том случае, когда электроды различаются по размерам образующих их зерен или находятся под различным внутренним напряжением. Электрод, образованный более мелкими кристаллами или находящийся под избыточным механическим напряжением, играет роль отрицательного полюса элемента. Он растворяется, а на другом электроде происходит осаждение металла. Более того, разность потенциалов может возникать даже, если в качестве электродов использоЕ1аны разные грани монокристалла одного и того же металла, поскольку они обладают разным запасом свободной энергии. Электрод, образованный гранью с по-выщенным запасом поверхностной энергии, будет растворяться, а ионы металла — выделяться на грани с меньшей поверхностной энергией. Следует, однако, подчеркнуть, что во многих из этих случаев разность потенциалов, существующая между двумя различными образцами одного и того же металла, не должна отождествляться с обратимой э.д.с., поскольку она отвечает не равновесному, а стационарному состоянию элект[)0Д0в. Разности потенциалов, возникающие в рассмотренных случая , обычно малы, тем не менее в некоторых электрохимических процессах, в частности в процессах коррозии, их необходимо принимать во внимание. [c.195]

    Со смешанными предельными пЬтенциалами всегда сталкиваются в процессе потенциометрического титрования (например, по методу окисления - восстановления), когда концентрация одной из форм редокс пары в растворе вблизи к.т.т. становится исчезающе малой ( 10 М) согласно /fpaBH химической реакции. Такой же предельный потенциал возникает с самого начала титрования по методам осаждения и комплексообразования при определении одного компонента обратимой редокс системы в отсутствие другой формы. В таких случаях достаточно создать в растворе небольшую концентрацию ( > 10 М) сопряженной формы, не участвующей в химической реакции, чтобы электрод приобрел устойчивый равновесный потенциал. [c.25]

    Осадок ZnS растворяется в образующейся кислоте. Поэтому реакция является обратимой, а осаждение иона 2п + неполным. [c.294]

    Добавление каких из указанных веществ вызывает обратимое осаждение белков  [c.667]

    Определим работу гальванического элемента при условии, что элемент работает обратимо (1—0), активные концентрации ионов и Zn равны 1, и в раствор перешел грамм-атом Zn, что эквивалентно осаждению из раствора грамм-атома Си. [c.274]

    Аналогично можно провести титрование, основанное на реакциях осаждения, комплексообразования и окисления илн восстановления. В случае реакции осаждения и комплексообразования гш икаторный электрод должен быть обратимым по отпои1еиию к одному из иоиов, входящих в состав осадка или комплекса. Величина измепеиия потенциала вС Лизи точки эквивалентности, а следовательно, и чувствительность потенциометрического метода тем выше, чем меньше растворимость образующегося осадка. Так, прн тнтроватш иo кJB серебра ионами иода чувствительность метода вследствие меньшей растворимости иодида [c.210]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    Эти превращения можно рассматривать как явления полимеризации. Вполне возможно, что наряду с этим имеет место также и су,пь-фирование не легко разрешить вопрос, каким путем освобождается серная кислота, примепенная для осаждения асфальтов, так как здесь возмояшы два варианта она освобождается -либо вследствие гидролиза сульфоироизводных либо вследствие обратимости процесса абсорбции. . [c.185]

    Свежеполученный комплекс (комплекс-сырец) включает в себя не только частицы собственно комплекса, но и значительное количество жидкой фазы и других посторонних примесей. Жидкая фаза, которая состоит в основном из депарафинированного продукта, может также включать в себя частицы активатора, растворителя и воды (водного раствора карбамида). В процессе отжатия и сушки комплекса удается удалить значительную часть жидкой фазы. Остающиеся же в отжатом и просушенном комплексе примеси (так называемые увлеченные углеводороды ) представляют собой как адсорбированные на поверхности комплекса молекулы ароматических углеводородов и смол, так и некоторое количество механически увлеченных (окклюдированных) частиц исходного сырья. При разрушении комплекса эти примеси загрязняют и-парафины. Наиболее эффективным методом, предупреждающим попадание указанных примесей в н-парафины, является переосаждение. Так, согласно патенту [148], получение смесн н-нарафпнов с С до С50 высокой степени чистоты осуществляется переосаждением нри смешении комплекса с водным раствором карбамида с последующим осаждением комплекса. Однако в промышленности переосаждение комплекса не нашло применения ввиду сложностей, связанных с технологическим оформлением, этого процесса. Не нашел этот метод широкого применения и в лабораторной практике. В то же время широкое распространение получила промывка комплекса, хотя при этом и разрушается некоторая часть комплекса вследствие обратимости реакции комплексообразования. [c.83]

    Многие реагенты способны вызывать осаждение или коагуляцию коллоидно-растворимых белков. Осаждение может быть обратимым и необратимым иными словами, выпавшее в осадок вещество может снова растворяться или же становится нерастворимым. Кипячение растворов белков, особенно при добавлении уксусной кислоты и хлористого натрия или других электролитов, приводит к необратимой коагуляции белка. Эта реакция является одной из наиболее часто применяемых для обнаружения растворенных белковых веществ (например, для открытия белка в моче). Необратимое осаждение вызывают также минеральные кислоты (азотная, платимохлористоводородная, фосфорновольфрамовая, фосфорномолибдеповая, метафосфорная, железосннеродистая), пикриновая кислота, таннин и соли тяжелых металлов. Белки сохраняют растворимость, если их осаждать из водных растворов спиртом и ацетоном кроме того, обратимое осаждение может быть вызвано различными нейтральными солями, например сульфатами аммония, натрия и магния. Для этого необходимы определенные концентрации солей, минимальная величина которых зависит от вида белка (ср. альбумины и глобулины). [c.397]

    Сорбция хелатов осадками Ag l или AgBr — процесс обратимый при добавлении избытка Ag+ происходит десорбция. Напротив, в случае Agi и AgS N сорбция необратима. Поэтому в растворе уже до достижения точки эквивалентности заметно падает содержание свободных (несорбированных) катионных хелатных комплексов металлов. Катионные комплексы металлов с фенантролином или его аналогами образуют с ионами 1 или S N малорастворимые соединения. Но и в области концентраций, где не достигается произведение растворимости, адсорбция достаточно заметна, так что оба эффекта — сорбция и осаждение — накладываются. [c.425]

    Концентрацию определенного компонента раствора (как заряженного, так и незаряженного) можно контролировать потенциометричес-ки, если подобрать электрод, потенциал которого определяется реакцией, включающей этот компонент Проводя титрование анализируемого компонента, потенциометрически определяют конечную точку титрования по резкому изменению потенциала электрода в точке эквивалентности. Так, используя электрод, потенциал которого зависит от pH раствора, можно провести потенциометрическое титрование кислоты или щелочи по методу нейтрализации. Индифферентные электроды используются для титрования обратимых окислительно-вос-становительных систем (окислительно-восстановительное потенциометрическое титрование). Широко применяется также потенциометрическое титрование по методу осаждения или комплексообразования. В этом случае рабочий электрод должен быть обратим по отношению к компоненту раствора (чаще иону), который в процессе титрования образует осадок или комплекс. [c.123]

    Индика1 орные электроды при потенциометрическом титровании по методам осаждения и комплексообразования. Различные осадки и комплексные соединения состоят из самых разнообразных ионов, и потому не существует такого универсального индикаторного электрода, который мог бы быть обратимым относительно всех катионов и анионов. Кроме того, не всегда можно располагать металлическим электродом, обратимым относительно своих ионов, из-за большой электролитической упругости растворения ряда металлов (легко окисляющихся Н -ионами раствора) или такими твердофазными веществами, в состав которых входит хотя бы один из ионоБ, образующих в процессе титрования осадки или комплексные соединения, но в другой степени его окисления или восстановления. Малая селективность индикаторных электродов, казалось бы, сильно ограничивает возможность использования потенциометрического метода в реакциях осаждения и комплексообразования. Однако применение электродов второго рода позволяет заметно расширить область применения потенциометрического титрования. [c.61]

    Основная идея потенциометрического метода титрования заключается в том, что изменение цвета индикатора здесь заменено изменением потенциала какого-либо электрода, обратимого относительно ионов титруемого вещества. Такой электрод называют индикаторным электродом. Потенциал. индикаторного электрода вблизи эквивалентной точки, как и в течение всего времени пребывания его в растворе, является логарифмической функцией активности, и резкое изменение потенциала наблюдается потому, что логарифм активности действующих в реакции ионов в точке эквивалентности резко изменяется от одной-двух капель пр1ил ваемого реагента. Методы потенциометрического титрования применимы в случаях реакций осаждения, комплексообразования и окислительно-восстановительных реакций. [c.183]

    Реакции (I), (4), (6) приводят к росту пленки, а (5), (7) —к се травлению. Сущестпенным отличием этого метода от других является то, что осажденный кремнии вступает в обратимую реакцию с тетрахлоридом кремния с образованием летучего субхлорида (7), Это ведет к травлению поверхности при больших концентрациях тетрахлорида кремния. Реакция (7) в некотором смысле противоположна реакции осаждения. Определяемая экспериментально скорость роста есть алгебраическая сумма скоростей этих двух процессов. При этом чем выше концентрация тетрахлорида в газовой смеси, тем заметнее роль травления, и наоборот. [c.142]

    Если из коллоидного осадка удалить ионы, вызвавшие коагуляцию, то в некоторых случаях (обратимые коллоиды) можно снова получить золь. В рассмотренном примере осаждение ионов SO4 ионами Ва + с образованием осадка BaS04 приведет вновь к образованию коллоидного раствора. Этот процесс называют пептиза-цией. [c.223]

    Потенциометрическое титрование применяют для реакций нейтрализации, осаждения, комплексообразования и окислительно-восстановительных. Во всех этих случаях инди aтopный электрод должен быть обратимым либо по отношению к ионам водорода в растворе, либо по отношению к ионам, образующим комплексное или труднораствори-мое соединение, выпадающее в осадок. При окислительно-восстановительном потенциометрическом титроваиии применяют инертный гладкий платиновый электрод, измеряющий окислительно-восстановительный потенциал раствора. [c.141]

    Уменьшить водородную хрупкость стали при нанесении покрытий можно снижением наводороживания в процессе осаждения и использованием методов разводороживания, связанньгх с обратимостью водородной хрупкости. Снижение наводороживания в процессе нанесения покрытий достигают введением непосредственно в электролит ингибиторов наводороживания, выбором составов электролитов и режимов осаждения, которые обеспечивают снижение интенсивности разряда водорода при катодном процессе нанесением барьерного подслоя из других металлов. [c.104]

    В мелассе содержится от 4 до 6% веществ в коллоидном состоянии со средним радиусом частиц от 45 до 80 им (Н. И. Дерканосов и С. Т. Крылов). Различают необратимые и обратимые коллоиды. Первые после осаждения спиртом или спирто-эфирной смесью вновь не растворяются в воде, окрашены в интенсивный темно-коричневый цвет (обусловливают до 85% цветности мелассы) и содержат около 9% азота. Вторые (обратимые) коллоиды растворяются в воде, окрашены менее интенсивно, беднее азотом (около 4%). Основная масса коллоидов — обратимые. [c.23]

    Ключевой позицией в данном случае является прекальциферол, который фотоизомеризацией переходит в тахистерол и кальциферол (реакция обратима). Конец реакции определяют осаждением дигитонином. При содержании 40—60% кальциферола эфир частично отгоняют и при 10° отделяют выделившийся эргостерин. Дальнейшую очистку образовавшейся смолы осуществляют путем растворения ее в смеси метилового спирта и сухого эфира. После отгонки 50% растворителя выделившиеся стерины отфильтровывают, смолу растворяют в пиридине и при пропускании углекислоты прибавляют 3,5-динитробензоилхлорид. После отгонки в вакууме 50% пиридина и промывки водой и метиловым спиртом оставшуюся смолу кипятят с ацетоном в присутствии активированного угля и раствор кристаллизуют при —10°. Выделившийся 3,5-динитробензоат эргокальциферола гидролизуют 5%-ным метанольным раствором едкого кали и при —7, —Ю выделившиеся кристаллы отфуговывают. Промытые 10—50%-ным спиртом и водой кристаллы высушивают.  [c.640]


Смотреть страницы где упоминается термин Осаждение обратимость: [c.23]    [c.247]    [c.82]    [c.82]    [c.139]    [c.162]    [c.216]    [c.147]    [c.289]    [c.72]   
Курс аналитической химии Книга 2 (1964) -- [ c.25 ]

Курс аналитичекой химии издание 3 книга 2 (1968) -- [ c.28 ]

Курс аналитической химии Издание 5 (1982) -- [ c.24 ]

Курс аналитической химии Кн 2 Издание 4 (1975) -- [ c.24 ]




ПОИСК







© 2025 chem21.info Реклама на сайте