Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекиси определение в присутствии

    Другой интересный пример гомогенного катализа — каталитическое разложение перекиси водорода в присутствии бромида. В этом случае перекись водорода действует и как окислитель и как восстановитель в двух различных реакциях, протекающих при определенных условиях с характеристическими скоростями  [c.504]

    А. А, Добринская и М. Б. Нейман [41] также провели опыты по установлению потенциалов восстановления органических перекисей и перекиси водорода на ртутном капельном электроде. Они нашли, однако, что в кислой среде (в 0,01 N H I) гидроперекись метила восстанавливается при потенциале — 0,7 в, перекись этила — при потенциале — 0,6 в, а перекись водорода — при потенциале — 0,8 а. Такие результаты не давали, понятно, возможности различить алкильные перекиси в присутствии перекиси водорода. Как показано ниже, М. В. Нейман при обсуждении своих данных полярографирования конденсатов, образующихся при выбросе из реактора и закалке реальной реагирующей бутано-кислородной смеси, пользуется значениями потенциалов восстановления алкильных перекисей, определенных в работе [40]. [c.171]


    Титан ведет себя подобно алюминию, но взаимодействует с комплексоном III неколичественно. Вследствие этого рекомендации некоторых авторов [62, 166, 679, 680] об определении в аликвотной части раствора содержания титана фотометрическим методом и введении поправки применимы лишь при его малых содержаниях. Титрование суммы алюминия и титана возможно при количествах ТЮа, меньших 4 мг [229]. До 5 мг титана можно маскировать, если ввести перекись водорода (1 мл 1%-ного раствора) перед добавлением комплексона III [854]. В присутствии больших количеств титана алюминий определяют при введении фосфатного буфера [166]. В этом случае титан осаждается в виде фосфата и титруется один алюминий. Однако присутствие фосфат-иона ухудшает четкость изменения окраски раствора в эквивалентной точке. Поэтому титан (если он присутствует в значительных количествах) лучше предварительно отделить, например, экстрагированием его купфероната. Указания некоторых авторов 31, 934], что небольшие количества титана не мешают, следует принимать с осторожностью. Действительно, влияние его незаметно при высоких содержаниях алюминия (30—50%), поможет стать значительным при определении малых количеств алюминия. [c.68]

    Щавелевая кислота [667], перекись водорода [бН] и фториды [447, 670] при определенных условиях -маскируют молибден. Например, в присутствии избытка щавелевой кислоты шестивалентный молибден не взаимодействует с пирокатехином, пирогаллолом, танином, фенилгидразином и другими реагентами [667]. [c.98]

    В связи с тем, что в настоящее время обычно выпускается исключительно чистая перекись водорода, определение присутствия в ней других веществ не имеет такого значения, как раньше. Такие анализы в основном предназначены для проверки, не превышает ли содержание примесей в перекиси водорода предел, установленный техническими условиями. [c.455]

    В результате проверки ряда методов определения селена были сделаны следующие выводы. При выпаривании солянокислых растворов, особенно досуха, потери селена неизбежны. Нельзя выпаривать досуха и соляно-азотнокислые растворы и азотнокислые растворы, но кипятить их можно в продолжение нескольких часов, не опасаясь потерь селена. Даже солянокислые растворы можно кипятить, применяя обратный холодильник или непрерывно добавляя перекись водорода. Присутствие натриевых солей, как это отмечено и авторами настоящей книги, не гарантирует от потерь. С другой стороны, выпаривание солянокислых или азотнокислых растворов с избыточным количеством серной кислоты до появления ее паров вполне допустимо. При очень малых количествах селена не следует, однако, слишком долго нагревать после появления паров серной кислоты. [c.357]


    Нами использована (более точная и простая методика определения пероксидазной активности крови — (Метод Баха и Зубковой. Принцип методики заключается в том, что перекись водорода в присутствии пероксидазы разлагает растворенный в воде гваякол. Продукты окисления гваякола определяются колориметрически. По их количеству судят об активности фермента. [c.74]

    Введение избытка роданида обеспечивает образование роданидного комплекса железа даже при большом содержании хлоридов. Кроме того, определению железа мешают фториды, фосфаты, арсенаты и тартраты, ослабляющие окраску даже в кислой среде. При небольшой кислотности раствора сильное влияние оказывают также сульфат- и ацетат-ионы. Из восстановителей, мешающих определению железа, следует отметить сульфид-, сульфит-, иодид-ионы и др., а из окислителей — перманганат, перекись водорода, нитрит, медь, концентрированную азотную кислоту и др. В присутствии азотистой кислоты роданид образует окрашенные соединения даже без железа. Роданид аммония часто содержит некоторое количество тиомочевины последняя восстанавливает железо до двухвалентного. Поэтому лучше пользоваться роданидом калия. [c.122]

    Соли таллня применяются для обнаружения и количественного определения многих ионов. Гидроокись одновалентного таллия рекомендуется в качестве реактива на озон [552, 614] и перекись водорода [801]. Нитрат одновалентного таллия позволяет обнаруживать едкую щелочь в присутствии растворимых сульфидов [229], иодиды в присутствии бромидов [550]. Растворимые соли одновалентного таллия находят широкое применение в качестве реактивов в микрокристаллоскопии [103]. В последнее время для этой же цели рекомендуются соли трехвалентного таллия [793]. Соли одновалентного таллия предлагаются для идентификации органических [c.8]

    Вещества, влияющие на определение висмута. Определению висмута в виде роданида мешает трехвалентное железо, которое необходимо восстановить хлоридом двухвалентного олова [112] или 2%-ным раствором сульфата трехвалентного титана [148]. Небольшой избыток последнего не влияет на результаты фотоколориметрирования с фиолетовым светофильтром. Мешают вольфрам, медь, а также большие количества ионов ртути, кадмия, цинка и некоторых других элементов, образующих с ионами 8СМ бесцветные комплексы. Перманганат, нитрит, перекись водорода, конц. азотная кислота окисляют роданид и, если присутствуют в значительных количествах, вызывают помехи. Ионы брома и хлора, соединяясь с ионами висмута с образованием бесцветных комплексов, заметно ослабляют желтую окраску роданидного комплекса. [c.211]

    При определении макроколичеств молибдена получают удовлетворительные результаты несмотря на то, что при встряхивании металлической ртути с раствором соляной кислоты в присутствии кислорода воздуха (и в отсутствие соединений молибдена) образуются значительные количества перекиси водорода [1117]. Дело в том, что когда в растворе находится соединение молибдена, то образовавшаяся перекись водорода быстро разлагается каталитически. Весь молибден находится в пятивалентном состоянии. Однако при определении микроколичеств молибдена --0,005 г) необходимо проводить восстановление в атмосфере инертного газа, чтобы исключить влияние кислорода воздуха и образование перекиси водорода. [c.191]

    Медь даже в небольших количествах очень сильно мешает определению молибдена. (717, 1117]. Для него получают слишком низкие результаты. Медленная реакция аутоокисления пятивалентного молибдена кислородом воздуха резко ускоряется в присутствии меди как катализатора. Предполагается, что при этой реакции образуется перекись водорода в качестве промежуточного продукта. Когда раствор соединения пятивалентного молибдена, полученного в ртутном редукторе, фильтруют в присутствии воздуха, то происходит окисление следовых количеств ИОНОВ одновалентной меди кислородом с образованием перекиси водорода, которая затем окисляет некоторое количество пятивалентного молибдена. Вследствие протекания этой реакции для молибдена получают низкие результаты. В то же время при определенных условиях (1Л НС1) пятивалентный молибден спо собен восстанавливать медь до одновалентного состояния. [c.191]

    Фенантрен в подобных условиях дает продукты, содержащие гидроперекись с открытой цепью (Ь) и циклическую перекись (Ь1) Некоторые сомнения были высказаны по поводу нали чия в продуктах реакции соединения (Ь). По-видимому, при определении соотнощения этих продуктов значение имеет методика эксперимента и время выдерживания образцов, вероятно при этом гидроперекись переходит в более устойчивую форму (Ь1), особенно в присутствии реакционноспособного растворителя. [c.214]

    В литературе имеются сведения о влиянии магнитной обработки водных систем на кинетику химических реакций. В. С. Духанин в работе [55] приводит ряд наглядных и, по-видимому, надежных результатов. Им изучено влияние предварительного омагничивания на разложение перекиси водорода в присутствии вольфра-мата натрия. Эти данные свидетельствуют о значительном изменении скорости разложения после воздействия магнитного поля. Эффект зависит от напряженности магнитного поля (рис. 12). Значения напряженности в экстремальных точках соответствуют результатам, наблюдаемым при изучении влияния омагничивания на скорость ультразвука. Следовательно, изменение скорости разложения является следствием определенных изменений структуры системы вода — перекись водорода Образование своеобразных гидратов на основе водородной связи, как показали Д. Г. Кнорре и Н. М. Эмануэль, может существенно влиять на ход химических реакций. [c.48]


    Простейшим и наиболее часто применяемым полимером является полиэтилен. Его получают двумя методами. Полиэтилен высокого давления с точкой плавления около 110° С синтезируют более старым радикальным методом. Новый ионный метод дает продукт с точкой плавления около 140° С это полиэтилен низкого давления или высокой плотности . Вторым способом получают более высокоплавкий неэластичный материал. Радикальный метод применяют для получения прозрачного полиэтилена. По этому методу этилен нагревают до 200° при 1000 атм в присутствии небольшого, строго определенного количества воздуха или перекиси, а полиэтилен непрерывно отводят из реакционной смеси. Воздух или перекись при взаимодействии с этиленом дают радикалы [реакция (15.1)]. Затем первичные радикалы присоединяются к мономеру, инициируя полимеризацию [реакция (15.2)]. Полученные таким образом радикалы, каждый из которых содержит одну мономерную ячейку, соединяются между собой, образуя димер, тример и т. д. [c.225]

    Недавно предложено титровать бихромат раствором перекиси водорода, очищенной от примесей металлов на колонке с катионитом КУ-2 титрование выполняют по току окисления перекиси водорода с платиновым электродом при -f 1,0 в на фоне 0,7 и. азотной кислоты в присутствии катализатора — сульфата железа (III). По данным авторов определению хрома не мешает ряд элементов, кроме церия (IV) и перманганата, которые, естественно, окисляют перекись водорода. Некоторое сомнение вызывает устойчивость растворов перекиси водорода во времени. Однако авторы сообщают, что метод применен ими для определения хрома в феррохроме и легированной стали. [c.341]

    Перекись водорода окисляет люмомагнезон (2-окси-З-сульфо-хлорбензол-1-азобарбитуровая кислота) при pH 7—11 в присутствии следов марганца [55, 320—322, 324, 327]. Определение марганца по этой реакции можно проводить как в фотометрическом, так и в флуоресцентном варианте. Чувствительность 6-10 мкгШп мл. Определению 0,01 мкг марганца в 5 мл раствора не мешают Са(И), Ве(П), Hg(II), Al(III), u(II), Ti(IV), Ge(IV), Au(IIl), V(V), As(V), Nb(V), Se(VJ), r(III), r(VI), Mo(VI), W (VI), Re(VII), Fe(III), P l(II) в количестве 5 мкг-ион, a также 0,04 М растворы серной, соляной, азотной, фтористоводородной, винной и сульфосалици-ловой кислот. Скорость реакции снин ается на 20—30% в присутствии La(IiI), Zn(II), Th(IV), Pb(II), Sb(IlI), Bi(III), o(II), Ni(II), если они присутствуют в количестве 5 мкг-ион, и в 2—3 раза в присутствии Ag(l), Mg(II), Zr(IV), Pt(IV) в таком же количестве. Предотвращают реакцию комплексон III, цитраты, фосфаты, триэти-лентетрамин. Метод применяют для определения марганца в солях лития, калия, натрия и аммония [326, особо чистых воде и кис- [c.82]

    Данные методы предназначены для определения летучих органических хлоридов в концентрации от 10 до 100 ppm в бутан-бутеновых смесях. Амперометрическое титрование не может быть непосредственно применено в присутствии веществ, которые взаимодействуют с ионом серебра или с хлороксидными ионами в разбавленном растворе кислоты. Бромиды, сульфиды, аммиак, табачный дым и перекись водорода в количестве более 25 мкг в анализируемом растворе мешают спектрофотометрическому определению. [c.24]

    Приступая к изучению окисления пропана, автор совместно с С. С. Поляк [54, 55] поставил перед собой в качестве предварительной задачи, требующей первоочередного решения, разработку метода анализа органических перекисей при их совместном присутствии с перекисью водорода. Дех1Ствительно, как было показано выше (см. стр. 29—32), те методы определения органических перекисей — окисление К1, реакции с титановым и ванадиевым реактивами, — которые использовались во всех описанных работах, являются одновременно и реакциями на перекись водорода. А так как с развитием исследования окисления углеводородов все умножались факты, свидетельствующие об образовании в ходе этой реакции перекиси водорода, то тем менее однозначными становились утверждения ряда авторов о нахождении в числе продуктов реакции и органических перекисей. [c.228]

    Определение перекиси водорода в присутствии персульфата. Хотя персульфат не реагирует с перманганатом, все же нельз непосредственно производить титрование перманганатом перекио водорода в присутствий персульфатов, так как перекись водородг в процессе титрования может реагировать с персульфатом. Поэтому сперва при помощи сульфата железа и перманганата определяют иесь активный кислород. Затем я отдельной пробе титруют перекись водорода перманганатом калия и там же определяют персульфат при помощи сернокислого же.леза и перманганата калия. Из этих трех определений вычисляют содержа- вйе Н2О2. [c.460]

    Количественное осаждение имеет место только при определенных условиях, среди которых наибольшее значение имеют температура и pH раствора. Для]осаждения урана перекись водорода прибавляют к охлажденному раствору, после чего реакционную смесь замораживают и лишь спустя некоторое время оттаивают и при темпера-туре+2 отфильтровывают выпавший осадок. Чтобы получить легко-фильтрующиеся осадки, осаждение рекомендуется проводить из растворов, содержащих NH4NO3 в концентрации около 1 моля л 1741 ]. Для обеспечения полноты осаждения необходим избыток HgOa, но добавление более чем двухкратного количества перекиси водорода нецелесообразно. В присутствии хлоридов осаждение замедляется. Сульфаты значительно затрудняют осаждение урана если они присутствуют в количестве эквивалентном или большем, чем количество урана, то осаждение уже становится неполным. Еще большее Решающее влияние оказывают фториды, оксалаты, тартраты и дру-ilie ионы, склонные к образованию прочных комплексов с ионом уранила. Ацетаты мешают, если они присутствуют в значительных [c.59]

    Иодометрическое определение ртути в солях Hg(II). Чаще всего восстанавливают соли Hg(II) до металлической ртути в щелочных растворах соответствующими восстановителями, которые не должны реагировать с иодом. Затем прибавляют раствор иода в присутствии иодида калия для перевода металлической ртути в HgJ4 . Избыток иода оттитровывают тиосульфатом в присутствии крахмала. Восстановителями могут быть формальдегид или перекись водорода [755, стр. 398]. В работе [684] показано, что быстрое растворение ртути происходит тогда, когда в растворе присутствует желатин, действующий как защитный коллоид. Можно использовать и восстановители, которые реагируют с раствором иода, по при этом полученную металлическую ртуть необходимо отделить от раствора фильтрованием или декантацией. Далее ртуть можно определить иодометрически. Для восстаповления ртути и ее соединений можно использовать отмеренные количества восстановителей, избыток которых затем оттитровывают также иодометрически. [c.88]

    При анализе фторсодержащих. материалов особое значение имеет способ взятия пробы, что связано с предотвращением потерь фтора в виде летучих фтористого водорода и тетрафторида кремния. Перед открытием или определением фтора проба должна быть высушена или кальцинирована, а органические образцы озолены без потери фтора. Для этого применяются фиксаторы — окись кальция [446, 508, 514, 696, 741], иногда перекись кальция. Однако при этом не исключена возможность некоторой потери фтора [241, 335, 374—376, 581, 584, 778, 864]. При озолении npo6i.i в присутствии ацетата магния при 500° С были получены более надежные результаты [600, 604, 780], чем при использовании и -,-вести [78, 113, 114, 336, 368, 369, 385, 765]. В качестве фиксаторов применяют также окись или перекись магния [559, 612, 626. 783 , либо нитрат алюминия [389, 390, 454], Во всех случаях процесс проводят в платиновой или никелевой посуде [647, 669, 702, 777, 797, 812, 816, 852, 856, 865]. [c.23]

    Химизм операций, производимых при определении хлора по указанному методу, сводится к следующему. Перекись натрия при кипячении с хлорпикрином количественно отщепляет атомы хлора хлорпикрина с образованием хлористого натрия кроме того N3302, являясь сильным окислителем, энергично разрушает (окисляет) образующиеся при расщеплении хлорпикрина окрашенные органические соединения, в присутствии которых титрование невозможно (окраска мешает уловить момент окончания титрования, отмечаемый по переходу бесцветного раствора в слегка розоватый). [c.48]

    Перекись водорода в качестве окислителя в количественном анализе широко не используется и поэтому не удивительно, что имеется только одно сообщение об использовании ее в термометрическом титровании. Шайо и Шипош [4] сообщили об использовании перекиси водорода для определения титана в силикатах. Реакция происходит в сернокислой среде и катализируется присутствием хлорида ртути (II). Полученные этим методом результаты имели сходимость в пределах 1—2% с результатами анализа тех же проб, полученных фотометрическим методом, основанным на образовании желтого нероксититаносульфатного комплекса. [c.65]

    Перманганат-, бихромат, пероксодисульфат-, ванадат-ионы, ионы церия (IV) [31—32] и меди (II) [32—34], хлорат- [31], гипохлорит- [12], нитрат-ионы [35] и перекись водорода [31] определяют их восстановлением взятой в избытке солью железа (II) в присутствии избыточного количества S N -n0H0B и титрованием образовавшегося железа (III) раствором Hg2(N03)2 (NOj-ионы восстанавливают солью Мора при температуре кипения раствора [35] в сильносернокислой среде). Погрепшость определения — около 1%. [c.206]

    Для определения ЗОд в присутствии окислов азота в качестве экспресс-метода рекомендуется пропускание анализируемого газа через титрованный раствор хлористого бария, к которому добавлена перекись водорода. При этом образуется сернокислый барий и раствор мутнеет. Фиксируя с помощью фотонефелометра момент прекращения нарастания мути и объем пропущенного газа, соответствующий точке эквивалентности, можно вычислить процентное содержание ЗОд в газе. [c.214]

    Приводится метод определения токсикозов у рыб по пероксидазной активности крови. Отмечается, что перекись водорода в присутствии пероксидазы разлагает растворенный в воде гваякол, продукты окисления которого могут определяться колометрнческим методом. Методика может быть использована для экспресс-диагностики отравления рыб. [c.293]

    Обсуждая этапы реакции окисления ортофосфористой кислоты в фосфорную кислоту с помощью перекиси водорода, которая аналогична реакции Фентона окисления винной кислоты над солями двухвалентного железа как катализаторами, Нерц и Вагнер [34] высказали предположение, что кислород передается от перекиси водорода к ортофосфористой кислоте и что ион двухвалентного железа участвует в повторяющейся произвольное число раз цепи реакций, проходя соответствующие промежуточные степени окисления железа, причем ион двухвалентного железа регенерируется. Обрыв цеш вызывается превращением иона двухвалентного железа или любого из его промежуточных продуктов в ион трехвалентного железа, который не обладает способностью передавать кислород. Ход реакции можно проследить, определяя изменение отношения количества превращенной перекиси водорода к соли двухвалентного железа при изменении концентрации отдельных компонентов реакции. В отсутствии воздуха наблюдалось, что количество превращенной перекиси водорода увеличивается пропорционально добавленному количеству соли двухвалентного железа и приближается при больших количествах ее к определенному пределу. Перекись водорода, оказывается, играет положительную роль в обрыве цепи. Быстрое введение раствора соли двухвалентного железа вызывает увеличение концентрации носителей цепи и ведет к их взаимному разрушению. Кроме тогс установлено, что воздух или кислород, присутствуя в реакционной массе, вызывает главным образом обрыв цепи реакций. [c.574]

    Аналогичный результат был получен и при дилатометрическом исследовании перехода каучуков с различной концентрацией узлов сетки из высокоэластического в стеклообразное состояние. Весьма поучительным результатом этой работы является обнаруженное авторами явление отсутствия аддитивного влияния смесей вулканизующих агентов из перекиси дикумила и серы. На первый взгляд могло показаться, что с увеличением концентрации смеси отвердителей должна возрасти концентрация узлов и, следовательно, должна возрастать ширина а-нерехода. Однако было обнаружено (рис. 8), что с увеличением добавки серы в систему, отверждаемую перекисью дикумила, эффект роста ширины перехода с увеличением концентрации перекиси падает. Независимое определение концентрации узлов по равновесному набуханию сшитых полимеров в бензоле показало, что при этом падает также и концентрация узлов. Это явление связано, с одной стороны, с известным явлением низкой эффективности процесса сшивания каучуков с помощью серы, а с другой стороны, и это главное, с тем, что в присутствии серы часть перекиси расходуется на взаимодействие с серой [68], а не на сшивание и, таким образом, проявляется антисинергетический эффект. Вместе с тем следует отметить, что при этом вследствие добавки серы к системе каучук -Ь + перекись дикумила наблюдается увеличение температуры стеклования  [c.210]

    Имеются указания на образование перекиси водорода при восстановлении атмосферного кислорода. Бердикутверждает, что перекись образуется только в том случае, когда вместо кислоты в цинковом редукторе в качестве растворителя используется вода. Действительно, Лендел и Ноулз показали, что перекись полностью разрушается при восстановлении кислорода цинком в кислом растворе. С другой стороны, Силл и Петерсон обнаруживали образование перекиси водорода при быстром пропускании пузырьков воздуха через колонку с сильно амальгамированным цинком. При использовании свинцового редуктора образуются значительно большие количества перекиси. Следы перекиси водорода были обнаружены также при использовании серебряного редуктора в присутствии воздуха. При определении малых количеств железа нужно особенно следить за тем, чтобы растворенный воздух был предварительно удален, что осуществляется пропусканием водорода или двуокиси углерода 5. [c.386]

    Для определения числа радикалов, вошедших в полимерные молекулы, при полимеризации хлористого винила в присутствии. дипитрила азоизомасляной кислоты или перекиси бензоила, удобно использовать динитрил, меченный углеродом-14 в нитрильной группе, или перекись бензоила, содержащую углерод-14 в карбоксиле. Образующийся поливинилхлорид подвергают фракционированию и по измерению радиоактивности отдельных фракций определяют содержание меченых концевых групп, состоящих из первичных радикалов инициатора. [c.272]


Смотреть страницы где упоминается термин Перекиси определение в присутствии: [c.159]    [c.142]    [c.197]    [c.35]    [c.71]    [c.454]    [c.262]    [c.81]    [c.105]    [c.107]    [c.416]    [c.56]    [c.40]    [c.81]    [c.256]    [c.45]    [c.389]   
Перекись водорода (1958) -- [ c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Надсерная кислота, определение при совместном присутствии перекиси водорода и кислоты Каро

Надсерная кислота, определение присутствии перекиси водород

Озон, определение в присутствии перекиси водорода

Определение перекисей в присутствии третичного амина по Дроздову и Стариковой

Перекиси в их присутствии

Перекись водорода определение в присутствии



© 2025 chem21.info Реклама на сайте