Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство молекулярное

    Процесс взаимного прилипания веществ тесно связан с показателем смачиваемости. Смачиваемость веществ обусловлена сродством молекулярного строения в их поверхностных обла- [c.49]

    На рис. 7 показан способ, с помощью которого можно изобразить предполагаемую эндотермическую адсорбцию молекулярного кислорода на серебре или меди [45, 49]. Вследствие сравнительно большой величины работы выхода еф для этих металлов и слабого положительного сродства молекулярного кислорода к электрону Е хемосорбция кислорода в виде ионов О (таких же, как анионы в кристаллической решетке КОг или РЬОг) на этих [c.34]


    Как показано в обзоре автора [49], сродство молекулярного фтора к двум электронам все же существенно превышает (приблизительно ккал/ моль) соответствующую величину для хлора. При образовании кристаллических соединений большую роль играет высокое значение энергии решетки фторидов, а при реакциях в растворах—большая энергия гидратации Р -иона. По данным К. П. Мищенко [59], энергии гидратации Р и СГ соответственно равны 113 и 79 ккал/г-ион. [c.28]

    В пределах данного гомологического ряда адсорбционное сродство является функцией молекулярного веса. На силикагеле преимущественно адсорбируются низшие, а на активированном угле и глиноземе высшие члены ряда. Влияние молекулярного веса на адсорбируемость, по-видимому, значительно больше для адсорбции на активированном угле, чем на глиноземе или на силикагеле [21]. [c.144]

    Серная кислота, даже концентрированная, совершенно не действует на первые члены ряда, но реакционное сродство кислоты к углеводородам возрастает вместе с молекулярным весом последних. [c.23]

    В приведенных выше уравнениях известны теплоты образования молекулярных частиц, и для каждого процесса могут быть получены относительные термодинамические энергии (Е ). Например, для уравнения с ННз определяется как теплота образования ОН3 минус теплота образования КНз. График зависимости Ет от энергий связи 15-электронов азота ( ь) демонстрирует исключительно хорошую корреляцию (рис. 16.16). Такой тип замещения эквивалентных оболочек дает хорошие корреляции и для данных по энергиям связи электронов в других элементах, например в углероде (Ь) и ксеноне ( /2) [55]. Этот вид корреляций полезен, поскольку дает возможность из некоторых измеренных энергий связи электронов оболочки и известных термодинамических параметров предсказать различные, еще не определенные термодинамические величины. Изучение приведенных выше уравнений показывает, что их можно использовать для определения сродства к протону. По некоторым непонятным причинам сродство к протону (РА) молекулы В берется как положительное число и приравнивается изменению энергии процесса (16.32) с отрицательным знаком. [c.351]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]


    В классической термодинамике не рассматривается связь Д5°, АЛ° процессов со строением молекул реагирующих веществ. Поэтому нельзя говорить о Д /, и АЛ процесса активации, не принимая каких-либо положений о молекулярной структуре активных молекул. Обозначим термодинамические параметры процесса активации при стандартных условиях через Аб , А5 и АЛ. Выразим эмпирическую константу равновесия процесса активации К [уравнение (211.3)] через нормальное сродство АЛ. Для этого запишем стандартную константу К° этого процесса [c.567]

    Сродство BF3 к спиртам и термическая стабильность образующихся при этом координационных соединений снижается по мере увеличения молекулярной массы и разветвленности углеводородного радикала, тогда как дегидратация и алкилирующая способность спиртов возрастает в этом же ряду. [c.73]

    Молекулярные сита имеют большое сродство к ненасыщенным соединениям. Поэтому с их помощью можно отделить этилен от этана, хотя размеры молекул этих углеводородов одинаковы. [c.24]

    Процесс синтеза нефтеполимеров проводился в реакторе периодического действия при режимах температура 200-275 С продолжительность 6-8 час. Пробы отбирались с интервалом 1 час. Контролировались следующие параметры системы температура размягчения (Т ), среднечисловая молекулярная масса (ММ), коксуемость (К), относительная плотность (р). По электронным спектрам поглощения определялись эффективный потенциал ионизации (ПИ), эффективное сродство к электрону (СЭ), энергия активации вязкого течения (Е ), концентрация парамагнитных центров (С ) [3]. Свойства битум-стирольных композиций представлены в табл. 1. [c.110]

    При коксовании асфальтенов, крекинг-остатка в растворах антраценового масла остаточные асфальтены имели среднечисловой молекулярный вес, на 10% меньший, чем исходные, и в опытах, когда кокс образовывался, и в опытах, когда коксообразование не происходило. Из приведенных в табл. 60 данных видно, что в случае, когда растворитель имеет высокое сродство к асфальтенам, коксообразование начинается только после достижения некоторой пороговой концентрации асфальтенов. [c.176]

    Как и следовало ожидать, равновесие в интервале температур 300—900 К для сильно экзотермических реакций рекомбинации и диспропорционирования алкильных радикалов сдвинуто в сторону образования молекул. С ростом температуры константы равновесия этих реакций резко уменьшаются. Это означает, что растет роль реакций диссоциации и молекулярного диспропорционирования. Например, для реакции 15 (см. табл. 10.1), протекающей, как и все реакции диспропорционирования, без изменения числа частиц, температурная зависимость нормального сродства может быть приближенно описана уравнением (1.25) ЛС = —274-10 -( 36,8 Т, при 7400 К значение А.0 = О, т. е. ТС = д/ м.д = 1- Отсюда следует, что константы скорости прямой и обратной стадий равны между собой. Однако при более низких температурах, в частности при температурах крекинга, УС 2> 1 и йд > д т. е. равновесие рассматриваемой реакции сдвинуто в сторону образования молекулярных продуктов. [c.112]

    Оксиды металлов, активированный глинозем или боксит отличаются даже несколько большим сродством к полярным молекулам. Поэтому эти материалы обычно используются для удаления из газовых потоков водяных паров. Синтетические цеолиты, называемые иногда молекулярными ситами, представляют собой алюмосиликаты натрия или кальция, активированные нагреванием, при котором удаляется кристаллизационная вода. Основным достоинством молекулярных сит является то, что их можно использовать для сушки газов при высоких температурах, когда силикагель и глинозем теряют свою эффективность (рис. П1-37). [c.163]

    Для расчетов термодинамических параметров используют теоретические уравнения их связи с молекулярными параметрами, полученные на основе модельных представлений, о строении системы [139]. Большим достижением подобных теорий является установление термодинамического сродства смешиваемых компонентов, что позволяет прогнозировать тип критической температуры растворения системы (рис. 4), определяемый характером и знаком температурной зависимости значения второго вириального коэффициента Лг и значения АО [140]. [c.37]

    Избирательность адсорбции определяется природой подлежащих разделению газов и паров. При малых давлениях решающим фактором, определяющим избирательность, является сродство к поверхности адсорбента. Чем больше разница между сродствами адсорбируемых газов к поверхности адсорбента, тем легче разделить газовую смесь. Для микропористых адсорбентов дополнительную роль играет молекулярно-ситовой эффект. При наступлении конденсации в переходных порах с увеличением давления или понижением температуры основное влияние на разделение начинает оказывать природа газов и, конечно, их способность к кон-денсации. Чем при меньшем давлении газ начинает конденсироваться, тем СИ лучше будет адсорбироваться па пористом адсорбенте. Эта закономерность иллюстрируется данными, приведенными в табл. П1. 1. [c.144]


    Адсорбция щироко применяется для осущки газов в самых различных целях природного газа для повышения его калорийности, предотвращения образования ледяных пробок в трубопроводах, обеспечения сухих атмосфер в различных производствах и т. д. Для осушки газов чаще всего применяют силикагели, алюмогели, а в последнее время и цеолиты. Благодаря высокой избира тельности цеолитов, обусловленной как молекулярно-ситовым эффектом, так и специфическим сродством к полярным, ароматическим и непредельным соединениям, они используются в промышленности также для разделения газовых смесей этан — этилен, пропан — пропилен, этилен — диоксид углерода, ароматические углеводороды — нормальные парафины, бензол — циклогексан и др. [c.146]

    Согласно уравнению (V. 32) зависимость //с/т от концентрации раствора в области малых значений с графически выражается прямой линией. Отрезок, отсекаемый этой прямой на оси ординат, соответствует величине, обратной молекулярной массе полимера М. Тангенс угла наклона прямой определяет термодинамическое сродство между растворенным веществом и растворителем, которое в данном случае характеризуется вторым вириальным коэффициентом Лг- [c.146]

    Чем выше сродство растворителя к полимеру, тем больше офаничений возникает для свободного вращения звеньев макромолекулы относительно друг друга, тем сильнее разбухание молекулярного клубка  [c.108]

    Для выявления деталей механизма регулирования гемоглобином и миоглобином своего сродства к кислороду были предприняты модельные исследования [237], при этом поставленные задачи формулировались следующим образом 1) Как предотвратить окисление до Ре(П1) во время физических исследований гемоглобина, например при рентгеноструктурном анализе 2) Какова детальная молекулярная геометрия гема и комплексов гем — СО и гем — Ог 3) Каким образом сродство к кислороду и скорость окисления контролируются в гемопротеине  [c.361]

    И объяснить в рамках теории молекулярных орбиталей. Если не учитывать явно слагаемое, отвечающее за электронное отталкивание, то получается, что для удаления электрона и возвращения его на данную орбиталь необходимо одно и то же количество энергии. Подобные расхождения могут оказаться очень значительными. Для молекулы На энергетическое состояние Н+ + Н- выше состояния Н + Н на 12,8 эВ (1230 кДлРазность энергий между К " + КГ и Н1 + Н2 определяется как /(Р]) — (Р2), где Е электронное сродство Ра (т. е. энергия, которая выделяется при воссоединении атома или радикала Ра и электрона с образованием отрицательно заряженного иона). Как показано в табл. 4.7, электронное сродство насыщенных углеводородов 1 эВ (- 96 кДж/моль) или менее, а разность между /(Р) и (Р) достигает 7 эВ [c.112]

    Коллоидные системы по своим свойствам приближаются к обычным молекулярным растворам, получаемым при растворении высокомолекулярных веществ. К последним относятся белки, каучук, различные синтетические продукты полимеризации и поликонденсации. В растворах таких веществ достигается молекулярная степень дисперсности, однако сами молекулы настолько велики, что их растворы обладают рядом свойств лиофобных коллоидов. Эти растворы называют иногда лиофильными коллоидами благодаря их большей устойчивости по сравнению с лиофобными коллоидами, что свидетельствует о большем сродстве указанных веществ к растворителю. [c.8]

    Углеводородный радикал (в простейшем случае прямая насыщенная алкильная цепочка) имеет дипольный момент, равный нулю или близкий к таковому, и проявляет гидрофобные свойства, т. е. практически не имеет молекулярного сродства к воде. Вместе с тем он проявляет сродство к близким по полярности фазам — углеводородам и другим нерастворимым или слаборастворимым в воде органическим соединениям (маслам). [c.5]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Переход в раствор твердого комплекса R N-2HBr и бромистого калия также объясняется сродством молекулярного брома к аниону. [c.139]

    Здесь АО Л , — энергия образования хлорида натрия из элементарных натрия и хлора, взятых в их стандартных состояниях (твердый кристаллический натрий и газообразный моле кулярный хлор), равная 384 кДж.моль- ЛОсуб = 78 кДж-моль — энергия сублимации натрия АО оп=496 кДж-моль —энергия его ионизации А0дие=203 кДж-моль — энергия диссоциации молекулярного хлора Л(5ср=387 кДж-моль —эне )гия, характеризующая сродство электрона к газообразному атомарному хлору. Если цикл проведен обратимо и изотермически, то полное изменение энергии равно нулю, что приводит к уравнению, позволяющему найти энергию решетки  [c.45]

    Подоб гоо распространение результатов кинетической теории диффузии в газах на жидкузо фазу пе вполне надежно, однако мы еще пе располагаем другим, более эффективным сродством для ренгеыия вопроса о механизме молекулярной диффузии в жидкостях. [c.66]

    Энергетические взаимодействия в системе среда-Ь ПАВ + металл. Энергия связи ПАВ с масляной средой определяется ван-дер-ваальсовыми силами. Она зависит от растворимости ПАВ и от химического сродства углеводородной части ПАВ и среды. Так, например, большой энергией связи обладают молекулы ПАВ, углеводородная часть которых имеет достаточно большую молекулярную массу и разветвленную структуру с алкильными радикалами. Из теории дисперсионных сил известно, что чем выше энергия связи, тем больший контакт по длине молекулы осуществляется по СНг-группам. [c.206]

    Изложенные выше рассуждения и оценки позволяют однозначно понять, почему углеводороды окисляются по цепному радикальному механизму. Геометрия и прочность С—С- и С—Н-связей в углеводородах с одной стороны и триплетное состояние кислорода с другой препятствуют молекулярной реакции КН с О2. Высокий потенциал ионизации углеводородов, низкое сродство кислорода к электрону, ковалентный характер С—Н-связей и неполярный характер углеводородов как среды препятствуют ионному протеканию реакции окисления. Единственно возможной оказывается гомолитическая реакция КН с кислородом с образованием радикалов К. Несмотря на то что эта реакция эндотермична и протекает очень медленно (см. раздел Кинетика автоокисления углеводородов ), образующиеся радикалы К вызывают цепную реакцию окисления, которая протекает как последовательность многократно повторяющихся актов. Первичным молекулярным продуктом такой цепной реакции является гидропероксид, сравнительно легко распадающийся на свободные радикалы. Таким образом, причиной цепного автоинициированного механизма окисления углеводородов является ковалентный характер их С—Н-связей, высокая активность радикалов К по отношению к кислороду и КОг по отношению к КН, цикличность последовательных радикальных реакций [c.28]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    А содержат димерные углеводородные автоассоциаты, стойкость, которых повышается с повышением сродства к электрону акцептора (ангидрида), в поле влияния которого они находятся. Стойкость этих димеров коррелирует как со строением углеводородной молекулы, так и со свойствами растворителя. Для молекул-до-норов, где второй заместитель отсутствует или максимально удален от первого, стойкость коррелирует с такой характеристикой среды, как диэлектрическая постоянная, а у неплоских молекул — с вязкостью, температурой плавления и показателем преломления. Чувствительность димеров к влиянию среды зависит от типа симметрии молекулы исходного углеводорода. Ранее было сделано предположение о параллельном расположении углеводородных молекул, образуюш,их димер [2]. Есть основания предполагать, что в среде УА взаимное расположение нафталиновых молекул соответствует таковому в кристаллах исходных соединений. На примере систем, исследованных в Д, показано различие активности мономерных молекул нафталиновых углеводородов и соответствующих димеров, существующих в поле влияния ПДА [2]. 05 этом же говорит и различие способности их КПЗ к взаимному наложению синглет-триплетной полосы компонентов на синглет-синглетную полосу КПЗ. Большая стойкость КПЗ с димерами, чен с мономерными молекулами, соответствует известному эмпирическому правилу о повышении прочности при увеличении молекулярного веса одного из компонентов. Механизм взаимодействия между углеводородными молекулами в димере не ясен. Известно мнение, что ароматические углеводороды способны выступать как в роли доноров, так и в роли акцепторов л-электронов [22], Явление образования ароматическими л-донорами димеров вереде органических растворителей в поле влияния ПДА было обнаружено [c.136]

    Н1 и ИЛ СПЛОШНЫХ фаз в самопроизвольное диспергироватг- е вносит основной вклад рост энтропийной составляющей, 0С0( 1 Л 10 ири отрицательных тепловых эффектах растворения. Еще большую роль энтропийная составляющая играет при самопроизвольном диспергировании ВМС (образовании молекулярных коллондиых систем), в процессе которого растет не только рассеивающая энт ропия, но и значительно сильнее энтропия, связанная с различием размеров и форм частиц дисперсной фазы и молекул дисперсионной среды. Лиофильность таких систем обеспечивается не только пли не столько сродством молекул растворителя к дисперсной фа-зе, а в основном энтропийным фактором. [c.287]

    Типичными представителями лиофильных дисперсных систем я1зля-ютс я растворы коллоидных ПАВ (ассоциативные коллоиды) и растворы полимеров (молекулярные коллоиды). В растворах коллоидных ПАВ мицеллы (частицы) образуются вследствие ассоциации дифильных молекул. При ассоциации лиофильные части молекул ПАВ (имеющие большее сродство к растворителю) располагаются на периферии мицеллы, внутри ее находятся лиофобные части молекул. Так, в водных растворах неполярные углеводородные радикалы молекул ПАВ образуют ядро мицеллы, а полярные группы обращены к воде. В неполярных средах образуются обратные мицеллы, т. е. внутри мицеллы располагаются полярные группы. [c.130]

    Синтезированная недавно модель кобальтзамещенного гемоглобина приведена на схеме 6.1 [245]. Длинная боковая цепь обеспечивает координацию пиридинового кольца с центральным атомом кобальта. Комплекс Со(П) и этого так называемого петлеобразного порфирина обратимо реагирует с молекулярны.м кислородом при низких температурах (от —30 до — G0° ), но боковая цепь лишь в незначительной степени увеличивает сродство кислорода к таким модельным соединениям по сравнению с жслсзопорфириновыми системами. [c.371]

    С помощью этого метода Фокс и сотрудники [296] измерили потенциалы появления атомарных ионов благородных газов, молекулярных ионов простых молекул, а также уточнили и определили новые электронные уровни возбуждения, соответствующие энергиям отрыва электрона с разных молекулярных и атомных орбит. Метод квазимонокинетизации был применен В. Л. Тальрозе и Е. Л. Франкевичем [298] для изучения иономолекулярных реакций в газовой фазе и определения сродства к протону ряда молекул. Исследование процессов диссоциативной ионизации октана, октаиа-2-0 и нонана-С з позволило В. К. Потапову и соавторам [94] впервые обнаружить тонкую структуру кривых вероятности появления (С Н2п+1) и ( H2n) связанную с различными процессами их образования. Можно предположить, что осколочные ионы (СпНгп)" выделяются из середины молекулы с одновременным соединением концов цепи в новую молекулу углеводорода. Высота активационного барьера этих реакций [c.179]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Триоксид хлора СЮз в обычных условиях — темно-красная маслообразная жидкость, замерзающая при +3°С. Определение молекулярного веса показывает, что в жидком состоянии существуют диамагнитные молекулы С1аОв, в газовом — парамагнитные СЮд. В чистом состоянии жидкий СЮз довольно устойчив, при обычных температурах постепенно разлагается. Триоксид хлора получают, окисляя СЮа озоном. Подобно СЮа молекула СЮз валентно ненасыщенна (сродство к электрону 3,96 зе, энергия ионизации 11,7 эв). Оксид хлора (УП) энергично взаимодействует с водой, образуя за счет самоокисления — самовосстановления две кислоты, поэтому его можно рассматривать как смешанный ангидрид хлорноватой и хлорной кислот  [c.313]

    Сродство к электроду молекулы О2 составляет 0,8 эв, а ее энергия нонизации 12,2 эв. При химических превращениях молекула О2 может присоединять или терять электроны с образованием молекулярных ионов типа 0 , О , и 0+. [c.341]

    Размер пор молекулярных сит СаА почти совпадает с размером поперечного сечения цепочек углеводородов нормального строения они не адсорбируют углеводородов изостроения и циклостроения. Цеолиты СаХ адсорбируют не только нормальные парафиновые углеводороды, но и изо-парафиновые, нафтеновые, ароматические углеводороды, нафталин, хинолин, тиофен, пиридин и их производ-ньге. Ошг ке поглощают сложных конденсированных ароматических углеводородов. У цеолитов МаХ поры довольно велики 8—10 А. Они обладают большим сродством к неполярным и ненасыщенным соединениям. Применяются для разделения углеводородов свыше Св- [c.90]


Смотреть страницы где упоминается термин Сродство молекулярное: [c.618]    [c.54]    [c.280]    [c.222]    [c.124]    [c.93]    [c.154]    [c.35]    [c.84]    [c.657]    [c.13]   
Избранные труды (1955) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2025 chem21.info Реклама на сайте