Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция природа

    Явление опалесценции по своим внешним признакам сходно с явлением флуоресценции, природа которого связана с внутримолекулярным процессом. В случае флуоресценции часть падающего светового луча сначала избирательно поглощается, а затем вновь испускается (рассеивается), но уже с иной (обычно большей) длиной волны. Явление флуоресценции присуще в одинаковой мере как коллоидным, так и молекулярным растворам. [c.297]


    Флуоресценция. С опалесценцией по внешним признакам очень сходно другое явление—флуоресценция, природа которой связана с внутримолекулярным процессом в результате этого процесса часть падающего светового луча сначала избирательно поглощается, а затем вновь испускается (рассеивается), но уже с иной длиной волны, обычно большей (с меньшими квантами энергии). Флуоресценция, в отличие от опалесценции, ярко выражается не только в коллоидных, но и в молекулярных растворах, что может привести к ошибкам (такой молекулярный раствор можно принять за типичный золь). [c.54]

    В последние годы все большее внимание обращается на количественное определение разделенных методом ТСХ ионов [494, 496], особенно на денситометрическое определение ряда элементов в зонах, в том числе лития [502], серебра [503], кадмия [505] и других элементов [5181 в форме дитизонатов, марганца в виде его комплекса с 1-(2-пиридилазо)-2-нафтолом [504]. Рассмотрено влияние различных факторов на точность денситометрического определения (по поглощению или отражению света, измерению радиоактивности или флуоресценции) природы сорбента, толщины и влажности слоя, величины Rf компонента, скорости потока, направления сканирования, формы и размера пятен, присутствия других веществ, точности нанесения пробы. При опрыскивании хроматограммы реагентом для обнаружения компонентов имеют значение также степень окраски слоя и диффузия пятна. [c.137]

    Твердые растворы многих органических соединений обнаруживают длительное свечение — фосфоресценцию, спектр которой расположен в области больших длин волн, чем спектр флуоресценции. Природа фосфоресценции была раскрыта в классических работах Теренина Льюиса и Каша . Они обосновали в 1943/44 г. гипотезу о три-плетной природе метастабильного фосфоресцентного со- [c.8]

    Из чешуи карпа выделено азотистое вещество, обладающее в опытах на животных одновременно активностью и витамина В , и витамина Вг. Вещество обладает интенсивной сине-зеленой флуоресценцией природа его еще не выяснена (возможно относится к классу птеринов), [c.72]

    Для того чтобы решить систему этих уравнений, можно пренебречь флуоресценцией и дезактивацией возбужденных молекул Вг2, так что удельная скорость реакции 1 = 2/а, где —среднее число фотонов, поглощенных 1 см в 1 сек. Удобно также допустить, что определенная доля атомов Вг, ударяющихся о стенку, захватывается стенкой, давая Вг2. В действительности же коэффициент рекомбинации на стенке должен, конечно, зависеть от стационарной концентрации атомов Вг, химической природы стенки, концентрации других примесей, которые могут влиять на абсорбцию атомов Вг, и т. д. [c.289]


    Весьма интересным является метод молекулярного зонда, основанный на зависимости спектра флуоресценции люминофора ог химической и физической природы изучаемой среды [90]. Это позволяет, принимая во внимание большую чувствительность метода, исследовать плотность очень тонких слоев на твердых подложках. [c.76]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Факторы, влияющие на интенсивность. Интенсивность флуоресценции определяемого элемента в пробе зависит также от природы и содержания сопутствующих элементов ( матричный эффект ). Возможно протекание следующих процессов  [c.203]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта Ау (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна + где а — энергия [c.119]

    В этом разделе было показано, каким образом анализ данных о скоростях реакций приводит к пониманию первичных и вторичных фотохимических процессов, помогает проникнуть в механизмы реакций и даже в природу отдельных элементарных стадий реакций. Кинетические исследования оказываются существенным дополнением к изучению спектров поглощения, флуоресценции и многих других оптических и фотохимических явлений, и их использование будет описано в следующих главах. [c.25]

    На флуоресценцию веществ в растворе сильно влияют природа растворенного вещества и растворителя, концентрация и pH раствора, наличие примесей, температура. При анализе лекарственных препаратов метод используется гораздо чаще для определения, чем для открытия того или иного компонента препарата. [c.591]

    С. И. Вавилов установил количественную зависимость интенсивности флуоресценции от концентрации флуоресцирующего вещества. Этот закон можно вывести из закона Бера. Доля поглощенного раствором ультрафиолетового света равна 1 —10 . Количество поглощенного излучения равно / —/ =/ (1—10) где к — константа, зависящая от химической природы растворенного вещества и растворителя, от температуры и других факторов I — толщина слоя раствора, С — концентрация флуоресцирующего вещества. Так как интенсивность флуоресценции /ф пропорциональна количеству поглощенного ультрафиолетового излучения, то можно написать  [c.482]

    Геометрические эффекты можно разделить на две основные группы массовый эффект и эффект поглощения дополнительная группа обусловлена эффектом флуоресценции [159]. Природа каждого из этих эффектов будет рассмотрена в отдельности. [c.42]

    Таким образом, понятна больщая роль характера сопряженной системы, жесткости и степени копланарности структуры, которая наряду с природой катиона обусловливает энергетическое состояние комплекса, взаимное расположение синглет-три-плетных уровней энергии молекулы, определяя тем самым соот-нощение рассеивания энергии возбуждения путем флуоресценции либо путем интерконверсии с последующей безызлучательной деградацией. [c.293]

    В специальной главе Свет в биологии (гл. 13) обсуждаются не только проблемы фотосинтеза, зрения и других биологических реакций на свет, но и природа поглощения света, флуоресценции и кругового дихроизма. В гл. 14 подробно рассматриваются процессы биосинтеза и распада множества азотистых соединений. Эта глава может быть полезна как студентам-биохимикам — при работе над литературными обзорами, так и преподавателям курсов химии природных соединений. [c.9]


    В отличие от максимумов поглощения для АНС природа растворителя сильно влияет на положение максимумов флуоресценции, причем в разной степени в растворителях разной полярности. Флуоресценция АНС обусловлена двумя различными возбужденными состояниями — аполярным локально возбужденным состоянием Зг.пр и цвиттерионным возбужденным состоянием 81,с<, образующимся из 81, р путем внутримолекулярного переноса заряда или электрона. Первая полоса йену- [c.439]

    Методы, используемые для обнаружения и измерения радиоактивности, зависят от природы и энергии радиации. Радиоактивность может быть обнаружена и/или измерена различными приборами, принцип действия которых основан на улавливании и регистрации количества возникших ионов газов, на измерении флуоресценции отдельных твердых веществ и жидкостей или измерении эффекта воздействия излучения на фотоэмульсию. [c.64]

    Поглощение в УФ-свете при 360 нм. Аналогичное тушение флуоресценции наблюдается в случае наличия в молекуле трех или более сопряженных связей (но не ароматической природы), например ен-4-дион-3,6 5 мкг. При обработке антраценом происходит повышение чувствительности методики, аналогичное описанному выше. [c.414]

    Ионпая природа фотосенсибилизированного окисления была доказана Шейком [9]. Он показал, что, поглощая свет, краситель типа эозина (XXI V) активируется и образует дирадикал (XXV). При отсутствии какого-либо реакционноспособного вещества такой дирадикал снова превращается в нормальную молекулу эозина, причем выделяется некоторое количество энергии (флуоресценция). Однако в присутствии молекулярного кислорода, который также ведет себя как дирадикал, дирадикал эозина превращается в сложный дирадикал (XXVI), который самопроизвольно переходит в амфотерный ион (XXVII), [c.359]

    Подвергая обсуждению результаты, полученные при окислении гексана в холоднопламенной области, Норриш и Бэйлн принимают заключение Ton a и Тоуненда [99] (см. стр. 189) о близкой природе холодных и голубых пламен. Последними авторами это заключение было сделано на основе того факта, что спектры обоих этих пламен идентичны со спектром флуоресценции формальдегида. [c.261]

    Светорассеяние в коллоидных системах и связанное с ним изменение окраски коллоида принято называть опалесценцией. Внешне опалесценция очень похож а на флуоресценцию. Флуоресценция наблюдается в некоторых истинны.ч растворах, наиример врастворах флуоресцеина и эозина. Она заключается в том, что раствор в проходящем свете имеет иную окраску, чем тогда, когда наблюдают его под углом к направлению лучей падающего света в растворе можно видеть такую же светящуюся полосу, как и в коллоидах. Однако природа опалесценции и флуоресценции совершенно различна. Флуоресценция — явление виутримолекулярное, связанное с избирательным поглощением света флуоресцирующим веществом. Свет поглощается молекулами вещества и затем трансформируется в колебания иной частоты. Длина волны света, испускаемого флуоресцирующим веществом, всегда больше, чем поглощенного. Флуоресценцию чаще всего, вызывает наиболее короткая невидимая часть спектра, тогда как светорассеяние, или опалесценция, наблюдается при освещении коллоида любым светом. Благодаря этому можно отличить опалесценцию от флуоресценции. Если на пути падающего белого света поставить красный свето( )ильтр, пропускающий лишь длинноволновую часть спектра, то флуоресценция должна исчезнуть если пропустить такой свет в раствор флуоресцирующего вещества, то светящаяся полоса наблюдаться не будет. Этот же свет, проходя через коллоидный раствор, дает возможность наблюдать светящуюся полосу, или явление Тиндаля. [c.38]

    Мы должны теперь дать некоторые объяснения природы за-преш,енного триплет-синглетного излучения. В разд. 2.6 мы полагали, что электрические дипольные переходы могут иметь место и при Д8 0, если S не дает хорошего описания системы. Оптические переходы между триплетными и синглетными состояниями могут наблюдаться, если триплет не является чистым, а содержит синглетную составляющую, и наоборот. В органических молекулах перемешивание синглетных и триплетных состояний происходит за счет слабого спин-орби-тального взаимодействия. Так как спин-орбитальное взаимодействие между состояниями одной и той же конфигурации запрещено, то, например, состояние (я, я ) может перемешаться с состояниями (п, я ) и .,(о, я ) и не может с состоянием (я, л ). Аналогично состояние (п, л ) перемешивается с состоянием (я, я ). Поскольку радиационный переход из состояния (я, я ) в основное состояние полностью разрешен, тогда как переход из (п, я ) в общем случае частично запрещен, следовательно, переход Т(п, я )->-5о является более разрешенным, чем (я, я )- 5о. Таким образом, относительная вероятность триплет-синглетных переходов из состояний (п, я ) и (я, я ) отличается от той, что наблюдается при синглет-син-глетных переходах. Экспериментальные исследования естественных времен жизни флуоресценции находятся в соответствии с этими предсказаниями в ароматических углеводородах, имеющих нижнее триплетное состояние (я, я ), радиационное время жизни равно приблизительно 1—10 с, в то время как у карбонильных соединений нижним триплетным состоянием является уровень (л, я ), характерное время жизни которого обычно равно 10 2—10- с. [c.100]

    И донор, и акцептор являются обычно молекулами одинаковой химической природы, так что реакция (5.32) обеспечивает способ образования возбужденных синглетов, когда в системе присутствуют только триплеты. Кумуляция энергии двух трнп-летных возбуждений, известная как триплет-триплетное тушение или триплет-триплетная аннигиляция , служит одним из механизмов происхождения задержанной флуоресценции (см. также разд. 4.6). Например, в антрацене распад флуоресценции описывается двухкомпонентной кривой, причем одна компонента соответствует нормальному времени жизни флуоресценции, а другая — медленному, хотя спектр излучения обеих компонент идентичен. Механизм возбуждения (исключая безызлучательный распад или тушение) включает следующие процессы  [c.135]

    Фотохимические процессы могут вызывать химические изменения веществ. Природа получаемых продуктов, а также скорости их образования могут быть определены обычными химическими методами, рассматривать их здесь нет необходимости. Больший интерес представляют экспериментальные методы, связанные с использованием световых измерений. Определения интенсивностей поглощаемого (а иногда испускаемого) света существенны для нахождения квантовых выходов, которые в свою очередь необходимы для оценки эффективности первичных фотохимических процессов. Квантовые выходы могут быть определены с помощью классических методов, т. е. при освещении постоянным светом. Кинетическое поведение реакционных систем в условиях постоянного освещения обычно согласуется с предположением о наличии стационарных концентраций промежуточных соединений реакций. Дополнительные кинетические данные (например, константы скорости отдельных стадий) можно получить в экспериментах, проводимых в нестационарных условиях. Это уже было продемонстрировано на примерах фотолиза (см. конец разд. 1.8) и флуоресценции (см. разд. 4.3). Фотохимические процессы идеально подходят для изучения в нестационарных условиях потому, что освещение можно включить и выключить очень быстро с помощью импульсной лампы или механического затвора. Часто нельзя аналогичным образом начать и остановить термические реакции (хотя ударные волны могут использоваться для быстрого нагревания в газовых системах). Эта глава начинается с обсуждения источников света, применяемых в фотохими- [c.178]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    ФЕНАНТРЕН, юге, f 340,ГС 0,9800, и 1,5943 не раств. в воде, раств. в си., эф., бензоле, хлороформе, уксусной к-те, СЗг р-ры обладают голубой флуоресценцией. В природе встречаются многочисл. производные Ф-, напр, алкалоиды группы морфина, нек-рые терпены. Выделяют из антраценовой фракции кам.-уг. смолы. Стабилизатор ВВ (напр., нитроглицерина и нитроцеллюлозы), компонент дымовых составов (в составе антраценовой фракции). ПДК 0,8 мг/м . [c.610]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    При использовании флуоресценции для детекции сорбатов следует помнить, что флуоресцентные характеристики молекул зависят не тол1>ко от их химического строения, но и от условий хроматографии (температура, pH, вязкость, природа растворителя). Примеси, содержащиеся и подвижной фазе, в первую очередь, раство- зснный кислород, способны вызват , гашение флуоресценции. Такое же действие оказывают кислородсодержащие растворители. [c.260]

    Для данного флуорофора изменение поляризации флуоресценции зависит от молекулярной массы антигена и природы комплекса с антителом должно иметь место надлежащее изменение молекулярной массы, а этого нельзя добиться с большими антигенами. В целом, хфинято считать, что иммунный анализ ло поляризации флуоресценции неприменим к антигенам с молекулярной массой выше 20000. [c.592]

    Помимо того, что поглощение может сопровождаться флуоресценцией (разд. 8.3), взаимодействие рентгеновского излучения с атомами также может привести и к рассеянию, которое может быть упругим (эффект Рэлея) или неупругим (эффект Комптона). При упругом рассеянии электроны атома, вовлеченного в процесс, ускоряются падающим рентгеновским излучением и сами становятся источником излучения, имеющего такие же точно энергию и длину волны, что и падающее рентгеновское излучение. Б отличие от этого, эффект Комптона отражает корпускулярную природу электромагнитного излучения, и его можно рассматривать как столкновение между протоном и электроном, которое приводит к потере энергии и увеличению длины волны рентгеновского излучения в соответствии с законами сохранения энергии и количества движения. С счастью, неупругое рассеяние играет незначительную роль для таких длин волн, как СиКа (1,5418 А) или МоКа (0,7107 А), которые широко используются в рентгеновских экспериментах. Этот эффект, тем не менее, приводит к относительно высокому фоновому сигналу рассеяния. В процессе упругого (когерентного) рассеяния ускоренные электроны приводят к возникновению рассеянного излучения, испускаемого во всех направлениях. [c.389]

    Существование двух взаимопревращающихся возбужденных молекул (нормальной и изогнутой) может привести к усложнению как самих спектров флуоресценции, так и характера их зависимости от природы растворителя. Такие усложненные спектры флуоресценции впервые обнаружили Липперт и др. [342] при изучении 4-(М,М-диметиламино) бензонитрила впоследствии их правильную интерпретацию дали Грабовский и др. [343]. Эти исследователи показали, что именно изогнутое возбужденное состояние с ВПЗ является причиной обусловленной растворителем длинноволновой флуоресценции этого нит-рильного соединения. Недавно опубликован подробный обзор, в котором рассмотрены теория изогнутого возбужденного состояния с ВПЗ и все случаи бихромофорных органических соединений с двумя состояниями флуоресценции [344]. [c.439]

    Другими хорощо изученными примерами зависимости двойственной флуоресценции от природы растворителя являются 6-ариламинонафталинсульфонаты-2 (АНС) ниже изобра- [c.439]

    Диэлектрическое трение служит мерой динамического взаимодействия заряженных или биполярных молекул растворенного вещества с окружающими их полярными молекулами растворителя. Хайнз и др. [339] использовали концепцию диэлектрического трения для объяснения зависимости максимумов флуоресценции соединений от природы растворителя и времени сдвигов. Если молекулы растворителя сильно взаимодействуют с молекулами растворенного вещества как в основном, так и в возбужденном состояниях (что может быть связано с особым распределением зарядов в этих состояниях), то относительно медленная реориентация молекул растворителя позволит наблюдать изменение спектра флуоресценции в диапазоне времени от наносекунд до пикосекунд. Такая зависящая от времени флуоресценция (ЗВФ) теоретически проанализирована в рамках концепции о динамической неравновесной сольватации возбужденных молекул в полярных растворителях. Показано, что сдвиг ЗВФ пропорционален зависящему от времени диэлектрическому трению поглощаю- [c.440]

    При эритропоэтической порфирии наблюдается недостаток уропорфириноген П1-косинтетазы и накопление больших количеств уропорфириногена I, обусловливающее винно-красное окрашивание мочи и интенсивную флуоресценцию (в красной области спектра) зубного дентина и других тканей в УФ-свете. При острой перемежающейся порфирии поражается печень. В ней накапливаются порфирины и их предшественники, особенно АЛК и порфобилиноген, которые обнаруживаются также в моче. Во время перемежающихся приступов больной испытывает острую боль в брюшной полости. Эти две главные группы порфирий включают несколько типов порфирий, различающихся природой накапливающихся порфиринов или их предшественников, типом наследования, а также клиническими свойствами и симптомами. [c.217]

    Спектр в эф. (и е) 773 (697), 577 (530), 391,5, 358,5, 91,1 (9,1), 20,8 (2,7), 48,1 и 73,3 в МеОН (и е) 772 (685), 608, 365, 42,0 (8,6), 15,4 и 53,9. Раств-сть р. эф., ац., МеОН, бенз., пир. н.р. петр. эф. Обнаружен в пурпурных и коричневых фотосинтезирующих бактериях, не-которьгх зеленых серных бактериях. Фазовый тест желт. -> коричн. -> зеленый. H l-число 25. Флуоресценция в EtOH 805 нм. Более уст. в очищенном состоянии, чем в сырых экстрактах. Получ. см. [АВВ 53, 228 (1954) Ат. J. Bot. 41, 718 (1954)]. Феофорбид получ. кисл. обработкой хлорофилла нет сведений о распространенности в природе. [c.193]

    Методы определения хрома путем измерения интенсивности флуоресценции по линии СтКа, вызванной рентгеновскими лучами, применяют при анализах руд, горных пород, минералов, биологических объектов, металлов, сплавов. Интенсивность аналитической рентгеновской линии обусловлена концентрацией элемента, природой основы, в которой находится элемент, природой и концентрацией других элементов, присутствующих в пробе, и толпщной пробы [41. Измеренная критическая толщина слоя металлического хрома равна 0,003 мм для порошков она значительно выше [534, с. 2301. Теоретические значения предела обнаружения хрома по критерию Зст равны при определении в металлическом железе — 4,0-10 %, в бериллии— 1.0-10 % [4, с. 232]. Пределы обнаружения хрома в растворах 5 мкг/мл [534]. При определении хрома используют различные типы спектрометров с кристаллом Ъ1р, рентгеновской трубкой с У-анодом (50 кв, 30 ма) в качестве приемника излучения используют сцинтилля-ционный счетчик с кристаллом КаТ(Т1) или проточные пропорциональные счетчики. [c.97]


Смотреть страницы где упоминается термин Флуоресценция природа: [c.30]    [c.97]    [c.484]    [c.338]    [c.97]    [c.12]    [c.616]    [c.33]    [c.87]    [c.444]    [c.117]    [c.71]   
Фото-люминесценция растворов (1972) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресценция



© 2025 chem21.info Реклама на сайте