Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород карбонате калия ном

    ВОДОРОД-КАРБОНАТ КАЛИЯ—ВОДА [c.28]

    ПЕРЕКИСЬ ВОДОРОДА—КАРБОНАТ КАЛИЯ—ВОДА [c.106]

Рис. 9. 1. Принципиальная технологическая схема установки для производства водорода I - сы) 1ье II — водяной пар III водород IV - двуокись углерода V - вода VI — водный раств )р карбоната калия Рис. 9. 1. <a href="/info/1480765">Принципиальная технологическая схема</a> установки для <a href="/info/66466">производства водорода</a> I - сы) 1ье II — водяной пар III водород IV - <a href="/info/20216">двуокись углерода</a> V - вода VI — <a href="/info/362424">водный раств</a> )р карбоната калия

    Смесь водорода, диоксида углерода и водяного пара охлаждают далее в теплообменниках 6 до 104 °С и направляют в абсорбер 14 на очистку горячим водным раствором карбоната калия от диоксида углерода. [c.63]

    При работе с железным катализатором синтез ведут при несколько более высоких температурах (порядка 280—360° С) II давлениях (порядка 20—42 атм). Основными преимуш ествами железного катализатора (обычно промотированного небольшим количеством карбоната калия или окиси калия) являются низкая стоимость, более широкие пределы соотношения СО водород , меньшая чувствительность к перегреву и более широкий диапазон ценных продуктов синтеза. Как кобальтовый, так и железный катализаторы легко отравляются серой, поэтому обязательным условием является чистота исходного синтез-газа. Большие трудности при конструировании реакционных устройств для синтеза вызывает обеспечение эффективного теплоотвода, так как реакция синтеза сильно экзотермична. Сложным является также разделение продуктов синтеза. [c.593]

    Сплавы на основе никеля. Использование сплавов на основе никеля в условиях сильного воздействия коррозии рассматривалось выше. Сплав монель с содержанием N1 — 30 Си используется в ряде установок, таких, как охладители соленой воды, в частности морской, и нагреватели испарителей питательной воды, в которых вода циркулирует в трубном пространстве, а также в теплообменниках, в которых происходит коррозионное растрескивание и другие виды коррозии, вызванные воздействием хлоридов. Монель обладает значительной стойкостью к коррозии, вызванной фтористыми соединениями, и может использоваться, например, в ребойлерах и конденсаторах при алкилировании с применением фтористого водорода НР в качестве катализатора [12]. Однако на современных заводах, где применяются меры по очистке воды, для изготовления теплообменного оборудования находит широкое применение углеродистая сталь [13]. Монель может также использоваться в уставовках с горячей каустической содой и горячим раствором карбоната калия. [c.316]

    Следует также упомянуть об интересном синтезе, исходящем из этилового спирта. Нагревание смеси паров этанола с водородом при 200° под давлением в присутствии медного катализатора, промотированного карбонатом калия. [c.306]

    Регулирование pH в растворе с [Н ]>10 . Если требуется понизить концентрацию водородных ионов, то к исследуемому раствору прибавляют по каплям водный раствор едкого кали, едкого натра, аммиака, карбонатов калия или натрия, ацетата натрия или других солей, образованных катионами сильных оснований и анионами слабых кислот. Можно для этой цели также добавлять буферную смесь, т. е. смесь, которая обладает свойством сохранять неизменной концентрацию ионов водорода при разбавлении и при добавлении к ней небольших количеств сильных кислот или щелочей, pH которой отвечает требуемому значению (табл. 3). [c.11]


    Высокое качество очищаемых поверхностей удается получить при электролитической мойке. Очистку ведут электролитом, в 1 л которого содержится до 50 г едкого натра (МаОН), 50... 75 г карбоната натрия (Ма СОд), 2...3 г метасиликата натрия (Ма ЗЮз). При обработке деталей из цветных металлов и сплавов вместо едкого натра используют карбонат калия (10...20 г/л). Длительность обработки 5...10 мин, температура 60...80 °С- При прохождении через электролит тока выделяется водород, разрушающий загрязнения. [c.291]

    Серотонина адипинат (XI). 150 г X, 3 л этилового спирта и 30 г палладиевого катализатора, содержащего 5% окиси палладия на карбонате калия, гидрируют при 18—25 °С и давлении водорода 3 атм. Катализатор отфильтровывают, промывают 150 мл этилового спирта и к спиртовому фильтрату приливают горячий раствор 82,5 г адипиновой кислоты NB 450 мл этилового спирта. (Фильтрацию растворов, содержащих серотонин, и получение се- [c.170]

    Было показано, что избирательность процесса резко изменяется в присутствии соединений, способных взаимодействовать с бромистым водородом (карбонат калия, окись этилена). Так, для бромирования замещенных толуолов р = —1,24 в отсутствие окиси этилена и р = —0,69 в ее присутствии [44, 1974, т. 96, с. 829]. Таким образом, в присутствии ловушек для НВг реакция идет по первому механизму, а в отсутствие—по второму механизму. Это подтверждается также перемешиванием метки в отсутствие окиси этилена (см. стр. 459). Для реакции хлорирования грег-бутилги-похлоритом было показано, что частично реакция идет по следующему механизму [44, 1972, т. 94, с. 7390]  [c.474]

    Это оказалось действенным. 6 октября 1807 г. Дэви пропустил ток через расплавленный поташ (карбонат калия) и получил маленькие шарики металла, который он назвал потассием (от английского — potash). Этот металл, впоследствии названный калием, оказался очень активным. Он вытеснял кислород из воды, освобождая водород, причем реакция эта шла чрезвычайно бурно. Неделю спустя Дэви выделил из соды (карбоната натрия) содий (от английского — soda), впоследствии названный натрием. По своей активности, как выяснилось, натрий лишь незначительно уступает калию. [c.66]

    Гидролиз солей, образованных слабыми многоосновными кислотами, протекает ступенчато, причем продуктами первых стадий гидролиза являются кислые соли. Так, при гидролизе карбоната калия ион СОз присоединяет одни ион водорода, образуя гидрокарбонат-ион НСОз [c.150]

    За счет частичного сжигания метана при помощи особых горелок температура газовой смеси повышается, в результате чего на никелевом катализаторе при температуре 940—1000° завершается конверсия метана. Проконвертированный аз охлаждается вспрыскиванием воды до 400—425° и поступает на конверсию СО, которая также протекает в присутствии катализатора. В результате этого образуется дополнительное количество водорода, а СО превращается в СОа. Горячая газовая смесь проходит теплообменник, где охлаждается, подогревая при этом карбонатный и медноаммиачные растворы. Охлажденный до 110° газ орошается горячим раствором карбоната калия и медноаммиачным раствором для удаления СО2. Очищенный газ после дополнительного охлаждения водой подается на синтез аммиака. [c.109]

    Проблемы, связанные с разделением фаз. На теплообменники могут воздействовать различные агрессивные вещества. Вместе с тем могут возникать другие виды воздействий, связанные с разделением фаз во время охлаждения или нагрева. Один случай уже ранее рассматривался образование и удар капель воды в газе с содержанием СОо. Аналогичная проблема может возникать в случае, когда газ содержит определенную долю НзЗ, что характерно для ряда нефтеперегонных процессов в таких случаях необходимо использовать аустенитную сталь для труб [10]. В некоторых процессах в результате синтеза в химических реакторах может образовываться небольшое количество органических кислот, таких, как муравьиная, уксусная и масляная, которые могут конденсироваться преимущественно при опускном течении жидкости в охладителях, а затем в дисцилляционных установках. Вниз по потоку от точки начала конденсации кислоты становятся все более разбавленными и менее коррозионными. Кроме основных компонентов потока в реакторах образуются небольшие количества агрессивных соединений, что способствует увеличению скорости коррозии. В качестве примера можно привести цианид водорода, который образуется в реакторах при каталитическом крекинге жидкости. Однако отложения, образующиеся вследствие выноса из дистилляционных установок, могут оказаться полезными. Ранее было отмечено, что углеродистая сталь обладает стойкостью при работе парциального конденсатора очистителя СОа, несмотря на то, что в газовой фазе концентрация СО2 высока. Это происходит отчасти вследствие выноса карбоната калия или раствора аминовой кислоты, из которых происходит выделение СО2, что значительно уменьшает кислотность конденсата. Кислород способствует ускорению ряда коррозионных процессов (а именно образованию сернистых соединений за счет НзЗ) и коррозии за счет СО2, а случайное загрязнение кислородом (например, из-за [c.320]


    Очистку газа от двуокиси углерода горячим раствором карбоната калия [5—7] (горячим раствором поташа) применяют на большинстве современных установок для производства водорода, работаюпщх при давлении 1,2—3,0 МПа. Ведение процесса позволяет обойтись без затраты дополнительного пара за счет тепла, имеющегося в газе-после конверсии окиси углерода. Температуры абсорбции и регенерации близки между собой, т. е. процесс проводят без громоздких теплообменников и расход охлаждающей воды сравнительно мал. Перечисленные преимущества обусловили широкое применение этого метода очистки. [c.119]

    Однии из распространенных методов очистки водородсодержащего газа от двуокиси углерода при производстве водорода является ыетод горячей поташной очистки, основанный на обратимой хемо-сорбции двуокиси углерода растворами карбоната калия [I]. К преимуществам этого метода, по сравнению с моноэтаноламиновой очисткой, относят высокую химическую и термическую стойкость абсорбента, возможность осуществления абсорбции и десорбции при одинаковой температуре, исключая затраты на теплообменную аппаратуру, более низкий удельный расход пара на регенерацию абсорбента, меньшую коррозионную активность рабочей среды. Однако, в отличие от моноэтаноламиновой очистки, поташный метод имеет ограничения по глубине извлечения двуокиси- углерода из газового потока, но разработанные в последнее время модификации процессов, включающие в состав хемосорбента различные активирующие добавки [2,3], способствуют устранению в некоторой степени этих недостатков. Усовершенствованием метода горячей поташной очистки является организация процесса по многопоточным схемам [4]. [c.94]

    Контактную массу готовят сплавлением в атмосфере азота смеси оксидов железа Гез04, алюминия AI2O3, калия К2О, кальция СаО и кремния бЮг, или порошков металлических железа и алюминия с оксидами кальция и кремния и карбоната калия с последующим измельчением массы до размеров зерен катализатора (5 мм) и восстановлением их водородом в колонне синтеза аммиака. При этом протекают реакции  [c.199]

    По карбонильной активности формальдегид превосходит все альдегиды, как алифатические, так и ароматические, поэтому в присутствии мягких основных катализаторов он легко реагирует с алифатическими альдегидами, не давая возможности тоследним самоконденсироваться. В тех случаях, когда в реакцию вводят избыточное количество формальдегида, она не останавливается на стадии образования альдоля, в котором оставшийся в а-положении атом водорода еще подвижнее, чем в исходном альдегиде. Например, при взаимодействии формальдегида с ацетальдегидом (у которого атомы водорода в а-положении настолько подвижны, что могут быть сняты таким слабоосновным агентом, как карбонат калия) с одной молекулой ацетальдегида реагируют сразу три молекулы формальдегида, образуя тригидроксиальдегид (19)  [c.200]

    Приборы и реактивы. Тигелек. Асбестовая сетка. Железная проволока. Водяная баня. Фарфоровые тигли. Хром. Дихромат аммония. Дихромат калия. Хлорид хрома ( II). Феррохром. Нитрат калия. Карбонат калия. Пиросульфат калия. Диэтиловый эфир. Сероводородная вода. Лакмус (нейтральный). Рас-твмы сульфата хрома (111) или хромовых квасцов (0,5 и.) хромата калия (0,5 н.) дихромата калия (0,5 и.) серной кислоты (2н.) азотной кислоты (плотность 1,2 г/см ) хлороводородной кислоты (6 п. плотность 1,19 г/см ) едкого натра (2 н.) карбоната натрия (0,5 н.) сульфида аммония (0.5 и.) нитрата свинца (II) (0,5 н.) нитрата серебра (0,1 н.) хлорида бария (0,5 н.у, иодида калия (0,5 н.) пероксида водорода (3%-ный). [c.229]

    Для работы требуется Аппарат Киппа для получения сероводорода. — Тигли фарфоровые с крышкой, 2 шт. — Штатив с пробирками. — Пробирка тугоплавкая. — Палочки стеклянные, 2 шт. — Бумага фильтровальная. — Лучины.— Асбестовый картон (20x20 см) с отверстием для тигля. — Трехокись вольфрама.— Трехокись молибдена. — Хромовый ангидрид.—Смесь нитрата и карбоната калия (I 2). — Цинк гранулированный. — Бихромат аммония. — Спирт метиловый. — Спирт этиловый. — Эфир серный. — Серная кислота концентрированная. — Соляная кислота концентрированная. — Серная кислота, 2 н. раствор. — Соляная кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Едкий натр, 2 н. раствор. — Перекись водорода, 3%-ный раствор. — Уксусная кислота, 2 и. раствор. —Азотная кислота, 2 н. раствор. — Хромат калия, 1 и. раствор. — Бихромат калия, i н. раствор. — Нитрат серебра, 0,1 и. раствор. — Ацетат свинца, 0,5 н. раствор. — Хлорид стронция, 1 н. раствор. — Хлорид бария, [c.296]

    Например, водный раствор хлорида алюминия У ,1С1з имеет кислую среду (рН<7), раствор карбоната калия К2СО3 — щелочную среду (рН>7), растворы хлорида натрия Na l и нитрита свинца Pb(N02)2 — нейтральную среду (рН=7). Эти соли не содержат в своём составе ионы водорода Н или гидроксид-ионы ОН , которые определяют среду раствора. Чем же можно объяснить различные среды водных растворов солей Это объясняется тем, что в водных растворах соли подвергаются гидролизу. [c.204]

    Перегруппировка происходит под действием основных катализаторов (карбонат калия, амид натрия, атилат натрия и др.)- Ее можно рассматривать как внутримолекулярную конденсацию Клаизена. реакция имеет большое препаративное значение, так как продукты перегруппировки легко циклизуются, например, под действием бромистого водорода в ледяной уксусной кислоте с образованием флавонов  [c.864]

    Алкилирование р-кетоэфиров рассмотрено в разд. Г.б, а кетонов — Б данном разделе. Кетоны, содержащие атомы водорода в а-положении. пои алкилировании алкоголятами натрия ил калия, натрием, калием, карбонатом калия, амилом натрия или гидридом натрия Сначала образуют анион АгСОСНАг, который, затем атакует алкилгалогениды, например НХ, давая алкилированный кетон АгСОСННАг. Так называемая реакция Холлера — Бауэра не вполне удовлетворительна в основном по двум причинам 12] для превращения карбонильного соединения в анион требуется сильное основание и, поскольку многие карбонильные соединения содержат в а-положении более одного атома водорода, реакция не останавливается на стадии моноалкилирования. Поэтому при алкилировании часто получают такую нежелательную смесь прО дуктов, к тому же каждый из продуктов с низким выходом. Усовершенствованный метод проведения такой реакции заключается в применении енаминов кетонов (разд. Ж.2). [c.172]

    На лабораторную доработку вопроса ушло в 1909 г. немнога времени, почти сразу применили опытный аппарат (автоклав),, вмещавший 2 п. масла. Катализатор готовили осаждением гидрата закиси никеля (гидроокиси никеля П) на кизельгуре (1 0,6). Промытый, высушенный, тонко измельченный катализатор восстанавливали в токе водорода. Вскоре научились получать из хлопкового масла весьма удовлетворительный продукт с титром выше 50°. Тогда стали создавать заводскую установку с автоклавом на 50 п. масла. Так началось заводское производство его сразу же наметили развить в масштабе 300—400 тыс. п. (5—6,5 тыс. т) в год. Работали почти целиком на хлопковом масле Оно поступало из Средней Азии и имело, по анализам 1910—1911 гг., свободных жирных кислот 0,09— 0,11%, йодное число 112,6—113,5. Масляные баки вмещали почти годовой запас масла, что обеспечивало хорошее отстаивание. Рафинации не было. Водород получали электролизом воды. По образцу приобретенного в Германии водоразлагателя системы Шмидта изготовили в России, преодолев многие трудности, еще 19 таких же. В установке непрерывно циркулировал раствор химически чистого карбоната калия. Практически можно было одновременно использовать 17 электролизеров, они давали около 2500 водорода в сутки, расходуя около [c.408]

    В результате кватернизации кольцевого атома азота кислые свойства атомов водорода в алкилпиридинах усиливаются. Например, четвертичные соли метилпиридинов вступают в реакции обмена с водными растворами оснований уже при комнатной температуре а-изомер реагирует с водным раствором карбоната калия, у-изомер — с раствором едкого натра, тогда как р-изомер не реагирует вовсе. Как это было отмечено ранее в реакциях нуклеофильного замещения, наибольший эффект кватернизации проявляется у а-изомеров. Аналогично образованию енолов в алифатическом ряду депротонирование четвертичных солей метилпиридинов приводит к образованию реакционноспособных енаминов. [c.54]

    Смесь 6,0 г (20 лшолей) Ы-окиси морфина (примечание 1) и метилата натрия, полученного из 0,46 г (20 имолей) натрия в 20 мл абсолютного метилового спирта, замораживают жидким азотом и к ней прибавляют 2,22 г (15,6 л1молей) йодистого ме-тила-С путем вакуумной перегонки (примечание 2). Смесь нагревают с обратным холодильником на паровой бане в течение 4 час. К охлажденной смеси добавляют 5 мл воды и через раствор пропускают сернистый газ в течение 1 часа. Добавляют 30 мл воды и отгоняют метиловый спирт при пониженном давлении. Остаток обрабатывают 10 мл 6 н. раствора едкого натра (для растворения морфина) и экстрагируют кодеин хлороформом дважды порциями по 25 мл и четыре раза порциями по 10 мл. Экстракт промывают водой (две порции по 10 мл), сушат карбонатом калия, фильтруют и выпаривают досуха. Кодеин растворяют в минимальном количестве бензола и добавляют петролейный эфир до прекрашения появления мути желтовато-оранжевого цвета. Примеси отфильтровывают, добавляют к фильтрату избыток петролейного эфира и выдерживают смесь в холодильном шкафу для полного осаждения кодеина. Твердое вещество отделяют (т пл. 155°), а маточный раствор вновь обрабатывают для получения дополнительного количества продукта. Кодеин растворяют в небольшом количестве абсолютного спирта, и для высаживания продукта насыщают раствор сухим хлористым водородом. Упаривают смесь досуха на паровой бане, перекристаллизовывают продукт из 95%-ного спирта, отделяют, промывают холодным абсолютным спиртом и сушат. Общий выход 3,65 г (62,8%). Молярная удельная активность не отличается от активности исходного соединения (примечание 3). Анализ [1] методом двухмерной бумажной хроматографии и радиоаутографии указывает на присутствие только одного радиоактивного соединения, [c.640]

    Синтез диэтилового эфира у-кетопимелиновой кислоты. В круглодонную колбу емкостью 250 мл, снабженную обратным холодильником с хлоркальциевой трубкой, помещают 40 г (0,22 моль) этилового эфира фурилакриловой кислоты и растворяют в 150 мл абсолютного этилового спирта, насыщенного сухим хлористым водородом до 15%-ной концентрации (26,4 г НС1). Реакционную смесь нагревают на кипящей водяной бане 3 часа. Затем заменяют обратный холодильник на нисходящий и отгоняют большую часть растворителя. К остатку приливают 150—200 мл насыщенного раствора карбоната калия и 50 мл серного эфира. Смесь встряхивают, эфирный слой отделяют, а водный экстрагируют эфиром 3—4 раза порциями по 30—40 мл. Объединенные эфирные вытяж.ки сушат безводным углекислым калием, эфир отгоняют, а остаток перегоняют при уменьшенном давлении, собирая фракцию с т. кип. 139—14075 = 1,4462. [c.223]

    Водный аммиак иногда применяют для очистки синтез-газов от двуокиси углерода. Наиболее известным примером такого процесса является очистка водорода, используемого для синтеза аммиака. Ряд таких установок работает в Европе, а недавно в США пущена установка очистки коксового газа, также действующая по этому же принципу. Этот процесс экономически наиболее целесообразно использовать для очистки частично обессеренных коксовых газов с относительно низким содержанием двуокиси углерода, но он пригоден также для очистки синтез-газов, содеря.ащих около 30% двуокиси углерода. Сравнивали экономику извлечения СО семью различными сочетаниями таких процессов очистки газа, как горячим раствором карбоната калия (поташный метод), этаноламиповыми и аммиачными растворами и водной промывкой газа [25]. Проведенный анализ показывал, что комбинированная очистка газа с извлечением основного количества двуокиси углерода (с 34 до 2% СОз) горячим раствором карбоната калия с последующей очисткой газа водным аммиачным раствором (с 2 до 0,015% СОд) и окончательной промывкой газа едким натром (до содержания 0,001—0,002% СОд) значительно более экономична, чем очисп а газа от СО2 только водным амми- [c.82]

    Основные преимущества очистки газа водным аммиачным раствором — низкая стоимость поглотительного раствора и высокая эффективность процесса, практически не зависящие от присутствия в газе сероокиси углерода, сероуглерода и относительно малых количеств Нз8 и H N. Основным недостатком процесса является несколько агрессивный характер карбонизированного раствора (особенно при значительном содержании цианистого водорода в газе), что требует изгото-влевия аппаратуры для регенерации раствора из специальных конструкционных материалов, и некоторое усложнение схемы по сравнению со схемами очистки газа горячим раствором карбоната калия или этаноламинами. [c.83]

    Появление этого удивительного свечения также вызвано почти полным превращением энергии химической реакции в световую. Чтобы его наблюдать, приливают к насыщенному водному раствору гидрохинона gH4(OH)2 10—15%-ный раствор карбоната калия Kg Og, формалин — водный раствор формальдегида НСНО и пергидроль — концентрированный раствор пероксида водорода HgOg. Свечение жидкости лучше наблюдать в темноте. [c.294]

    Эта. реакция не является абсолютно опецифичной для ниобия, потому что двуокись титана после сплавления с бисульфатом щелочного металла, растворения в оксалате аммония и нейтрализации образует почти идентичный осадок. Но окись титана не дает реакций 1 и 6, не растворяется в расплавленном карбонате калия и не дает красного осадка с таннином в растворе, содержащем свободную минеральную кислоту, т. е. не дает всего того, что характерно для ниобия. Кроме того, титан в растворе оксалата интенсивно окрашивается перекисью водорода в желтый или оранжевый цвет, между тем как соответствующий раствор ниобия остается бесцветным. [c.639]


Смотреть страницы где упоминается термин Водород карбонате калия ном : [c.239]    [c.54]    [c.62]    [c.184]    [c.534]    [c.397]    [c.534]    [c.94]    [c.523]    [c.610]    [c.166]    [c.206]    [c.90]    [c.244]    [c.244]   
Справочник азотчика Издание 2 (1986) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Калий карбонат



© 2025 chem21.info Реклама на сайте