Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители в ионообменной хроматографии

    Из культуральной жидкости витамин В12 вьщеляют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направлении удешевления компонентов питательных сред (замена глюкозы сульфитными щелоками) и перехода с периодического куль- [c.55]


    В зависимости от применяемого типа адсорбента и характера процесса, протекающего на адсорбенте, различают адсорбционную,- ионообменную, распределительную и осадочную хроматографию. При адсорбционной хроматографии первичным актом является молекулярная или ионная адсорбция. В случае распределительной хроматографии происходит распределение растворенных веществ между подвижными и неподвижными растворителями, причем адсорбент является веществом, удерживающим неподвижный растворитель. Ионообменная хроматография основана на обмене ионов между раствором и ионообменными веществами, в качестве которых могут служить природные и синтетические алюмосиликаты и синтетические смолы. Такие вещества содержат подвижные ионы металлов, водорода или гидроксила, способные к замещению. При этом процессе катион (в анионитах) или анион (в катионитах) представляет собой единое целое и не переходит в раствор при обмене. Ионообменная хроматография на искусственных смолах является основным методом адсорбционного разделения радиоактивных элементов, в частности-продуктов деления урана. Осадочная хроматография основана иа различии в произведениях растворимости соединений, образуемых разделяемыми ионами с раствором соединений, пропитывающих наполнитель колонки. Первичным актом при этом является образование осадков. [c.23]

    Кроме колоночной хроматографии, широко реализуемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. Процесс проводят в замкнутом сосуде с растворителем. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов [c.182]


    Колоночная хроматография. Для адсорбционной, распределительной и ионообменной хроматографии обычно применяют колонки, изготовленные из стекла, у которых отношение длины к диаметру находится в пределах 40—100. В нижнюю часть колонки помещают стеклянную вату в виде тампона, а затем загружают адсорбент, суспендированный в растворителе. При этом адсорбент должен заполнять колонку с равномерной плотностью (рис. 38). [c.157]

    При получении распределительных хроматограмм на колонке твердый носитель вначале растирают с растворителем, который будет служить неподвижной фазой. Полученную густую кашицу суспендируют во втором растворителе (подвижная фаза) и смесь равномерно вносят в колонку. В случае ионообменной хроматографии иониты предварительно подвергают специальной обработке например, катионит очищают от ионов железа и доводят до набухания. [c.157]

    После заполнения колонки в нее осторожно приливают раствор анализируемого вещества (или смеси веществ) в подобранном растворителе. При адсорбционной и распределительной хроматографии исследуемый раствор должен занимать в колонке небольшой объем, покрывая поверхность носителя или адсорбента. При ионообменной хроматографии можно добавлять растворителя больше. После внесения хроматографируемой смеси приступают к проявлению хроматограммы, пропуская через слой адсорбента (нли [c.157]

    Ионообменная хроматография. С ее помощью можно отделять мешающие определению элементы или, наоборот, определяемые элементы при прохождении анализируемого раствора через ионообменную колонку. Если определяемый элемент затем выделить в небольшой объем растворителя, можно сконцентрировать следовые количества элемента до легко измеримых концентраций, и поэтому такой способ концентрирования приобретает все большее значение при анализе следовых количеств элементов. Четкость разделения элементов, сорбируемых ионообменной смолой, можно увеличить, применяя при элюировании комплексообразующие реагенты. Особенно эффективным вариантом метода является нспользование комплексообразующих ионообменных смол. Эти смолы содержат активные группы, способные к образованию специфичных комплексов с определяемыми ионами, которые задерживаются смолой. При этом происходит эффективное разделение. [c.421]

    В ионообменной хроматографии в качестве сорбента используются ионообменные смолы (иониты) — практически нерастворимые в воде и органических растворителях высокомолекулярные соединения, содержащие функциональные группы, способные к обмену ионами. Иониты разделяются на катиониты и аниониты. В катиони-гах ковалентно связанными являются анионные группы (50 ")т. R (СОО")т, а в анионитах — катионные, например (ЫН ) -Поэтому катиониты способны обменивать катионы своих ионогенных групп на катионы растворенных солей или водородные ионы [c.48]

    Сорбенты. Разделение веществ при ТСХ обычно протекает по смешанному механизму, поэтому для успешного решения аналитической задачи очень важен правильный выбор сорбента и элюирующей системы растворителей. При этом следует исходить из химического строения разделяемых соединений. Для неполярных веществ следует применять сорбент с большой адсорбционной способностью. Разделение полярных соединений лучше производить жидкость-жидкостной хроматографией, ионогенных — ионообменной хроматографией. В общем, выбор условий разделения в ТСХ аналогичен другим видам хроматографии. [c.357]

    Ионообменная хроматография основана на различной способности ионов поглощаться ионитом колонки. Проявление хроматограммы проводят при помощи подвижной фазы, которая позволяет хотя бы частично вытеснить сорбированные ионы. С точки зрения определения понятия элюент (разд. 7.3.1) неверно применять термин элюирование к процессам ионного обмена, хотя это встречается в литературе. Время пребывания ионов в колонке определяется энтальпией ионообменных процессов и зависит от соотношения концентраций ионов в растворе. Подвижная фаза может двояким образом оказывать влияние на ионообменный процесс, что можно показать на уравнении (7.4.5). При прохождении растворителя через колонку равновесие-должно быть сдвинуто вправо. С одной стороны, этого можно добиться, повышая концентрацию ионов Н+ (т. е. концентрацию вытесняющего иона),. [c.380]

    Несмотря на большое сходство в технике эксперимента при разделении компонентов смесей, между ионообменной и адсорбционной хроматографией имеется существенное различие. Первая основана на законах стехиометрии, приложимых к реакциям ионного обмена. Вторая — основана на молекулярной адсорбции, которая обычно подчиняется закономерностям, выражаемым изотермами адсорбции Лэнгмюра или Фрейндлиха. Поэтому в молекулярной хроматографии отдельные вещества могут десорбироваться и элюироваться (вымываться) чистым растворителем, тогда как в случае ионообменной хроматографии в качестве элюента необходим раствор электролита. [c.119]


    Растворы и проявители. Ионообменную хроматографию проводят в среде полярных растворителей, вызывающих диссоциацию исследуемых веществ на ионы. Однако ионообменный процесс можно проводить и в неводных растворителях спиртах, смесях спиртов с кето-нами и другими органическими соединениями, а такл е в смешанных растворителях органических и неорганических соединений. [c.179]

    Количественные разделения можно производить химическими или физическими методами (табл. 52). К числу химических методов относятся фракционное осаждение, соосаждение на коллекторах, применение органических реагентов-осадителей, электрохимическое разделение (электролиз на ртутном катоде и внутренний электролиз), хроматографическое разделение, например путем ионообменной хроматографии. К числу физических методов относятся экстракция при помощи органических растворителей, возгонка (сублимация), дистилляция (отгонка летучих компонентов). [c.278]

    Однако методы ионообменной хроматографии имеют существенные недостатки. Адсорбция зависит от предварительной обработки катионитов растворителями, от присутствия воды. Метод длителен по времени, характеризуется потерей вещества за счет неполной десорбции и большой загрязненностью АС посторонними соединениями. [c.76]

    При разделениях методом ионообменной хроматографии силу растворителя меняют, увеличивая или уменьшая концентрацию буферного раствора или меняя pH, в некоторых случаях используют модификацию органическими веществами. [c.13]

    Подвижная фаза в ионообменной хроматографии должна обеспечивать растворимость различных солей и создание буферного раствора, необходимых для ионного обмена, контроль степени удерживания образца за счет использования растворителя нужной силы, получения необходимой селективности разделения. [c.36]

    В подвижную фазу добавляют иногда органические растворители (метанол, этанол, ацетонитрил, диоксан), действие которых аналогично добавлению растворителей в обращенно-фазной хроматографии при увеличении их количества степень удерживания образца снижается, и этот эффект более силен для менее полярных растворителей. Добавлением органических растворителей можно добиться также изменения селективности системы. Таким образом, снижают время удерживания в ионообменной хроматографии следующие факторы 1) повышение температуры 2) повышение концентрации буферного раствора 3) снижение степени ионизации вещества за счет изменения pH. [c.37]

    Применяемые в ионообменной хроматографии сорбенты менее эффективны и стабильны, а также менее воспроизводимы. Улучшить эффективность разделения ионогенных соединений можно, повысив температуру до 60 °С, изменив pH, добавив органический растворитель или перейдя от ионообменной хроматографии к работе в режиме ион-парной хроматографии или обращенно-фазной хроматографии с использованием метода подавления ионов. [c.39]

    Вода представляет собой важнейший растворитель в обращенно-фазной и ионообменной хроматографии. Основными примесями в воде, которые мешают проведению хроматографического процесса, являются различные соли и микропримеси углеводородов и других органических соединений. Присутствие солей недопустимо в ионообменной хроматографии, а примеси органических соединений вызывают существенные затруднения в обращенно-фазной хроматографии (особенно в градиентном элюировании) при использовании флюоресцентного и УФ-детекторов. [c.134]

    Вытеснительный метод обладает тем преимуществом, что в этом методе процедура анализа сводится к определению длин и высот ступенек. Кроме того, в отличие от проявительного метода, компоненты смеси не разбавляются растворителем, вследствие чего их концентрация не уменьшается при хроматографировании. Вытеснительный метод нашел себе широкое применение в жидкостно-адсорбционной и ионообменной хроматографии. [c.11]

    Между ионообменной хроматографией и адсорбционной молекулярной имеется существенное различие. Если молекулярная адсорбционная хроматография основана на явлении адсорбции, подчиняющейся в первом приближении теории Лэнгмюра, то ионообменная основана на стехиометрическом обмене ионов раствора с ионами ионита. В соответствии с этим вымывание адсорбированных веществ в молекулярной хроматографии может производиться чистым растворителем, тогда как в ионообменной в качестве вымывающего вещества необходимо применять растворы электролитов. [c.61]

    Немаловажное значение имеет степень загрязнения воды, применяемой в качестве растворителя. Особенно это надо иметь в виду при определении обменной емкости. Наличие посторонних ионов может нарушить обмен противоионов и исказить общую картину обмена. Поэтому к воде, применяемой в ионообменной хроматографии, должны предъявляться повышенные требования в отношении содержания в ней солей. В особо точных измерениях следует применять бидистиллят, хранящийся в кварцевой или полиэтиленовой посуде. [c.81]

    В основе ионообменной хроматографии лежит обратимая хемосорбция ионов анализируемого раствора ионогенными группами сорбента. Обратимый обмен ионами в системе сорбент — растворитель протекает в этом случае с соблюдением стехиометрических отношений. [c.96]

    Выбор метода определяется в какой-то мере растворимостью хроматографируемых веществ. Вещества, растворимые только в органических растворителях, лучше всего разделяются с помощью адсорбционной хроматографии заряженные вещества, растворимые в воде, — ионообменной хроматографии растворимые в воде и органических растворителях — методом распределительной хроматографии. [c.20]

    Ионообменная хроматография основана на многократном обмене между ионами раствора и ионитом (адсорбентом). Ионообменные смолы — нерастворимые в воде и органических растворителях твердые вещества, способные к ионному обмену. Химическая активность ионообменных смол обусловлена функциональными группами, способными вступать в химические реакции с другими веществами. Иониты разделяются на катиониты и аниониты. [c.277]

    Ионообменная хроматография. Для поглощения разделяемых катионов чаще всего применяются анионитные смолы дауэкс 1, амберлит и другие в хло-ридной, фосфатной или цитратной форме. Методы разделения основаны на способности катионов кобальта давать в сильно солянокислом растворе хлоридные анионные комплексы, поглощающиеся анионитом катионы никеля, марганца и некоторых других металлов в этих условиях не задерживаются анионитом и проходят в фильтрат. При промывании колонки более разбавленным раствором соляной кислоты, например 4 N раствором, происходит вымывание кобальта, в то время как медь, железо остаются адсорбированными смолой. Описаны и другие методы, когда разделяемые катионы поглощают катионитами, а затем вымывают кобальт растворами подходящих комплексообразующих веществ, например, раствором нитрозо-К-соли, комплексо-ном III и др., или смесью растворов соляной кислоты и органических растворителей. В табл. 18 дана сводка предложенных мето- [c.81]

    В зависимости от применяемого адсорбента различают адсорбционную хроматографию (применяется твердый адсорбент), распределительную хроматографию (твердая фаза служит лишь для удержания жидкости, не смешивающейся с растворителем, которая выполняет роль поглотителя разделяемых веществ) и ионообменную хроматографию (в качестве адсорбента применяются ионообменные смолы). Конструкции колонок для жидкостной хроматографии показаны на рис. 33. [c.58]

    Вода является базовым растворителем в обращенно-фазовой и ионообменной хроматографии. Обычная дистиллированная вода после надлежащего фильтрования может быть использована преимущественно в тех работах, где не требуется достижения максимальной чувствительности. Она может оказаться недостаточно очищенной для более тонких работ, в особенности с применением градиентного элюирования. В последнем случае имеющиеся в ней примеси могут при регенерации колонки накапливаться в ней, а при повышении в ходе разделения элюирующей силы выходить из колонки в виде ложных пиков. Поэтому желательна помимо дистилляции дополнительная очистка воды в специальных фильтрующих системах (например, фирмы Милли-пор ), удаляющая Остаточные ионы и органические примеси. [c.295]

    При приготовлении подвижных фаз для ион-парной, обращенно-фазовой или ионообменной хроматографии получение необходимой молярной концентрации компонентов не вызывает затруднений, в то время как установка необходимого значения pH водноорганических элюентов может быть связана с затруднениями. В связи с этим принято указывать значения pH не для элюента в целом, а для его водной части, до смешения с органическим растворителем. Следует иметь в виду, что прибавление к водному буферному раствору органического растворителя может увеличить кажущееся значение pH на Г—2 единицы, в результате чего смешанный водно-органический элюент станет довольно агрессивным по отношению к химически модифицированным силикагелям. [c.312]

    Метод меченых атомов позволил разрешить ряд теоретических вопросов аналитической химии, как то состояние вещества в растворах, определение констант нестойкости комплексных соединений, изучение процессов соосаждепия, старение и растворимость аналитических осадков и др. Радиоактивные изотопы дали возможность разработать новые более эффективные методы разделения элементов, особенно с близкими химическими свойствами, как например, редкоземельные элементы, ниобий, тантал, титан, цирконий, гафний, рубидий, цезий и др. Особенно много работ выполнено по разделению элементов методами соосаждения, экстрагирования органическими растворителями, ионообменной хроматографии, электрофореза. [c.3]

    При ионообменной хроматографии можно добавить в колонку больше растворителя, так как чистые неионизированные растворители не вызывают расширения зон. По этой же причине можно вводить также разбавленные исследуемые растворы и концентрировать их на сорбенте. Для проявления хроматограммы применяют растворитель, под дейст -вием которого зоны перемещаются вниз по слою сорбента с небольшой скоростью. [c.74]

    Названные зависимости с высокой точностью описывают и газохроматографическое поведение веществ-гомологов в условиях газоадсорбционнои и ионообменной хроматографии, а также могут быть использованы для расчета значений Р, в тонкослойной хроматографии, факторов емкости в высокоэффективной жидкостной хроматографии с обращенной фазой, коэффициентов распределения при растворении органических соединений — членов гомологического ряда в бинарных системах вода — органический растворитель. [c.189]

    Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи — определения компонентов хлорофилла. Метод оказался универсальным. Годом возрождения его является 1931 год, когда Кун, Виптерштейн и Леде-рер стали проводить широкие исследования различных растительных и животных пигментов, используя про-явительный вариант хроматографии, при котором анализируемые веш,ества разделяются, перемещаясь по слою сорбента в потоке растворителя. В 1940 г. шведский ученый А, Тизелиус разработал фронтальный и вытеснительный методы хроматографического анализа. Фронтальный метод заключается в том, что исследуемая смесь непрерывно подается под некоторым давлением на колонку с сорбентом. Компоненты смеси по-разному сорбируются и потому передвигаются по колонке с различными скоростями. Вытеснительный метод основан на том, что более сильно адсорбирующееся вещество вытесняет с поверхности адсорбента слабо адсорбирующееся и занимает его место. Поэтому после введения в колонку определенного количества исследуемой смеси начинают подавать вытеснитель — жидкость, адсорбирующуюся сильнее, чем все компоненты смеси. Тогда зоны веществ распределяются на слое по степени адсорбируемости и каждое последующее вещество, вытесняя предыдущее, подтолкнет его вперед. Этот метод позволяет сконцентрировать компоненты на слое адсорбента и удобен, в частности, для определения примесей. Дальнейшее развитие метода привело к появлению бумажной, тонкослойной и ионообменной хроматографии. Наиболее крупным скачком в развитии метода является создание английскимп химиками А. Мартином и Р. Сингом распределительной хроматографии, за что они были удостоены в 1952 г. Нобелевской премии. [c.326]

    Подвижная фаза (элюент) в том виде ионообменной хроматографии, который нас будет интересовать, всегда в основе своей водная. Главные ее физические параметры — pH, концентрация и природа растворенных солей. Определенную роль могут играть добавки органических растворителей, изменяющие полярность и диэлектрическую проницаемость элюента. Для подавления неспецифических взаилюдействий вещества с материалом матрицы в элюент могут быть внесены мочевина, детергенты и др. [c.249]

    В ионообменной хроматографии применяют следующие буферные растворы ацетатный, фосфатный, цитратный, формиатный, аммиачный, боратный. Селективность разделения в ионообменной хроматографии зависит от концентрации и вида буферных ионов и органических растворителей, а также от pH среды. Ионообменное разделение проходит в пределах температур от комнатной до 60°С. Чем выше температура, тем меньше вязкость подвижной фазы и тем эффективнее разделение. Однако при высокой температуре стабильность колонки или образца может быть нарушена. Многие ионообменники выдерживают температуру до 60 °С, а некоторые полимерные катионообменники — даже до 80°С. Биохимические пробы принято разделять при низких температурах, часто при 4°С, хотя в современной ВЭЖХ при быстрых разделениях вероятность разрушения образца при 20-30°С резко снижается. Повышение температуры может привести к снижению к для всех компонентов образца, а снижение ионной силы подвижной фазы может привести к обратному явлению. [c.36]

    По природе сорбента различают адсорбционную, распределительную (абсорбционную) и ионообменную хроматографии. В случае адсорбционной хроматографии сорбция происходит на поверхности твердого тела — адсорбента В распределительной хроматографии компоненты адсорбируются жидкостью, нанесенной на твердый носитель. В ионообменной хроматографии сорбентами являются иониты — практически нерастворимые в воде и органических растворителях высокомолекулярные соединения, содержащие ионогенные группы, обладающие способностью к обмену ионами. Иониты разделяются на катиониты и аниоииты. В катионитах ковалентно связанными являются анионные группы К (50з") , К (СОО")д,, а в анионитах-катион- [c.41]

    В некоторых случаях целесообразно проводить градиентное элюирование, при котором содержание более полярного растворителя в менее полярном повышают непрерывно. Градиентное элюирование проще всего осуществить, возвращая отогнанный от каждой фракции растворитель на колонку с добавлением к нему каждый раз одного и того же объема второго, более полярного растворителя. Если ход хроматографического разделения известен заранее, то можно использовать автоматическое гpaJ диентное элюирование, описанное в главе, посвященной ионообменной хроматографии. [c.364]

    Большое значение имеют гели полиэлектролитов в ионообменной хроматографии (стр. 126). В этом случае обратимое набухание и сжатие ионита при обмене ионов регулируют количеством межцепных химических связей например, вводя 6, 10, 17 или 23% дивинил бензол а в поли-сульфостирол (см. рис. 44), можно регулировать набухание смолы и уменьшить объем геля, приходящийся на1 моль сульфогрупп, соответственно от 300 до 100, 70 или 50 мл одновременно изменяются среднее расстояние между ионогенными группами, их электростатическое взаимодействие и активность растворителя. Степень набухания определяет для ряда органических ионов интенсивность ионного взаимодействия и возможность проникновения в сетку геля и, тем самым, избирательность поглощения, что имеет большое значение для хроматографии. Избирательность поглощения обычно характеризуют коэффициентом избирательности [c.211]

    В тех случаях, когда это возможно, первая стадия включает солюбилизацию в водном илн апротонном растворителе, например в этиленгликоле или диметилсульфоксиде эту операцию необходимо проводить с осторожностью, чтобы быть уверенным, что в условиях данного метода и при применении выбранного растворителя макромолекулы не модифицируются и не разрушаются. Лоэтому на данной стадии нельзя применять кислоты, основания или ферменты. Низкомолекулярные примеси легко удаляются диализом (разделение по размеру молекул), ионообменной хроматографией (разделение по заряду молекул) или гель-фильтрацией (разделение по размеру молекул) (см. разд. 26.3.2.6). Последние два метода широко применяются также для отделения макромолекулярных примесей. Макромолекулы выделяют из раствора [c.216]

    Некоторое время считалось, что анализ ионных или ионогенных соединений следует проводить методом ион-париой хроматографии с обращенными фазами. Однако в настоящее время исследователи останавливают свой выбор либо на традиционном варианте ионообменной хроматографии, либо на хроматографии с применением немодифициро-ванного силикагеля или оксида алюминия. В последнем случае применяют водные растворители и буферы. Хроматография на немодифицированном силикагеле или оксиде алюминия имеет существенные преимущества по сравнению с ОФ-вариаитом. Во-первых, свойства сорбента не меняются от партии к партии, во-вторых, сорбенты в меньщей степени подвержены гидролизу и, наконец, при анализе таких проб, как сыворотка, не требуется предвар1ггельная очистка [275]. Оксид алюминия ие изменяет своих свойств при использовании водных элюентов с pH от 2 до 12. Силикагель растворим в воде при рН>8, однако этот недостаток может быть преодолен при насыщении растворителя силикагелем в фор-колонке. При использовании ТСХ описанные преимущества реализуются наилучшим образом (см. разд. 1П, Б, 2). Учитывая взаимное влияние буфера, растворенного вещества, рК, состава элюента и pH, можно варьировать условия и тем самым оптимизировать процесс разделения. Разработанные [c.399]


Смотреть страницы где упоминается термин Растворители в ионообменной хроматографии: [c.172]    [c.603]    [c.85]    [c.249]    [c.7]    [c.34]    [c.57]    [c.218]    [c.99]    [c.133]   
Смотреть главы в:

Хроматография в биологии -> Растворители в ионообменной хроматографии


Современное состояние жидкостной хроматографии (1974) -- [ c.0 ]

Современное состояние жидкостной хроматографии (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Ионообменная хроматография карбоновых кислот в разбавленных кислотах или в растворителях, содержащих буфер

Ионообменная хроматография смесей растворителей

Хроматография ионообменная

Хроматографы растворитель



© 2025 chem21.info Реклама на сайте