Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природный газ, взаимодействие

    В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива (водяного и паровоздушного газов) и коксового газа. В основе производства водо- юда лежат каталитические реакции взаимодействия с водяным паром конверсии) соответственно углеводородов (главным образом метана) л оксида (П) углерода, например  [c.274]


    Эти процессы предназначены для производства базовых масел различного уровня вязкости, деароматизированных жидких и твердых парафинов и специальных углеводородных жидкостей. Они основаны на избирательном выделении полярных компонентов сырья (смолистых веществ, кислород- и серосодержащих углеводородов, остатков избирательных растворителей) на поверхности адсорбентов. Высокая адсорбируемость полярных компонентой сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием полярных и поляризуемых компонентов сырья активными центрами поверхности адсорбента. В качестве адсорбентов при очистке и доочистке масел применяют природные глины (опоки или отбеливающие земли) и синтетические (силикагель, алюмогель и алюмосиликаты). Активность природных глин повышают обработкой их слабой серной кислотой или термической обработкой при 350—450 °С. Синтетические адсорбенты активнее, но значительно дороже природных. [c.273]

    Водород. Появление больших количеств дешевого водорода с установок каталитического риформинга сделало экономически целесообразным широкое внедрение процессов гидрирования в нефтезаводскую практику (см. гл. IV о гидроочистке). Раньше основным потребителем водорода было производство аммиака, а основным источником водорода — конверсия метана (природного газа) с водяным паром. При температуре порядка 900—1000° С метан взаимодействует с водяным паром по реакции  [c.590]

    Циклизация синтетического полиизопрена происходит точно таким же образом, как и природного каучука при циклизации образуется продукт в общем такого же качества, как и циклический натуральный каучук. Это сходство интересно потому, что оба названных выше вещества имеют относительную общность их строения. В растворе при взаимодействии с хлорным оловом температура реакции достигает лишь 70—75°. Под действием фтористого водорода, который циклизует природный каучук [6], полиизопрен может циклизоваться с образованием смолы. [c.215]

    Хлор активно взаимодействует с углеводородом природного каучука, но замещение идет прежде присоединения и таким образом является причиной циклизации. Так реагируют газообразный хлор с природным каучуком в растворе и жидкий хлор с каучуком, подобным же образом идет реакция и под давлением. Течение реакции согласно Блумфилду, определенное по количеству выделившегося хлористого водорода, можно [c.219]


    При записи 1.1 следует указать не только технические части системы, но и природные, взаимодействующие с техническими. [c.189]

    Методам, основанным на концепции получения водорода путем проведения реакций взаимодействия горючих веществ (природный газ, другие газообразные и жидкие углеводороды, кокс и т. п.) с водяным паром, в настоящее время отдается почти исключительное предпочтение. Термохимические и термодинамические расчеты позволяют определить минимальный (теоретический) расход топлива и максимальный выход продукта. В выборе одного из рассмотренных методов решающее значение имеет экономический расчет. Особенно заслуживает внимания метод 7 ввиду одновременного получения ценного побочного продукта — ацетилена. Ацетилен образуется как лабильный продукт одной из нескольких реакций, происходящих одновременно, и его удается выделить благодаря быстрому охлаждению системы. В этом случае предварительный анализ не дает результата, поскольку ни стехиометрический, ни термодинамический расчеты не позволяют определить выход ацетилена, который зависит главным образом от кинетических условий проведения реакции (например, формы реакционного пространства, скоростей потоков, скорости нагревания и охлаждения газовой смеси и т. п.). Для оценки концепции обязательно нужно провести исследования в промышленном масштабе. [c.61]

    Основными компонентами природного газа являются метан, сероводород, диоксид углерода. Данные о некоторых реакциях СО2, получении водорода и синтез-газа из СН4, взаимодействии метана с насыщенными (диспропорционирование) и ненасыщенными (крекинг) углеводородами приведены выше. Ниже рассмотрены термодинамические характеристики процесса утилизации сероводорода — процесса Клауса и синтезов на основе метана. [c.349]

    Классификация катализаторов. Основными технологическими операциями в производстве гетерогенных катализаторов различных типов являются осаждение, пропитка, фильтрация, промывка осадка, сушка, прокалка, формовка. Наиболее распространены из них две 1) осаждение активной части катализатора в виде кристаллического осадка или геля при взаимодействии водных растворов двух или нескольких химических соединений 2) пропитка каталитически неактивного твердого вещества — носителя — раствором (обычно водным) активных соединений. Для получения катализаторов применяют также и другие, специальные способы, например, термическое разложение соединений, выщелачивание растворимых частей сплавов или природных материалов и др. [c.176]

    Для очистки нефтяных и природных газов от сероводорода, диоксида углерода и других серо- и кислородсодержащих соединений применяют абсорбционные процессы, которые в зависимости от взаимодействия этих соединений с растворителями (абсорбентами) подразделяются на частные процессы физической и химической абсорбции. [c.5]

    Природный и некоторые синтетические каучуки вулканизируются серой. Вулканизаты содержат серу в химически связанном виде. О структуре вулканизатов известно сравнительно мало. Представляется вероятным, что сера прежде всего взаимодействует с а-метиленовой группой, а затем с двойной связью. [c.225]

    Катализаторы конверсии природного газа с окислами металлов., Сущность этого процесса состоит во взаимодействии кислорода окислов металлов с углеводородами, которое приводит к образованию газа, содержащего водород, окись углерода и частично восстановленного окисла металла. [c.37]

    Таким образом, по природе связывания воды для торфа характерны все механизмы взаимодействия, свойственные для гидрофильных капиллярно-пористых, коллоидных высокомолекулярных природных сорбентов органического происхождения. [c.69]

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]


    Многие образцы нативных нефтяных асфальтенов проявляют значительную ингибирующую способность в различных реакциях, протекающих по свободно-радикальному цепному механизму, в том числе в процессах термической, фото- и термоокислительной деструкции [1068, 1069] и полимеризации [1067]. Кинетические методы исследования позволяют охарактеризовать эту способность ВМС несколькими количественными параметрами константами К, скорости взаимодействия ингибирующих групп с активными центрами (свободными радикалами), числом присутствующих типов ингибиторов, концентрацией ингибирующих групп различных типов и др. Найдено, что в составе нефтяных ВМС может содержаться два — три, реже четыре типа ингибиторов, характеризующихся величинами К, более 100, 30—50 и 5— 15 мл/моль-с соответственно. В высокосернистых нефтях иногда обнаруживаются ингибирующие центры и с еще более высоким уровнем активности (до 640 мл/моль-с в нефти месторождения Кара-Арна, Казахстан), превышающим стабилизирующую способность синтетических ингибиторов. Такое повышение активности, по-видимому, связано с синергическим эффектом, проявляемым сернистыми соединениями [1070]. Суммарная концентрация природных ингибиторов может достигать 0,28 моль/кг нефти или 1,6 моль/кг ВМС. [c.203]

    Вторая группа факторов, определяющих степень понижения прочности твердых тел под действием активных сред, связана с условиями, в которых протекают процессы деформации и разрущения, т. е. имеет кинетический смысл. Различия в скорости разнообразных природных процессов могут быть чрезвычайно велики (интервал значений характеристического времени растянут на 20 порядков величины). Поэтому в тех случаях, когда скорость модельного процесса сильно отличается от скорости в естественных условиях, адекватность модели может быть обеспечена выбором других параметров, также не похожих на природные, и вывод о степени правдоподобия того или иного механизма возможен лишь на основе анализа некоего комбинированного критерия подобия, учитывающего межфазные взаимодействия на поверхностях раздела. [c.94]

    Таким образом, все приведенные здесь данные по исследованию дисперсий кварца, аморфного кремнезема и природного алмаза в водных растворах ряда электролитов при различных значениях pH показывают значительную, а в большинстве случаев — определяющую роль структурной составляющей в устойчивости гидрофильных дисперсий. Структурная составляющая энергии взаимодействия частиц определяется не только природой вещества частиц, но в значительной степени зависит от pH, температуры, концентрации и типа электролита. [c.188]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    Как мы видим, вода в недрах земли всюду сопутствует нефти. Во-первых, нефтяная залежь является частью водонапорного комплекса, а в целом и всей водонапорной системы гидрогеологического бассейна. Во-вторых, вода есть и в уже сформировавшейся залежи нефти. Очень важно отметить, что природные флюиды — вода, нефть и газ — тесно взаимодействуют друг с другом, в результате чего образуется сложная в физико-химическом отношении среда, причем все изменения этой среды сказываются на каждом из перечисленных флюидов. И, наконец, даже при разработке мы должны учитывать влияние подземных, а также закачиваемых в пласт вод. [c.31]

    Решение задач общестроительной части проекта обычно выходит за рамки специализированного института, поскольку по роду выполняемых работ необходимо взаимодействие специалистов различного профиля архитекторов, теплотехников, сантехников, электриков, монтажников и т. д. Сооружаемые производства должны не только обеспечивать выпуск качественной продукции, но и отвечать современным требованиям строительства промышленных зданий, рационального использования ресурсов местности, охраны окружающей природной среды. Сложность решения этих задач заключается и в разнообразии источников разнородной информа- [c.580]

    В качестве восстановителя вместо природного газа применяется также обогащенный газ. Преимущество данного метода заключается в том, что аммиак в основном расходуется на восстановление оксидов азота и лишь частично — на взаимодействие с кислородом. Процесс протекает при относительно низких температурах (200—360 °С) с выделением небольшого количества тепла. Поэтому не требуется затрат на устройство для утилизации тепла реакций. Наличие кислорода при любом его содержании в отходящих газах не является препятствием для проведения процесса. На основании термодинамических, кинетических и технологических исследований определены основные закономерности процесса. [c.217]

    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]

    Очистка газа от двуокиси углерода необходима лишь при высоком содержании ее, т. е. в случаях резкого снижения теплоты сгорания газа или опасности коррозии газопровода вследствие взаимодействия его с влажным перекачиваемым газом. В этих условиях снижение содержания СОг ДО 3 об. % считается вполне нормальным. Если природный газ подлежит сжижению, необходима полная очистка его как от НаЗ, так и от СОг, поскольку температура замерзания СОг и НгЗ выше, чем других компонентов, и затвердевшие вещества будут мешать нормальной работе установки. [c.32]

    Теоретически производство метанола из природного газа — легко осуществимый процесс, однако на практике это оказалось весьма трудным делом. Природный газ в условиях повышенного давления и при температуре около 800—820°С подвергается разложению паром с целью получения смеси окиси углерода и водорода. Избыток водорода удаляется, иначе говоря, соотношение водорода и окиси углерода тем или иным способом подгоняется к отношению 2 1, водород и окись углерода взаимодействуют в присутствии катализатора, образуя метанол, в соответствии с последовательно протекающими реакциями, приведенными ниже паровая конверсия метана [c.221]

    Основанная на этом цикле термическая диссоциация воды состоит, во-первых, из стадии, на которой при 650°С за счет взаимодействия влаги пара с хлористым железом образуются водород, соляная кислота и закись — окись железа во-вторых, из последующей стадии, на которой сконденсированная соляная кислота взаимодействует с закисью — окисью железа при 150—200°С и регенерирует хлористое железо. Помимо хлористого железа предложен целый ряд других промежуточных носителей , и нам представляется, по крайней мере теоретически, что нет причин, которые даже сейчас помешали бы использовать дешевую тепловую энергию для массового производства водорода по этому способу. Несколько позднее, когда поставки ископаемого топлива резко сократятся, получаемый по этому способу водород позволит решить проблему замены природного газа или какого-либо [c.231]

    В речной воде широко представлены обычные сапро-фиты или гемоавтотрофные бактерии. Увеличение и снижение этой природной бактериальной популяции как результат природного взаимодействия между концентра- [c.121]

    На рис. 36 представлена схема установки хлорирования метана на заводе в Гехсте [67]. В последнее время на химическом заводе в Хюльсе начали вырабатывать хлорпроизводные метана прямым хлорированием природного газа. Применяют непосредственно природный газ месторождения Бентгейм, очищенный от сероводорода. 1 объем хлора и 4 объема метана, предварительно нагретые до 120°, взаимодействуют в реакторе, в котором поддерживают температуру 450°. [c.169]

    Часть смешанных пентазолов используют для производства амилксантогенатов путем одновременной обработки едким натром и сероуглеродом. Эти ксантогенаты находят широкое применение в качестве флотационных реагентов. Взаимодействием монохлорида с сульф-гидратом натрия получают амилмеркаптаны, кипящие в пределах 100—130° и обладающие исключительно неприятным запахом. Этот продукт находит применение в США для одоризации природного газа, щироко используемого для бытовых целей и практически совершенно не имеющего собственного запаха. Для одоризации приблизительно 100 природного газа достаточно всего 1 г амилмеркаптанов, выпускаемых под фирменным названием пенталарм . [c.224]

    Окружающая среда — это среда обитания и производственной деятельности, которая характеризуется взаимодействием с неживой природой и живыми оргаин мамн. В ноиятие окружающая среда входят социальные, природные и искусственно создаваемые физические, химические и биологические (jiaivTopi.i, прямо или косвенно воздействующие па жизнь и деятельность люде . [c.6]

    Сосредоточить функции государственного управления и контроля за охрапо окружающей среды и использованием природных ресурсов иа территории республики в Госкомприроде РСФСР. Передать в систему Госкомприроды РСФСР научно-исследовательские организации, осуществляющие научные исследования и разработки в области охраны природы и природопользования, и обеспечить опережающее рещеыие важнейших научн.ых проблем в этом направлении. Создать четкую систему взаимодействия всех ведомственных лабораторий по контролю за загрязнением окружающей среды иод методическим руководством Госкомприроды РСФСР и на основе единой методики проведения этих работ. [c.243]

    В материальном производс1ве человек вступает во взаимодействие с природой и в нроцессе труда видоизменяет его сообразно со своими потребностями. Эти видоизменения или превращения мотут иметь различный характер в промышленности, сельском хозяйстве, транспорте, строительном деле или технике связи. Промышленность является ведущей отраслью общественного материального производства. В нроцессе материального производства промышленное, сельскохозяйственное или природное сырье с помощью человека превращается в готовую продукцию, идущую для непосредственною потребления или находящую применение в какой-либо из упомянутых выше основных областей материального производства. Готовый продукт получается в результате переработки исходного вещества, т. е. посредством изменения его формы, физических свойств, химического состава. В дальнейшем вещество, на которое в процессе материального производства воздействует человек с помощью средств труда, будем называть предметом труда. [c.11]

    Первые надежные данные по определению общего количества кислорода, которое присоединяется к природному каучуКу, показали, что при комнатной температуре один атом кислорода соединяется с каждой группой СдНв, образуя соединение состава ( 5H80)J . Никакого продукта при этом не было выделено. Те же авторы нашли, что надбензойная кислота СвНбСОООН взаимодействует нормально с природным каучуком при расходе на каждую группу СаНд 1 моля кислоты. Образовавшийся при этом продукт был выделен и исследован. Анализ показал, что он имеет состав (С5Н80)а . Это — белое твердое вещество, гораздо менее эластичное, чем каучук, не растворимое во всех испытанных растворителях [30]. [c.217]

    Хлорированный гидрохлорид каучука. Гидрохлорид природного каучука может быть прохлорирован в растворе до образования продукта, содержащего по два атома хлора на каждую группу gHg. Продукт этот представляет особый интерес, так как в нем, вероятно, отсутствуют циклы, а анилиновая проба показывает почти полную стабильность атомов хлора, тогда как исходный гидрохлорид каучука подвергался полному дегидрохлорированию. Стабильность этого продукта по отношению к анилину такая же, как и дихлорида каучука, полученного действием хлористого сульфурила, продукт же, полученный прямым хлорированием каучука и содержащий приблизительно то же самое количество хлора (51 %), на 45 % взаимодействует с анилином. [c.223]

    Бром взаимодействует с природным каучуком подобно хлору, одновременно идут реакции замещения и присоединения. Если вести реакцию на холоду в сильно разбавленных растворах, то образуется продукт присоединения (СдНвВг ) . Раньше этому продукту приписывалась формула GjoHigBr , и соединение было известно как тетрабромид каучука. При соответствующем приготовлении оно получается в виде белого аморфного твердого вещества, которое набухает в некоторых растворителях, но растворяется лишь в нескольких растворителях, например в простейших хлорированных углеводородах. Если же его оставить стоять в течение некоторого времени в виде сухого порошка, то оно становится практически не растворимым ни в одном растворителе. Это характерно для ряда производных каучука. Дибромид каучука содержит 70,13% брома  [c.223]

    Малеиновый ангидрид тоже присоединяется к природному каучуку и образует ряд продуктов вплоть до полного насыщения, что соответствует присоединению по 1 молю ангидрида на каждую группу gHg. Ангидрид, вероятно, взаимодействует с а-метиленовой группой. Перекись бензоила действует как катализатор, но нет необходимости добавлять ее к каучуку с вальцеванием последнего. N-метилмалеинимид реагирует подобно ангидриду. Продукты с небольшим содержанием ангидрида используются в связывающих средствах для соединения каучука с металлом [5, 9, 15]. [c.225]

    В качестве модифицирующего компонента применяют также натуральные смолы и их эфиры, преимущественно канифоль и эфиры канифоли . Эти смолы применяют в масляных лаках для замены природных копалов и поэтому их называют искусственными копалами. Предполагают , что взаимодействие фенольной смолы с канифолью происходит следующим образом. Сначала из феноломети-лольных остатков смолы при нагревании образуются остатки метил-иденхинона (хинометида) [c.32]

    Как известно, присутствие различных механических примесей в метано-кислородной смеси может вызвать ее самовоспламенение и при более низкой температуре. Так, по данным А. Ласло самовоспламенение рассматриваемых смесей в присутствии сажи наблюдалось при 340 °С. Окалина (Ре20з), попадая из коммуникаций в метано-кислородную смесь, вызывает значительное снижение температуры самовоспламенения этой смеси. При 400—600°С в атмосфере природного газа РегОэ восстанавливается до Fe. Восстановленное железо в зоне смешения взаимодействует с кислородом  [c.54]

    Природные и синтетические высокомолекулярные соедине-1ИЯ (полимеры). Высокомолекулярными соедипения-л и, или полимерами, называют сложные вещества с большими лолекулярнымн массами (порядка сотен, тысяч и миллионов), ма-1екулы которых построены из множества повторяющихся элементарных звеньев, образующихся в результате взаимодействия и соединения друг с другом одинаковых или разных простых молекул — мономеров. [c.499]

    Химия занимается изучением веществ в нашем мире - от сахара и пищевой соды до природного газа и воды. Из чего сделаны вещества Как они ведут себя и взаимодействуют друг с другом в присутстнии различных видов энергии, таких, как тепло и электричество Какова их роль в живых существах Таким образом, химия имеет отношение ко всему в нашей жизни — к пище, фотопленке, лунным камням, тканям, лекарствам, жизненным процессам, ведь предмет интереса — все существующие вещества. [c.10]

    В присутствии катализатора при повышенной температуре углеводороды с нормальной цепью могут изомеризоваться, т. е. превращаться в углеводороды пзостроения. Нанример, из к-бутана, который пмеется в природных газах в больших количествах, таким путем может быть получен изобутан, а нз него изобутилен, являющийся ценнейшим сырьем для производства пластических масс п каучука. Углеводороды изостроения в процессах алкили-рования в присутствии катализаторов могут вступать в химическое взаимодействие с непредельными, при этом образуются парафиновые углеводороды с сильно разветвленной цепью, являющиеся ценными компонентами моторных топлив. [c.14]

    Основные характеристики процесса измельчения. Измельчение — процесс уменьшения размеров кусков твердого материала механическим воздействием — широко используют в различных технологических процессах химической промышленности. В одних случаях, например при измельчении природных материалов, этот процесс относится к начальной или промежуточным стадиям производства, и получаемый измельченный материал направляется на дальнейшую переработку, в других — позволяет получить товарную продукцию (rtpe -порошки, пигменты и др.). Измельчение позволяет увеличить поверхность фазового контакта взаимодействующих масс, что значительно интенсифицирует такие процессы, как растворение, химическое взаимодействие, горение и пр. [c.156]

    Термодинамические условия проявления эффекта Ребиндера, по-видимому, выполняются для большинства пар твердое тело — жидкость, контактирующих в природной обстановке. При всем разнообразии этих систем они всегда образованы полярными веществами, часто близки по составу и, кроме того, их поликомпонентность должна давать возможность выбора оптимально взаимодействующих компонентов, обеспечивающих максимальное понижение свободной энергии границ раздела фаз [266]. Количественные оценки оказываются часто затруднительными, так как точные значения свободной поверхностной энергии о известны лишь для отдельных минералов (каменная соль, кальцит). Для кварца и силикатов обычные методы определения о дают завышенные значения [267]. Еще меньше [c.92]

    Все приведенные выше экспериментальные факты и даваемые им объяснения свидетельствуют о той исключительно важной роли, какую играет интенсивность взаимодействия частиц со средой в явлении устойчивости коллоидов. Остан овимся более подробно на ряде данных, полученных авторами настоящей работы, подтверждающих важную роль ГС в устойчивости дисперсных систем. Объектами исследования являлись дисперсия 5102, полученная помолом горного хрусталя с последующим выделением фракции (я 0,2—0,3 мкм), и дисперсия природного алмаза (размер частиц 0,5 мкм). [c.174]

    Прочность связи А1—О, включающей доиорио-акцепторнбе взаимодействие за счет свободной -орбитали атома А1 и неподеленной электронной пары атома О, объяс11яет химическую стойкость АЬОз, его огнеупорность н твердость, обилие природных соединений, содержащих связи — А1 — О — А1—. При комнатной температуре корунд и е взаимодействует с водой, кислотами, щелочами. [c.340]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    Из природных соединений железо восстанавливается в доменных печах с использованием в качестве исходного восстановители продукта сухой перегонки каменного угля — кокса. Доменный восстановительный процесс очеиь сложен. Он разделяется на несколько стадий по высоте шахты доменной печи, причем непосредственным восстановителем железа из его оксидов является оксид углерода (И), получаемый при взаимодействии подаваемого в доменную печь кислорода с углеродом кокса. Оксид углерода (И) при высокой температуре последовательно взаимодействует с оксидами железа — Ре20з, РезО.1 и РеО и даже с конечным продуктом восстановления — элементарным железом  [c.309]


Смотреть страницы где упоминается термин Природный газ, взаимодействие: [c.481]    [c.366]    [c.184]    [c.295]   
Технология азотной кислоты Издание 3 (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм взаимодействия природных пуццоланов III

природный газ взаимодействие с серой



© 2024 chem21.info Реклама на сайте