Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура одноосная

    При изучении изменения структуры одноосно-ориентированной пленки из капрона методом рассеяния рентгеновских лучей под малыми углами было обнаружено [73], что по мере растяжения пленки увеличивается значение большого периода, причем относительное увеличение периода с высокой точностью совпадает с относительным удлинением образца. [c.179]


    Обратимся теперь к смектику С, который является наклонной формой смектика А. Молекулы в слоях расположены нерегулярно, но имеют определенный наклон по отношению к нормали слоя. На первый взгляд кажется, что структура одноосна, [c.333]

    Прирост напряжений при увеличении деформации характеризует деформационное упрочнение металла, т.е. с1а/(18= Е (тангенс угла наклона касательной к кривой растяжения). В пределах упругой деформации (1а/ё8 = Е (где Е - модуль Юнга). В области площадки Е = 0. По мере роста г модуль упрочнения изменяется по сложной (чаще по монотонно возрастающей) кривой, характер которой зависит от исходной структуры металла, формы и размеров образца, температуры испытаний, скорости деформации, схемы напряженного состояния и др. При соблюдении условия простого нагружения кривая упрочнения, построенная с использованием инвариантных величин а,- и (а,- и - интенсивность напряжений и деформаций) имеет один и тот же вид независимо от формы и размеров образцов, схемы напряженного состояния (одноосное или двухосное). Известно, что макропластическая деформация возникает в результате накопления пластических сдвигов, являющихся следствием инициирования, перемещения и [c.37]

    Деформация сыпучего тела в компрессионных приборах производится по методике, аналогичной одноосному сжатию образцов сплошных горных пород. Однако полностью воспроизвести эти условия нельзя, так как сыпучий материал находится внутри емкости с неподвижными стенками и при деформации возникают силы трения, вызывающие образование сводовых структур. Поэтому прп снятии компрессионных характеристик используют емкости с небольшим отношением высоты к диаметру. [c.34]

    Нематическая фаза - жидкокристаллическая структура, центры тяжести частиц которой расположены случайным образом, в связи с чем в ней не существует дальнего координационного порядка. Оси всех частиц внутри элементарного объема одноосно-ориентированы. [c.401]

Рисунок 2.2.2 - Перестройка 90° доменной структуры в 180 на пластически деформированном участке (справа) кристалла Ре - 3 % З а, в) и увеличение числа 180 доменных границ за счет роста клиновидных доменов б, в) под воздействием одноосного упругого растяжения а - 0 б - 100 й -150 МПа Рисунок 2.2.2 - Перестройка 90° <a href="/info/810461">доменной структуры</a> в 180 на <a href="/info/1422729">пластически деформированном</a> участке (справа) кристалла Ре - 3 % З а, в) и <a href="/info/1125914">увеличение числа</a> 180 доменных границ за <a href="/info/1691461">счет роста</a> клиновидных доменов б, в) под воздействием одноосного упругого растяжения а - 0 б - 100 й -150 МПа

    Несмотря на отсутствие кристаллитных образований в стандартных образцах полистирола структуру его можно нескольк(з упорядочить растяжением при повышенной температуре. Растягивание образца в одном направлении (одноосная ориентация), а тем более одновременное растягивание его в двух взаимно-нер-пендикулярных направлениях (двухосная ориентация) способствует увеличению прочное и ю-л имера и уменьшению внутренних напряжений в нем, что приводит к повышению упругости. Поэтому одноосно ориентированный полимер применяют в виде пленок или нитей. Двухосной ориентацией листового полистирола повышают его предел прочности при растяжении на 20—30/О, относительное удлинение в 5 раз и удельную ударную вязкость в 3—6 раз. [c.364]

    Оболочка, которая находится под слоем не до конца разложившихся углеводородов, является продуктом ориентированного отложения пиролитического углерода после образования частичек сажи и имеет структуру, показанную на рис. 4-8. Наблюдаемые в оболочке полосы деформации связаны, по-видимому, с одноосным сжатием слоев пироуглерода на первичных сажевых агрегатах при структурной перестройке последних [В-5]. [c.206]

    Одноосное ориентирование является одним из основных способов получения высокопрочных полимерных материалов, когда создается упрочнение в направлении ориентации и, как правило, разупрочнение в поперечном направлении. Это связано с тем, что для полимеров характерно наличие двух резко различных типов взаимодействий между атомами больших внутримолекулярных сил химического взаимодействия вдоль цепных макромолекул и малых сил межмолекулярного взаимодействия. Наличие двух типов взаимодействий приводит к крайней неоднородности распределения механических напряжений в полимерном материале, что существенно влияет на такие важные для практики свойства, как упругость и прочность. При ориентировании эта неоднородность уменьшается в направлении ориентации, и как следствие повышается прочность в этом же направлении. Кроме того, при ориентации происходит концентрирование более прочных элементов структуры в одном направлении, что приводит к практически одновременному и согласованному их разрыву. [c.185]

    В связи с наличием в полимерных телах надмолекулярных структур процесс рекристаллизации заключается в преобразовании не только пространственной решетки, но и надмолекулярных структур. При исследовании повторных одноосных деформаций полипропилена и гуттаперчи в направлениях, перпендикулярных предшествующим деформациям, было показано, что большие деформации осуществляются за счет преобразований надмолекулярных структур без заметного изменения первичной структуры полимера, о чем свидетельствуют рентгенографические данные [46]. [c.24]

    Различие между Гс и Гм отчетливо проявляется на температурной зависимости динамического модуля Юнга (рис. 2.6). Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость lg слабо выражена, как и у любого твердого тела. Выше Гс наблюдается более резкая зависимость логарифма модуля упругости от температуры в связи с тем, что в структурно-жид-ком состоянии структура полимера непрерывно изменяется с температурой. При дальнейшем увеличении температуры в области, где время релаксации снижается до величин, сравнимых с периодом колебаний, в полимерах проявляется высокоэластическая деформация. Амплитуда деформации полимера с увеличением температуры возрастает до тех пор, пока не достигнет предельного значения, а модуль — весьма низкого значения (например, для полимеров модуль одноосного сжатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль в высокоэластическом состоянии). [c.43]

    Прочность — сопротивление разрыву тела на две или несколько частей. Разрыв или разрушение тела — сложный процесс его ход зависит от условий испытаний, характера напряженного состояния и структуры, Б частности от распределения ослабленных мест и внутренних напряжений [9—11], и чтобы его понять, рассмотрим наиболее простой случай деформирования — одноосное растяжение стержня (см. рис. 68). [c.171]

    Исследования релаксационных процессов, ширины, тонкой и сверхтонкой структуры линий ЯМР дают большой объем сведений о структуре диэлектрических кристаллов, металлов, полупроводников, полимеров, характере межмолекулярных взаимодействий в твердых соединениях. Изменения в спектрах ЯМР при появлении движения дают возможность исследовать процессы плавления, кристаллизации (полимеризации), структурирования и др. Изучение температурной зависимости ширины линии позволяет найти энергию движения, влияющего на сужение линии. Можно определить вид движения молекулы или иона (одноосное вращение, сферическое вращение, диффузия и др.) и пр. [10-12]. [c.378]

    Выше рассматривалось одноосное напряженное состояние. В случае объемного напряженного состояния величина а в уравнении (68) означает шаровую часть тензора напряжений. Строго говоря, это же следовало бы сделать и для одноосного напряженного состояния, но выше принималась полная величина напряжения, так как в локальных областях вокруг дефектов структуры возможны такие значения давления. Поэтому при объемном напряженном состоянии можно вести расчет по максимальному главному напряжению. [c.37]


    Ориентированный полимер проще всего получить под действием одноосно растягивающего напряжения. За процессами, происходящими при растяжении образца в одном направлении, удобно следить по динамическим кривым деформации. На рис. 4.21 показана кривая деформации полипропиленовых волокон, которую можно разделить на два характерных участка (стадия текучести и стадия упрочнения). На стадии текучести молекулярная структура полипропиленового волокна претерпевает ряд существенных [c.83]

    Волокнообразующими свойствами обладают полимеры с линейной структурой, т. е. с очень длинными (вытянутыми) макромолекулами, при взаимном упорядочении которых возникают меж-молекулярные связи, препятствующие скольжению их и повышающие сопротивление одноосной деформации волокна, что способствует его более глубокой ориентации. До появления изотактического полипропилена считалось, что текстильные волокна с высокими физико-механическими свойствами можно получить только в том случае, если в линейных макромолекулах имеются группы, которые отличаются способностью к ассоциации. Высокую разрывную прочность найлона объясняли образованием межмолекулярных водородных мостиков. В отсутствие их, например в случае полиэтилентерефталатных и полиакрилонитрильных волокон, межмолекулярные силы возникают между полярными группами соседних макроцепей. [c.229]

    В другом случае, когда ленты прессматериалов типа С укладываются так, что все волокна имеют приблизительно одно направление, получается стеклопластик так называемой однонаправленной структуры (одноосно армированный материал). Этот вид укладки условно обозначается 1 0. [c.77]

Рис. 3.14. Схемы образования различных модификаций смектических структур й - слоистые структуры (/ - смектическая, 2 - сплошная смектическая, 3 - смектическая с двойными слоями,- - смектическая с полярными группами) 6- смектические структуры в полимерном материале (7 - одноосно-ориентиропанная структура, 2 - изотропная структура) Рис. 3.14. <a href="/info/18430">Схемы образования</a> <a href="/info/774168">различных модификаций</a> <a href="/info/982088">смектических структур</a> й - <a href="/info/2177">слоистые структуры</a> (/ - смектическая, 2 - сплошная смектическая, 3 - смектическая с <a href="/info/2476">двойными слоями</a>,- - смектическая с <a href="/info/102651">полярными группами</a>) 6- <a href="/info/982088">смектические структуры</a> в полимерном материале (7 - одноосно-ориентиропанная структура, 2 - изотропная структура)
    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Исторически первые эксперименты со свободными механорадикалами с использованием метода ЭПР были выполнены в институте им. Иоффе в Ленинграде в 1959 г. [1] на размолотых или раздробленных полимерах, причем образцы исследовались после завершения процесса разрушения. Для объяснения влияния параметров структуры и условий нагружения на кинетику образования свободных радикалов под действием напряжения необходимо изучить поведение высоконапряженных цепей в процессе их нагружения методом ЭПР. Как подчеркивалось в гл. 5, заметное упругоэнергетическое деформирование цепи можно получить лишь в том случае, если цепь не может сама снять свое напряжение путем изменения конформации или проскальзыванием в поле приложенных одноосных сил. Наоборот, механический разрыв цепи должен указывать, что в момент разрыва не только были достигнуты осевые напряжения ф, равные прочности цепи 1 )с но и что подобное состояние сохранялось в течение времени, равного средней долговечности Тс сегмента цепи. [c.187]

    Наиболее наглядно влияние упругих напряжений на магнитную доменную структуру многоосных ферромагнетиков с различной кристаллографической ориентацией поверхности видно на магнитотрехосных кристаллитах железокремнистых сталей, обладающих положительной магни-тостриктщей [87]. Одноосные упругие деформации приводят к существенной перестройке типа магнитной структуры (переход от 90 к 180°), изменяют размеры отдельных доменов и вид междоменных фаниц. Поскольку материал имеет положительную магнитострикцию, действие продольных упругих растяжений в кристалле Ре — 3 % 81 типа (100) приводит к уменьшению объемов всех доменов с поперечной (относительно (Зо) ориентацией намагниченности (рисунок 2.2.1, домены А, В, С и В). [c.59]

    При достаточно большой величине одноосных растягивающих напряжений уменьшение объема поперечно намагниченных доменов может происходить и в пластически деформированных участках 1фисталла (рисунок 2.2.2). Этот процесс наведения дополнительной одноосной магнитной анизотропии, нивелирующий локальное рассеяние магшггной текстуры в пластически деформированном участке ферромагнетика, подавляет мозаичную доменную структуру в правом наиболее напряженном участке, переходную к ней структуру комплексов 90° замьпсающих доменов, а также упрощает вид междоменных границ (рисунок 2.2.2, а, б). Количество основных полосовых доменов при этом увеличивается за счет роста 180° клиновидных областей (рисунок 2.2.2, б, в). При этом уменьшение ширины доменов О, отражающее рост пропгяженности 180° доменных границ, связано с величиной действующих упругих напряжений следующим соотношением  [c.60]

    Таким образом, действие растяжения приводит к перестройке доменной структуры железа и наводит одноосную магнитную анизотропию за счет активных смещений 180° и 90° междоменных фаниц. При этом формируется одноосная магнитная текстура в железе, ось которой совпадает с осью образца. Поэтому упругое растяжение в железе формирует систему больших по длине продольных полосовых доменов. Число этих доменов значительно увеличивается гфи тшастической деформации за счет возникновения и роста клиновидных областей вблизи протяженных дефектов. [c.65]

    Отдельные кристаллы состоят из элементарных ячеек, простейших упорядоченных элементарных объемов, пространственное повторение которых образует монокристалл. Таким образом, элементарная ячейка позволяет судить о том, как молекулы упаковываются в кристалл. Элементарная кристаллографическая ячейка полиэтилена имеет орторомбическую пространственную структуру (рис. 3.3). Это означает, что такая ячейка может быть охарактеризована размерами трех взаимно перпендикулярных осей а, Ь и с, имеющихТразличную длину. Ось с совпадает с направлением осей, складывающихся в единичный кристалл молекул полиэтилена. Таким образом, при одноосном растяжении мерой молекулярной ориентации может быть величина угла, образованного кристалло-графической осью" с направлением растяжения. В поликристал-лических структурах приходится определять среднее значение этого угла для всего ансамбля имеющихся кристаллитов (единичных [c.48]

    Мезофазные сферы в момент их возникновения и при последующем росте, по данным световой микроскопии в поляризованном свете, а также дифракционного и рентгеноструктурного анализов, являются оптически одноосными положительными кристаллами гегсагональной системы. Показанные на рис. 2-4, а изгибы слоев приводят к тому, что на краях они перпендикулярны к касательной поверхности сферы. Это, по-видимому, способствует начальной коалесценции. В условиях относительно низкой подвижности мезофазы и случайной взаимной ориентации коалесцирующих сфер образования простой слоистой структуры не происходит. При этом возникают структуры, отличающиеся множеством дефектов упаковки слоев линейных, изгибов, нарушений непрерывности. Исследования профилей рефлексов (002) рентгенограмм мезофазы с учетом эффектов гьбсорбции и поляризации рентгеновских лучей, а также фактора рассеяния атомов углерода показывают, что средние значения межслоевого расстояния 002 равны примерно 0,350 нм [2-89]. Отдельные пачки слоев с разными значениями межслоевого расстояния имеют размеры до 2 нм. При нагревании сферы мезофазы могут расщепляться и приобретать относительно плоскую конфигурацию. То же происходит и при графитации мезофазы. Флуктуация межслоевых расстояний у графитирующейся мезофазы наивысшая. [c.46]

    На рис. 1.22 приведены три типа обычных термомеханических кривых е — Т. Они получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть заданной (напряжение а = onst) и малой по величине, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. [c.69]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    На рис. 1.15 приведены три типа термомеханических кривых. Кривые получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть неизменной (напряжение а = сопз1) и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. При низких температурах все полимеры деформируются так же, как и твердые тела. Если полимер не кристаллизуется, то деформация с температурой изменяется по кривой типа 1. Выше температуры стеклования Тс проявляется высокоэластическая деформация (плато высокоэластичности), а затем выше температуры текучести Гт реализуется вязкое течение с накоплением необратимой деформации. Кривая 1 свидетельствует о том, что полимер может находиться в трех физических состояниях стеклообразном, высокоэластическом и вязкотекучем. Каждому состоянию соответствует свой тип деформации. [c.32]

    Низкотемпературный микроскоп — микроскоп, имеющий устройство для глубокого охлаждения образца. Из серийных приборов охладительные камеры установлены на микроскопах НМ-4 (Япония), Термопан (Австрия) и некоторых другадс. Созданы конструкции охладительных камер (до —196°С), приспособленные к обычным металлографическим и поляризационным микроскопам. Институтом машиноведения АН СССР разработаны конструкции низкотемпературных микроскопов для исследования изменения структуры материалов в процессе их одноосного статического нагружения и удара. [c.129]

    Скорость нарастания пластической прочности в период упрочнения структуры цементного теста увеличивается. Предел прочности на одноосное сжатие образцов цементного камня, полученных из виброактивированного теста, оказался значительно более высоким, чем для образцов, приготовленных без активирования. Это обусловлено увеличением равномерности распределения воды между зернами цемента при низком В/Ц, приводящее к повышению пластичности и снижению прочности коагуляционной структуры, дополнительным механическим диспергированием зерен цемента и ускорению процессов гидратации за счет усиления процессов адсорбционного и химического диспергирования и постоянного отвода продуктов гидратации с поверхности вибрирующих зерен и обнажения свежих поверхностей для дальнейшей гидратации [435]. [c.187]

    Графит из-за гексагональной слоистой структуры, кристаллографической и геометрической ориентации зерен структурных составляющих и включений, направленности микро- и макродефектов обладает анизотропией физико-механических свойств. Графит, изготовленный методом продавливания, имеет более высокую анизотропию свойств по сравнению с материалом, отформованным в пресс-форме. Анизотропию нельзя не учитывать, поскольку изделия из графита работают в условиях не только одноосного, но и слджно-напряженного состояния. [c.73]

    Молекулярной структуре изотактического полипропилена с относительно низкой регулярностью упаковки цепей посвящено исследование Натта с сотрудниками [17], которые обозначили ее как смектически-мезоморфную модификацию. Собуэ и Табата [18], также изучавшие смектическую структуру, назвали ее новой кристаллической структурой. Такая структура характеризуется тем, что три главных экваториальных рефлекса, появившиеся как результат одноосной деформации изотропной системы, сливаются в один (рис. 4.10) с максимумом расстояния между экваториальными рефлексами 6,12 А. Смектическая структура устойчива при [c.68]

    Перейдем теперь к рассмотрению молекулярного механизма ориентации. Зависимость напряжения от деформации для полиморфных полимеров с линейными макромолекулами имеет характерный вид, резко отличный от аналогичной зависимости для сшитого каучука. Если приложить к образцу кристаллического полимера одноосно растягивающее напряжение, то обнаружится, что процесс растяжения до разрыва образца может быть четко разделен на три стадии [80—82]. На первой стадии деформация подчиняется закону Гука, т. е. напряжение прямо пропорционально деформации (относительному удлинению). Вторая стадия характеризуется постоянством напряжения яри непрерывно нарастающем удлинении. На этой стадии растяжения в образце появляется так называемая шейка и происходит дальнейшее постепенное сужение образца до поперечного сечения шейки. Предполагают, что при этом происходит процесс частичного разрушения первоначальной структуры п переориентации полимерных кристаллов в направлении приложенных усилий. Третья стадия растяжения (так называемая область упрочнения) состоит в удлинении переориентированного образца вплоть до разрыва, ничем не отличающемся от растяжения анизотропного кристаллического полимера в направлении первичного растяжения. [c.79]

    В последнее время довольно большое внимание уделяется проблеме рационального охлаждения нити под фильерой. Так, например, Компостелла с сотрудниками [39] показали, что при строго определенных условиях охлаждения формующейся нити можно получить невытянутые волокна с так называемой паракристалли-ческой, или смектической, молекулярной структурой, тогда как без охлаждения нити под фильерой получаются волокна нормальной кристаллической структуры, В результате последующей одноосной деформации невытянутых волокон термодинамически малоустойчивой паракристаллической структуры могут быть получены волокна с отличными эксплуатационными свойствами. [c.242]

    Тонкие пленки для конденсаторов толщиной менее 6 мкм можно отливать непосредственно на металлическую пленку, используемую для намотки в конденсаторах. Конденсаторные пленки толщиной менее 10 мкм получают одноосным вытягиванием в холодном состоянии пленки большей толщины. Полученная таким образом пленка претерпевает усадку при нагревании до 150— 160 С. Это свойство пленки используют для замыкания конденсаторов. Большое влияние на структуру и свойства пленок, отливаемых из раствора, оказывает природа используемых растворителей. Для поликарбонатов в качестве растворителя чаще всего используют метиленхлорид. Можно также применять смеси метиленхлорида с другими растворителями или разбавителями, например хлороформом, трихлорэтиленом, этиленхлоридом, про-пилацетатом, бутилацетатом, ацетоном, циклопентано-ном, толуолом, бензолом, диоксаном, тетрагидрофура-ном и др. [8—11]. [c.222]


Смотреть страницы где упоминается термин Структура одноосная: [c.170]    [c.190]    [c.8]    [c.37]    [c.36]    [c.62]    [c.63]    [c.68]    [c.610]    [c.254]    [c.310]    [c.65]   
Химия и технология полимерных плёнок 1965 (1965) -- [ c.341 ]




ПОИСК







© 2025 chem21.info Реклама на сайте