Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность колебаний атомов

    Известно, что в реакции взаимодействия уранилнитрата с экстрагентом принимает активное участие атом кислорода фосфорильной группы Р = 0. В работе [149] было показано, что в присутствии уранилнитрата частота колебания фосфорильной группы vp=o имеет тенденцию к уменьшению. Для последнего члена указанного ряда экстрагентов она уменьшается в среднем на 80—90 см В то же время частота колебания Р—О (в группе Р—О—С) практически не изменяется по величине, оставаясь равной 1030 см Это означает, что кислород эфирных групп экстрагентов не принимает участия в их комплексообразовании с уранилнитратом. [c.126]


    О реакционной способности молекул в жидких средах. Давно замечено, что многие химические реакции способны протекать только в жидких средах, а не в газах или твердых телах. Этот факт общеизвестен, но до последнего времени был непонятен. Теория констант скоростей реакций дает ему следующее объяснение. В жидкостях высокая степень заполнения пространства молекулами сочетается с относительно большой их подвижностью, сравнительной легкостью образования различного рода отклонений от среднего распределения молекул. Тем самым создаются благоприятные условия для появления в жидкой фазе различных неустойчивых сложных структур, в том числе активных комплексов Ат. Молекулы таких комплексов состоят из ядра и сольватной оболочки, т. е. из молекул реагентов и растворителя они могут состоять из многих мономерных звеньев. Текущая энергия возбуждения Е+ активных комплексов может быть весьма малой по сравнению с энергией внутримолекулярных колебаний всей молекулы А и в то же время очень большой относительно энергий некоторых из валентных или деформационных колебаний. Поэтому вероятность возникновения флуктуации энергии упомянутых валентных или деформационных колебаний, равной Е+, в случае сложных молекул А, возникающих в жидких фазах, значительно выше, чем для малых комплексов, которые в разреженных газах состоят, как правило, лишь из двух молекул реагентов. Часто молекулы жидкой среды играют роль катализатора реакции. [c.164]

    Общее число степеней свободы, которыми обладает л-атом-ная молекула, равно 2>п, из которых три степени свободы (или две в случае линейной молекулы) характеризуют вращение молекулы и три степени свободы определяют поступательное движение молекулы в целом. Таким образом, общее число колебательных степеней свободы для системы, состоящей из п атомов, будет равно 2>п — 6 (для линейной системы — 2п — 5). Для активного комплекса это число на единицу меньше, так как одна из колебательных степеней свободы превращается в координату реакции. Колебание образовавшегося комплекса X — V — 2 вдоль валентных связей ведет к реакции распада. Это колебание заменяется движением комплекса X—V—2 особого рода, ведущим к образованию молекул 2 и X. Оно было описано выше и изображено на рис. V, 1 как путь реакции. Это движение рассматривается как вид поступательного движения активного комплекса. Понятия вращение и колебание в применении к активному комплексу не имеют обычного смысла, так как комплекс существует очень недолго. Эти понятия обозначают, что зависимость потенциальной и кинетической энергии системы атомов от координат и сопряженных с ними импульсов такая же, как и для устойчивых молекул. [c.143]


    Таким образом, количество энергии, поглощаемой молекулой, зависит от длины волны электромагнитных колебаний, будучи обратно пропорционально ей. Большей энергией и большей химической активностью обладают колебания с меньшей длиной волны. В видимом свете наиболее активными являются фиолетовые лучи (>, 4000 А) для них -=71 ккал/моль (или ккал/г-атом), Наименее же активна красная часть спектра (Х= 7500 А). Для нее 38 ккал/моль. Поэтому, например, малочувствительные (точнее — несенсибилизированные) фотоматериалы — фотобумагу и др. — можно проявлять при красном свете. [c.501]

    Кристалл идеального алмаза, который состоит из нейтральных атомов, не имеет электрического момента первого порядка, что приводит к запрету для процессов поглощения с участием одного колебания решетки. Однако, как уже отмечалось, в решетках типа алмаза в присутствии примесного атома оптически активными становятся все колебания. При этом, если в резонансных колебаниях участвует сам примесный атом, то частота и ширина резонансного поглощения убывают с возрастанием массы примеси, а высота пика увеличивается. Сдвиг полосы 1135 см до 1120 см (в алмазах, легированных изотопом 5N) таков, что отношение этих частот равно корню квадратному из приведенных масс изотопов N и N (по отношению к основному изотопу С). [c.425]

    Теперь немного о сути избирательного или селективного стимулирования химических реакций. Как известно, каждый атом или группа атомов в молекуле могут колебаться относительно некоторого положения равновесия. При этом собственные или характеристические частоты этих колебаний, зависящие как от массы, так и от энергии химической связи, для многих молекул лежат в инфракрасной области. При обычном нагреве, воздействующем на всю молекулу в целом, сильнее всего раскачиваются, иногда и разрываются наиболее слабые атомные связи. В итоге термические реакции в химии идут по каналу с наименьшей энергией активации. В отличие от этого реакции, стимулированные инфракрасным лазерным облучением, могут в принципе идти по любому наперед заданному каналу, в обход естественной химической активности вещества, т. е. возможно селективное стимулирование химических процессов. Это обусловлено высокой монохроматичностью и большой интенсивностью лазерного излучения. Если частота излучения лежит в инфракрасной области спектра и совпадает с одной из собственных частот внутримолекулярных колебаний, то произойдет резонансное раскачивание соответствующей атомной связи, что может привести к ее разрыву. В результате молекула или распадается на химически активные обломки или возбуждается настолько, что способна вступить в реакцию с другими молекулами без дополнительного притока энергии от теплового движения. Активными становятся те группы атомов, [c.103]

    Замещение одного из атомов У в молекуле ХУз на другой атом 2 понижает симметрию молекулы до группы Сх. При этом вырожденные колебания расщепляются на пары полос, все колебания активны в ИК-погло-щении. В табл. 14.4.126 приведены частоты колебаний таких молекул. [c.461]

    Вопрос о механизме миграции энергии пока еще слабо выяснен, может быть, за исключением, полупроводниковых тел. Мы точ Ьо не знаем, как мигрирует энергия по большим молекулам, в частности по макромолекулам белка, так же как не ясны формы ее миграции по металлическим поликристаллам. Здесь мы неизбежно вступаем в область лишь более или менее достоверных догадок. В порядке рабочей гипотезы можно думать, что миграция энергии происходит по экситонному. типу, т. е. путем эстафетной передачи зонно-электронного возбужденного состояния по кристаллу от одного активного центра к другому. Принять передачу энергии через колебания самой решетки труднее, так как они слишком легко рассеивал - бы энергию в окружающую среду. Примером электронной активации центра может служить возбуждение палладия, пере водящее его из структуры 4(8 р с1 °). с замкнутой 18-электронной оболочкой в структуру 5 с затратой энергии 0,8 эв (т. е. 18 ккал на атом) и с приобретением двух неспаренных электронов, т. е. двух химических валентностей в этом виде палладий обычно проявляет себя как элемент и как катализатор. [c.58]

    SO3. Изучение спектров комбинационного рассеяния [1685], измерение дипольного момента [3804] и анализ результатов электронографических измерений [3170] однозначно показывают, что молекула SO3 — плоская симметричная, имеет структуру правильного равностороннего треугольника, в центре которого расположен атом серы и в вершинах — атомы кислорода (точечная группа симметрии Оз ,). Из принадлежности к точечной группе симметрии Dg/i следует, что молекула SO3 должна иметь четыре основные частоты одну частоту плоского симметричного колебания Vj, одну частоту неплоского колебания Va и две дважды вырожденные частоты Vg и V4. Частоты Vg и V4 соответствуют плоским колебаниям молекулы, причем Vg соответствует антисимметричному валентному колебанию, а V4 — деформационному колебанию. Частоты Vj, Vg и V4 должны быть активны в спектре комбинационного рассеяния, а частоты Vg, Vg и V4 — в инфракрасном спектре. [c.318]


    Таким образом, количество энергии, поглощаемой молекулой зависит от длины волны электромагнитных колебаний, будучи обратно пропорционально ей. Большей энергией и большей химической активностью обладают колебания с меньшей длиной волны. В видимом свете наиболее активными являются фиолетовые лучи (к 4000 А) для них = 71 ккал/моль (или ккал/г-атом). Наиме- [c.494]

    Слетер [1146] на основании своей теории вычислил скорость изомеризации циклопропана в пропилен СзНе, причем в основу расчета было положено предположение, что активное состояние молекулы возникает при приближении (в результате колебаний) одного из атомов водорода к углеродному атому соседней метиленовой группы. Результаты расчета находятся в качественном согласии с экспериментальными данными, полученными ранее Чемберсом и Кистяковским [483]. В частности, вычисленное значение предэкспонента в формуле (17.37) равно 4 10 сек.вместо измеренного значения 15 10 сек. . Дальнейшее развитие теории Слетера см. в его работах [1147]. [c.257]

    В спектре кислоты в этой области имеется полоса деформационных РН-колебаний при 977 см" . В спектре натриевой соли полоса деформационного РН-колебания обнаруживается независимо от того, гидратирована соль тяжелой или обычной водой. Наличие полос валентных РН-колебаний в спектре на рис. 26 указывает на то, что атом Н в натриевой соли не замещается на дейтерий. На этом основании можно постулировать, Лто активность деформационного РН-колебания в ИК-спектре [c.66]

    Процесс окисления ведут при 260—290° С, если окислителем служит воздух, и при 230° С, если окислителем служит кислород. Колебание температуры в контактном аппарате не должно превышать 10 град, так как основные показатели процебса — степень окисления, селективность и активность катализатора — сильно зависят от температуры. Обычно окисление ведут при 9—20 ат. [c.173]

    Источник и детектор располагают по разные стороны от слоя материала и регистрируют рассеянные вперед углем у-излучения. К достоинствам метода следует отнести возможность компенсации влияния плотности угля и толщины его слоя, а также высокую чувствий тельность при определении зольности, к недостаткам необходимость применения источника большой активно- сти, трудность решения некоторых конструктивны) проблем, значительное влияние колебаний состава золь на результаты контроля. В статье [83] описан золомер ВУТ-0,4, основанный на регистрации рассеянного впе ред 7-излучения от Ат с помощью четырех счет[ чиков СИ-22Г. В США, Великобритании, ГДР запатен- товано несколько вариантов измерения зольности ё использованием рассеянного вперед 7-излучения от дву>1 источников разной энергии и регистрацией его двумй детекторами. " [c.39]

    Рассмотрение моделей кристаллов разного размера и соответствующие расчеты показывают, что частицы металла, на которых происходит прочная адсорбция азота, сопровождающаяся появлением активной в ИК-снектре полосы, имеют на поверхности наибольшее число так называемых В- цен-тров, т. е. центров, будучи адсорбированным на которых атом металла имел бы контакт с пятью соседними атомами металла. Это в свою очередь позволяет прийти к выводу о том, что, несмотря на относительно высокую теплоту адсорбции и отсутствие подвижности, молекулы азота не образуют с атомами металла химической связи, а удерживаются на поверхности дисперсионными силами и сильным электрическим полем Вд-центров, которое возникает в результате неполной компенсации электрических полей ядер и электронов атомов металла этих центров и поляризует адсорбированные молекулы (рис. 2). Дисперсионное взаимодействие молекул азота с В 5-центрами должно быть более сильным, чем с плоской поверхностью кристалла, так как адсорбированная молекула взаимодействует в этом случае с большим числом атомов металла. Хардевелд и Монтфорт [11] считают, что высокую интенсивность и значительное смещение полосы поглощения физически адсорбированных молекул относительно частоты колебания свободной молекулы азота можно объяснить сильной поляризацией адсорбированных молекул электрическим полем Вд-центров. [c.118]

    BFg. Анализ спектроскопических данных [554, 620, 619, 1637, 4363, 3070, 2710, 290], результаты электронографических исследований [910, 2600], а также результаты измерений дипольного момента [2620, 3047] показывают, что молекула BFg плоская, симметричная, имеет форму правильного треугольника, в вершинах которого расположены атомы фтора, а в центре симметрии находится атом бора. Такая молекула относится к точечной группе симметрии Dgft и имеет четыре основных частоты, соответствующие колебаниям типа Л (v ), А" (vj) и Е (vg и V4). В инфракрасном спектре неактивна частота v , а в спектре комбинационного рассеяния— частота Vj. Частоты дважды вырожденных колебаний Vg и V4 активны как в инфракрасном спектре, так и в спектре комбинационного рассеяния. [c.715]

    Особое место в методах оптической накачки активных сред ИК-лазеров занимает накачка некогерентным излучением импульсной лампы, ставшая возможной благодаря использованию межмолекулярного электронно-колебательного переноса энергии Е—V-nepeHo ) [87—89]. В этом явлении, механизм которого далеко еще не ясен, электронно-возбужденный атом в столкновениях с молекулой отдает свою энергию на возбуждение молекулярных колебаний, причем иногда с довольно высокими вероятностью и селективностью. Эффективность такого преобразования энергии зависит прежде всего от точности резонанса между возбужденным электронным уровнем атома и не слишком высоко возбужденным колебательным уровнем молекулы. Поэтому атом брома в электронном состоянии 4 Pi/2 с энергией 3685 см , выбранный авторами работ [87—89] в качестве донора энергии, — хороший партнер в процессе электронно-колебательного переноса энергии. [c.184]

    В соответствии с указанными ( противо1по.ложными но своей направленности) требованиями Оствальд предложил объяснить каталитическую активность кислот посредством особой механической модели молекулы кислот. Водородный атом внутри такой молекулы должен быть связан с остальной частью молекулы химическим сродством, проявляющимся в форме механической живой силы. Но он не может рассматриваться в состоянии покоя, а лишь в состоянии колебательного движения. Это колебание становится периодическим по крайней мере во время между двумя столкновениями молекул. Продолжительность периода,— говорит Оствальд,— зависит от интенсивности сил, которые возвращают атом в положение равновесия [15]. 0 бмен водородного атома на другой элемент или радикал, -по Оствальду, легче всего осуществим тогда, когда атом находится в максимальном удалении от положения равновесия, т. е. в момент, когда между ним и остальной частью молекулы имеется минимум притяжения . Логика подсказывает, что кислоты с наибольшей силой Н—Х-связи должны согласно с этими рассуждениями быть меньше всего склонными к обмену водорода. Оствальд и здесь находит второй логический выход. Он говорит, что вероятность обмена в общей массе вещества зависит от того, как часто водородный атом будет удаляться от положения равновесия. Так как молекулы сильных кислот, имеющие, по Оствальду, наиболее сильную связь Н—X, будут обладать в то же время минимальным периодом колебаний водородного атома, то последний в большем числе случаев окажется способным к обмену. [c.80]

    В инфракрасном спектре первичных и вторичных аминов имеется полоса поглощения в области 3500—3300 см , обусловленная валентными колебаниями группы N11 та же полоса присутствует в спектре пиррола, индола и их производных, не имеющих заместителя у атома азота. Интересным примером может служить семпервирин [403], у которого отсутствует поглощение в указанной области спектра на этом основании можно было бы сделать вывод, что атом водорода не связан с азотом, тогда как в этом алкалоиде был все же обнаружен активный водород . [c.38]

    Попытаемся кратко сформулировать логическую схему, прй-меняемую авторами для истолкования этого ряда. Понижение частоты валентных колебаний N11 отражает уменьшение электронной плотности на атоме азота электронная плотность уменьшается тем сильнее, чем прочнее связь N —> Р1, т е. чем вьппе электрон-акцепторная способность платины в комплексе с данньш лигандом Ь. Ясно, однако, что акцепторная способность атома платины по отношению к электронам аминогруппы изменяется антибатно донорной способности лигандов Ь. Таким образом, в приведенном ряду лиганды расположены в последовательности, отвечающей понижению их электрон-донорных свойств. Принципиально важным является факт несовпадения этой послед5ва-тельности с рядом транс-влияния. В частности, этилен, обладающий среди незаряженных лигандов наибольшей активностью в отношении транс-эффекта, занимает в ряду, основанном на частотах некоторое среднее положение. Чатт с сотрудниками заключают из этого, что сильное транс-влияние олефинов отнюдь не свидетельствует об их способности к максимальному ослаблению противолежащей связи Р1—N. Этот вывод полностью согласуется с предложенной ими теорией транс-эффекта. Согласно этой теории, сильным транс-влиянием характеризуются лиганды, склонные к образованию двойных связей с центральным атомом. Необходимое условие для образования таких связей состоит в наличии у координированной молекулы вакантных р-, й- или йГр-орбит, способных к взаимодействию с заполненными <1- иди р-ррбитами атома металла. Результатом такого взаимодействия является образование дативной л-связи, в которой центральный атом выступает в роли донора электронов (см., например, рис. 3). Происходящее прд этом возрастание электронного дефицита центрального атома приводит к упрочнению его связей с остальными лигандами, что препятствовало бы протеканию реакций замещения, если бы механизм. этих реакций диссоциативным 1. С другой стороны, однако, образование дативной связи вызыв [ет [c.165]

    Все а-аминокислоты, встречающиеся в природе (за исключением гли-кокола), содержат асимметрический углеродный атом и поэтому являются оптически активными соединениями, т. е. способны вращать плоскость колебаний поляризованного луча. Оптически активные вещества вращают плоскость поляризации либо вправо, либо влево. Вещества первой группы обычно называют правовращающими и обозначают знаком плюс (+), вещества второй группы называют левовращающими и обозначают знаком минус (—). [c.25]

    Полезные качественные выводы можно сделать непосредственным сравнением частоты валентного колебания С—О в карбонилах металлов и в самой молекуле СО. Частота такого колебания в молекуле окиси углерода равна 2143 см , а у концевых групп СО в нейтральных карбонилах металлов она имеет значение в пределах 2125—1900 см , что указывает на понижение порядка связи С—О при комплексообразовании. Более того, если в молекулу карбонила внести какие-либо изменения, которые будут способствовать усилению дативного взаимодействия М—С, то частота колебания С—О может понизиться еще больше. Так, если часть групп СО заместить лигандами с низкой или ничтожно малой способностью к акцептированию электронов, то оставшиеся группы СО смогут с большей легкостью акцептировать л-электронр.-1 металла и в большей степени понизят эффективный отрицательный заряд центрального атома. Например, частоты колебаний групп СО в Со (СО) составляют 2100, 2000 и 1985 см (точные значения могут меняться в зависимости от агрегатного состояния и растворителя). При замене трех групп СО на молекулы аминов, неспособных к дативному взаимодействию, например в хромовом аналоге Мо (dien) (СО)з (рис. 27.6), частоты валентных колебаний групп СО становятся равными 1900 и 1760 см Ч Аналогично переход от r( O)g к изоэлектронному аниону V ( 0) , в котором группы СО могут принять от атома металла больший отрицательный заряд, сопровождается понижением частоты от - 2000 см [в Сг (СО) ] до 1860 см в V( O)" . Указанную зависимость хорошо иллюстрирует следующий ряд изоэлектронных комплексов в скобках приведены частоты (см ) активных в ИК-спектре валентных колебаний групп (СО) Ni( 0)4 (-2060) Со (СО) ( 1890) Ре(СО)Г (-1790). (Анионы — члены этого ряда — будут подробнее расслютрены в следующем разделе.) С другой стороны, если переход электронов от атома металла на я-орбитали СО затруднен (например, если атом металла имеет полол<ительный заряд), частота колебания СО возрастает в следующих случаях  [c.126]

    В последние годы вопрос о строении уранил-иона ([иОг] ) в простых солях вызвал большой интерес. Если ион линеен, то в инфракрасном спектре активны только колебания >2 и >з, не активные в спектре комбинационного рассеяния. Если же он изогнут, то все колебания активны и в инфракрасном спектре и в спектре комбинационного рассеяния. Таким образом, теоретически можно различить эти две структуры по активности трех фундаментальных колебаний в обоих спектрах. Несмотря на то что многие исследователи отдавали предпочтение линейной структуре [54, 60], в спектре комбинационного рассеяния наблюдались колебания V2 и V3. Для объяснения этой особенности Саттон [61] предположил, что и 2, и vs проявляются в спектре комбинационного рассеяния вследствие поляризации двух связей U=0 и асимметричности поля комплексообразующего аниона. Пеннеман и Джонс [62] исследовали инфракрасные спектры ряда соединений строения Х02(С104)2 и [Х02(СНзС00)з] , где X—Np, U, Pu или Ат. Они обнаружили, что силовая постоянная растяжения связи Х=0 уменьшается в этом Ряду при переходе от Np к Ат. Их данные противоречат результатам рентгенографических [c.113]

    Изогнутые трехатомные молекулы имеют три нормальных колебания, показанных на рис. 6. Колебания активны как в инфракрасном спектре, так и в спектре комбинационного рассеяния независимо от того, является молекула симметричной (ХУг и Хз, Сгг.) или асимметричной (Х 2 и ХХУ, Ся). В табл. 16 и 17 приведены фундаментальные частоты колебаний ряда изогнутых трехатомных молекул. Данные табл. 16 показывают, что у большинства соединений частота антисимметричных валентных колебаний (уз )выше, чем частота симметричных колебаний ( 1). Однако это не так в случае Оз, РгО, [МО ] и НоО (лёд). Частоты колебаний молекулы воды в различных органических растворителях были определены Грейнахером и др. [117]. Например, в спектре раствора воды в диоксане проявляются три полосы 3518, 1638 и 3584 см-. По-видимому, сдвиг частот валентных колебаний в область более низких частот и частоты деформационных колебаний в область более высоких частот обусловлен водородной связью между молекулами воды и диоксана. Спектры воды в насыщенных растворах галогенидов щелочных и щелочноземельных металлов были изучены Уолдроном [93]. Липпинкоттом с сотрудниками [118] обнаружено, что полоса валентных колебаний О—Н льда (примерно 3200 см- ) смещается до 3600 слг при высоких давлениях (9000 ат). Колебательные спектры кристаллизационной воды и координированной или конституционной воды будут рассмотрены в разд. 3 ч. III. [c.118]

    Было замечено (51, 110], что удержание активности в бромистом этилене в газовой фазе гораздо меньше, чем в жидкости. Это обстоятельство было истолковано [72] следуюш,им образом скорости ядер отдачи столь малы, что энергия их теряется не столько при многократных столкновениях с отдельными электронами (как это имеет место в случае быстрых частиц), сколько при столкновениях с атомами как целыми. Эти потери в среднем максимальны при столкновениях с атомами равного веса. В этом случае неактивные атомы, испытавшие столкновение, могут быть выбиты из своих молекул, и их места освободятся для активных атомов отдачи. Вероятность образования соответствующей связи увеличивается, если разбитая молекула окружена клеткой из других молекул, препятствующей активному атому быстро удалиться от места столкновения. В газах это условие не выполняется. Поэтому там замедленные активные атомы все же могут избежать связывания с молекулой и растратить остаток своей энергии в дальнейших столкновениях. Если остаток энергии мал, то эти столкновения могут привести не к диссоциации соответствующих молекул, а к возбуждению колебаний в них. Эти общие идеи химии горячих атомов были использованы также для объяснения различных (в различных условиях) степеней замещения брома (или водорода) в жидких органических соединениях (типа пропилбро-мида) быстрыми атомами радиоброма [36, 124]. [c.104]

    Канна [28] установил, что в молекуле типа XYg (BrFg) бром и один атом фтора расположены на одной стороне от плоскости, содержащей четыре атома фтора. На рис. 55 показано расположение атомов в молекуле типа XYg. Применение тёории групп к этому типу молекул позволяет сделать вывод, что они обладают девятью различными основными формами колебаний, распределенными среди различных видов 3 Лх + 2Bi + 2 2 + ЗЕ. Все колебания активны в спектрах комбинационного рассеяния, в то время как лишь Al VL Е активны в инфракрасной области. [c.225]

    Следует отметить, что в пирамидальных NRa-соединениях вида NRR R" должны были бы существовать ненакладывающиеся зеркальные изображения, т. е. оптически активные изомеры. Однако подобные оптические изомеры никогда не были выделены вследствие того, что молекулы такого типа имеют тип колебания, называемый обычно инверсией, при котором атом азота, колеблясь, проходит сквозь плоскость трех R-rpynn почти так же, как может выворачиваться наизнанку зонтик. Показано, что инверсия не происходит в твердом аммиаке вследствие того, что пеподеленная пара электронов азота принимает участие в образовании водородной связи с други.ми молекулами. Чтобы атом азота проходил сквозь плоскость. [c.157]


Смотреть страницы где упоминается термин Активность колебаний атомов: [c.21]    [c.126]    [c.21]    [c.61]    [c.277]    [c.136]    [c.136]    [c.240]    [c.118]    [c.104]    [c.377]    [c.33]    [c.176]    [c.234]    [c.18]    [c.403]    [c.245]    [c.18]    [c.65]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.109 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Активные колебания



© 2025 chem21.info Реклама на сайте