Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Столкновения дальние

    Рассматривая теоретически обоснованные методы предвидения скоростей химических реакций, следует отметить, что применение в этих целях теории активного комплекса ограничивается в настоящее время простыми реакциями. Она дополняет теорию столкновений, которая дает возможность выяснить ход некоторых реакций между линейными молекулами в жидкой и газовой фазах. Однако во многих случаях скорость реакции, определенная с использованием теории столкновений, слишком велика. Объяснить же ход мономолекулярных реакций, например изомеризации н-бутана или разложения ацетальдегида, по теории столкновений невозможно. При интерпретации хода таких реакций с применением теории активного комплекса предполагается, что механизм активации основан на столкновении молекул и в дальнейшем реакция проходит в два этапа (образование активного комплекса и его распад или перегруппировка), характеризующихся разными скоростями. [c.222]


    При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76]

    По мере увеличения энергии электронного пучка вероятность ионизации при столкновении возрастает и возникают пики с большей интенсивностью. При дальнейшем росте энергии электронов большая ее часть передается образующемуся молекулярному иону. Она может быть настолько большой, что в ионе рвутся связи, и происходит фрагментация частицы. Ускоряющий потенциал бомбардирующего электрона, которого только-только хватает для начала фрагментации, называется потенциалом возникновения фрагментарного иона. Если энергия электрона достаточно высока, то в молекуле может происходить разрьш более чем одной связи. Следующая последовательность реакций описывает процессы с участием гипотетической молекулы В — С — О — Е, когда она бомбардируется электронами  [c.318]

    Опишем процесс массовой кристаллизации из растворов и газовой фазы с учетом контактного вторичного зародышеобразования. Контактное зародышеобразование [30, 33, 38—41] осуществляется посредством маточных кристаллов, если они сталкиваются с другой поверхностью, которой может быть поверхность других кристаллов или стенок кристаллизатора и мешалки. Контактное зародышеобразование вызывает у исследователей значительный интерес, так как вклад его в образование кристаллов наибольший среди всех других видов зародышеобразования [35, 33, 39]. В опубликованных исследованиях для этого типа зародышеобразования контакт достигался или скольжением кристалла вдоль наклонной стеклянной поверхности, погруженной в пересыщенный раствор того же самого вещества [30], или столкновением с мешалкой, или же контрольным ударным контактом между кристаллической затравкой и прутком, сделанными из различных материалов [33, 40]. Существует непосредственная корреляция между числом образовавшихся зародышей и энергией удара при постоянной площади соприкосновения. Авторы работ [33, 42] отмечают сильную зависимость скорости контактного зародышеобразования от пересыщения и предлагают объяснение этого механизма новые центры образуются в жидкой фазе около кристалла или происходят из затравочного кристалла в результате истирания при соударении, при котором от поверхности кристалла откалываются маленькие кусочки, но выживают и получают право на дальнейший рост только те, размер которых больше критического для данного пересыщения. Изучению влияния на контактное зародышеобразование размеров затравочных кристаллов и интенсивности перемешивания посвящены работы [40, 43]. [c.47]


    Рассмотрим кинетику агрегации (коагуляции). Слипание двух частиц может произойти только при их столкновении. Число столкновений между частицами имеет основное значение для скорости агрегации. Однако не каждое столкновение может привести к слипанию. Эффективность столкновений частиц при соударении определяется свойствами их поверхностей и окружающего их раствора. Результаты исследования зависимости скорости агрегации (коагуляции) от концентрации электролита с показывают, что если с мало, то скорость агрегации равна нулю, далее в узком интервале концентраций наблюдается быстрый рост скорости агрегации до некоторой величины, не изменяющейся с дальнейшим увеличением с [27]. [c.87]

    Активные частицы могут расходоваться и на побочные взаимодействия, из которых особенно существенную роль во многих случаях играют столкновения со стенкой сосуда или с содержащимися в сосуде молекулами инертных веществ. При таких столкновениях активные молекулы большей частью те ряют свою избыточную энергию и становятся неактивными при этом происходит, как принято говорить, обрыв цепи. Очевидно, каждый такой обрыв уменьшает возможность дальнейшего развития реакции, и [c.485]

    Первоначально адиабатическое приближение было сформулировано для разделения движения электронов и ядер в устойчивых молекулах, что позволило ввести понятие потенциальной энергии ядер в молекуле [1981. В этом приближении оказалось возможным рассматривать электронные состояния молекул независимо от колебательно-вращательных состояний. Затем адиабатическое приближение было обобщено на задачи о молекулярных столкновениях, что позволило трактовать различные элементарные процессы в терминах движения изображающей точки по поверхности потенциальной энергии (см. 10). При дальнейшем развитии теории 01 азалось, что адиабатическое приближение может быть успешно применено не только для разделения состояний электронов и ядер, но и для разделения различных [c.52]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]

    Не все нейтроны, направляющиеся к dA, в действительности достигают dA. Некоторые из них на пути испытывают дальнейшие столкновения и либо поглощаются, либо рассеиваются в новых направлениях, которые не проходят через dA. Оценим число этих нейтронов, предполагая, что в основном отклонения вызываются рассеивающим столкновениями, и пренебрегая эффектом поглощения нейтронов. [c.121]

    Метод переходного состояния или активированного комплекса безусловно является дальнейшим развитием метода столкновений и вообще более общим и строгим решением [c.169]

    На основании рассчитанных значений стерических факторов по величинам табл. 49, энергий активации и чисел столкновений на одну частицу 2 были вычислены константы скорости рекомбинации различных алкильных радикалов при различных температурах, помещенные в табл. 50. Величина константы скорости рекомбинации уменьшается с увеличением температуры и усложнением радикалов. Однако понижение значения константы рекомбинации с увеличением моль-веса радикала достигает предела и с дальнейшим удлинением радикала практически остается неизменным. Это обусловлено поведением стерического фактора, который уменьшается с увеличением температуры и удлинением радикалов до некоторой величины последних. [c.261]


    Наблюдаемые явления интерпретируются следующим образом распад исходного молекулярного иона, образующегося после столкновения с электроном, происходит не сразу до всех осколочных ионов, а постадийно. Изменение темпера-турного коэффициента выхода ионов С Н2п+1 при снижении энергии электронов можно объяснить уменьшением глубины распада исходного молекулярного иона при низких энергиях ионы С Н2п+1 имеют меньше возможных путей дальнейшего распада. [c.21]

    Таким образом, при описании фазовых переходов в газовых смесях необходим учет энергии взаимодействия между молекулами пара и конденсата при выполнении условия насыщенности конденсирующейся смеси и проявления в ней ван-дер-вааль-совых сил и водородных связей. Уравнения состояния, построенные с учетом ассоциации, описывают процессы в газах с большой точностью. Это объясняется тем, что присутствие молекулярных комплексов является одной из причин отклонения в поведении реальных газов по сравнению с идеальным газом. При сложных столкновениях может случиться, что молекулы после соударения не смогут преодолеть силы притяжения и будут двигаться совместно. Образующиеся комплексы могут быть достаточно устойчивыми и продолжают дальнейшее движение уже за счет собственной кинетической энергии. [c.101]

    Число соударений между частицами имеет фундаментальное значение для скорости коагуляции, поскольку слипание двух частиц может произойти, если только они столкнутся. Однако не всякое соударение эффективно, т. е. не при каждом столкновении частицы непременно слипаются. Эффективность соударений между ними определяется прежде всего свойствами их поверхности. Даже малые количества адсорбирующихся веществ, добавленные к раствору, могут сильно изменить эти свойства, а следовательно, и эффективность соударений. Последняя может возрасти до такой степени, что все или почти все соударения приводят к слипанию, и тогда скорость коагуляции, определяющаяся уже только частотой соударений, становится независящей от свойств поверхности и не изменяется при дальнейшем добавлении адсорбирующихся веществ. Такая коагуляция называется быстрой. Когда же не все соударения эффективны, мы говорим о медленной коагуляции. Ее скорость определяется как числом соударений, так и их эффективностью. Очевидно, этот случай сложнее, чем первый. [c.193]

    Обрыв цепи может произойти в результате различных химических превращений два макрорадикала при столкновении друг с другом могут соединиться с образованием макромолекулы, которая не способна участвовать в дальнейших превращениях  [c.202]

    Линдеманн (1922 г.) применил теорию столкновений к моно-молекулярным реакциям. Он предположил, что такие реакции также осуш,ествляются по бимолекулярному механизму, т. е. элементарному акту реакции предшествует активация молекулы в результате столкновения. Активные молекулы имеют только две возможности дальнейшего превращения либо дезактивацию при следующем столкновении, либо превращение в продукт реакции [c.171]

    Если молекула А приближается к молекуле ВС, связь в которой должна быть разорвана в ходе реакции, то сначала ослабляется связь В—С, причем тем заметнее, чем больше сближаются А и В. Энергетическая характеристика этого процесса находит свое выражение в энергии активации. В активированном комплексе (А - - В- - С) связи между тремя частицами ослаблены приблизительно в равной мере, и, наконец, при дальнейшем сближении А с В частица С удаляется из активированного комплекса. На основе теории Эйринга можно также дать качественное объяснение фактора столкновения ко. Скорость реакции определяется распадом активированного комплекса на продукты реакции и пропорциональна частоте колебаний активированного комплекса вдоль координаты реакции  [c.173]

    Как известно, энергия выделяется не только при делении ядер, но и при их синтезе, т. е. при слиянии более легких ядер в более тяжелые. Задача в этом случае состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно малые расстояния, где между ними начинают действовать ядерные силы притяжения. Так, например, если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия, то при этом выделилась бы огромная энергия. С помощью нагрева до высоких температур в результате обычных столкновений ядра могут сблизиться на столь малые расстояния, что ядерные силы вступят в действие и произойдет синтез. Начавшись, процесс синтеза, как показывают расчеты, может дать такое количество теплоты, которое нужно для поддержания высокой температуры, необходимой для дальнейших слияний ядер, т. е. процесс будет идти непрерывно. При этом получается такой мощный источник тепловой энергии, что ее количество можно контролировать только количеством необходимого материала. В этом и состоит сущность проведения управляемой термоядерной реакции синтеза. [c.13]

    Переход совершается очень резко при прохождении через нижний предел. По достижении верхнего предела разветвление цепей снова затрудняется вследствие обрыва в объеме. Этот обрыв происходит в результате тройных столкновений или соударений с молекулами загрязняющих примесей, концентрация которых растет с давлением. Тогда наблюдаемая скорость процесса зависит от числа тройных соударений. Дальнейшее повышение давления постепенно увеличивает скорость реакции вплоть до наступления теплового взрыва. Сжатие имеет адиабатический характер, поэтому температура повышается, приводит к сильному увеличению скорости реакции и еще большему выделению тепла. В результате наступает тепловой взрыв. [c.354]

    Расходимость обусловленной дальними столкновениями компоненты (Дрх) означает, что в кулоновском газе на движение частицы оказывают значительно большее влияние дальние коллективные взаимодействия по сравнению со столкновениями в ближней зоне. При выводе уравнения Больцмана методом Грэда (см. разд. 4.36)) для N = 2 мы должны были бы сохранить интеграл столкновений дальней зоны, а столкновительный член ближней зоны опустить. Интеграл столкновений ближней зоны дает уравнение Больцмана. [c.240]

    Представление о молекуле как о точечной частице, лишенной размеров, нельзя использовать для описания столкновений между молекулами. Простейшей из существующих моделей молекул, пoзвoляюD eй это сделать, является модель жесткого шара. В дальнейшем мы и будем пользоваться этой моделью. [c.138]

    Возбуждение, или ионизация, атомов при столкновении их с электронами зависит от энергии или скорости последних. В большинстве случаев вероятность возбуждения молекулы или атома до соответствующего уровня знергии возрастает с возрастанием скорости электронов до определенного значения, а при дальнейшем увеличении скорости электронов вероятность возбуждения падает. Вероятностью возбуждения называется отношение числа столкновений электрона с атомом или молекулой, приводящих к возбуждению, к общему числу столкновений. Кривые, характеризующие зависимость вероятности возбуждения от скорости движения электронов, называются кривыми функции возбуждения. Положение максимума на кривой функции возбуждения зависит от мультиплетности исходного и возбужденного уровней (терм). При возбуждении термов той же мультиплетности, что и исходный терм атома, функция возбуждения нарастает довольно медленно, достигая максимального значения при очень больших скоростях электронов. Скорость электронов в этих случаях обычно в несколько раз превышает минимальное значение скорости электрона, при которой возможно возбуждение атома. Если же в результате соударения с электроном возбуждается терм иной мультиплетности, чем исходный, то функция возбуждения быстро достигает максимума и затем так же быстро спадает (рис. И, 8). Функция возбуждения для двух близких линий ртути показана на рис. И, 8. При возбуждении одной линии 2655 к, атом ртути переходит из нормального состояния в состояние При [c.75]

    В дальнейшем для простоты мы ограничимся обсул д иием реакции термического распада молекул АВ в тепловом резервуаре состоят,ем иа молекул М, пренебрегая столкновениями молекул АВ между собой, а также обратной реакцией. Однако по.яученные результаты допускают обобщение и на тот случай, когда учитываются столкновения между молекулами АВ. [c.106]

    Исследования зависимости масс-спектров от кинетичес кой энергии электронов показали, что относительные вероятности обра,чова)[ИЯ осповпых ионов в масс-спектре сравнительно слабо зависят от кинетической энергии в диапазоне от нескольких десятков электронвольт до десятков килоэлектронвольт. Обычные масс-спектры получены при давлениях 10 - тср и ниже. При использовании этих спектров для предсказания путей радиационно-химических процессов, происходящих при значительно боле( гысоких давлениях, существенно соотпошение между временем диссоциации в временем столкновения иона с молекулой. Если распад происходит в момент столкновения, то в дальнейшие реакции будут вступать те самые осколочные ионы (и, конечно, нейтральные осколки), которые известны из масс снег тральных данных. В противном случае в реакцию будет вступать возбужденный, еще не успевший распасться молекулярный поп. [c.186]

    Теория упругих столкновений ионов с молекулами при малых энергиях была разработана ощо в 1905 г. Ланягевеном. Оказалось, что из-за дально-действующих поляризационных сил между ионом и наведенным диполем молекулы при некотором параметре удара, значительно превосходящим при ма.тых кинетических энергиях газокинетические 1)адиусы соответствующих нейтральных частиц, происходит захват иона на орбиту, приводящую к тесному сближению частиц. Сечение такого поляризационного захвата определяется формулой Ланжевена [c.192]

    V V, отвечающую пересечению касательной к детонациопной адиабате с ударной адиабатной исходной смеси (см. рис. 69). Это сжатие происходит в результате нескольких столкновений каждой молекулы так, что реакция не успевает еще начаться Далее, в результате реакции давление и объем газа меняются вдоль касательной по направлению от точки р и к точке К, в которой необратиммо химические реакции закапчиваются. Дальнейшее расширение газа происходит изознтропически в нестационарной волне разрежения. [c.242]

    Наконец, в гетерогенной системе возрастает коэффициент размножения на быстрых нейтронах. Объяснение этому весьма простое. Так как все деления происходят в областях с высокой нлотиостью горючего (часто это чистый металл), то образующиеся высокоэнергетические нейтроны деления имеют большую вероятность столкнуться с ядрами горючего при движении к внешней границе и вызвать деление на быстрых нейтронах прежде, чем нейтрон вылетит из блока. Кроме того, каждое деление на быстрых нейтронах может произвести дополнительные нейтроны, которые, в свою очередь, способны вызвать дальнейшее деление на быстрых нейтронах таким образом, может проявляться и каскадный эффект. Неунругие столкновения, которые испытывают быстрые нейтроны, снижают рост коэффициента размножения на быстрых нейтронах. Процесс неуиругого рассеяния сильно конкурирует с процессом деления, однако суммарный эффект проявляется обычно в небольшом выигрыше в числе быстрых нейтронов. [c.476]

    Интегралы столкновений для потенциальной ямы впервые были вычислены Холлераном и Халбертом [167]. В дальнейшем Враш и Лоуренс [167а] выполнили более точные расчеты для больших значений параметров. [c.243]

    Для выбора задаваемых при расчетах величин начального расстояния и максимального прицельного параметра проводились предварительные расчеты и оценки, которые показали, что для Д) расстояние, равное 6 А, является достаточным для начала отсчета в исследуемых системах. Величина энергии, передаваемой за одно столкновение, сильно зависит от значения максимального прицельного параметра бтах- В [53] показано, что при /Ьтах = 6 А величина < AE > достаточно мала. Дальнейшее увеличение f max при 6 = / тах приводит к очень маленьким передачам энергии, регист- [c.69]

    По мере повышения в остатке концентрации асфальто-смолистых веществ он переходит в пластическое состояние, при котором выделяющиеся пары вызывают его вспучивание. Пластическая масса представляет собой сложную коллоидную систему, содержащую газовую, жидкую и твердую фазы. Твердая фаза образуется в результате столкновения осколков распавши.чся молекул асфальто-смолисты.х веществ при их достаточной концентрации в жидкой фазе. Возникшие коксовые зародыши в дальнейшем растут, превращаясь в макроскопические коксовые частицы — агрегаты конденсированных ароматических углеводородов. На поверхности твердых частиц карбоидов адсорбируются осколки распавшихся сложных молекул, при помощи которых в дальнейшем разрозненные частицы карбоидов сшиваются в прочную сплошную массу. Выде. яю-щиеся газы встречают при выходе тем большее сопротивление, чем выше вязкость пластической массы соответственно с этим в слое развивается давление. Оно и является той силой, которая вызывает вспенивание, а при определенных условиях может и выбросить значительную часть жидкой загрузки из реактора в колонну. [c.94]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Для того чтобы рассчитать число столкновений частиц, необходимо принять, что все оии приводят к агрегации. Однако это возможно только тогда, когда энергия соударений частиц превышает среднюю энергию, необходимую для их слипания A , называемую потенциальным барьером. Эффективность соударений пропорциональна фактору Больцмана. Проводя дальнейшую ана-лоппо с теорией активных столкновении, необходимо учесть стери-чсский множитель Р, учитывающий благоприятные пространствен ные расположеиня частиц при столкновении, их форму, размеры, [c.280]

    В отличие от твердых и жидких материалов газы и пары могут находиться в столь разреженном состоянии, что движение заряженных частиц под действием наложенной разности потенциалов происходит практически без столкновений с другими частицами. В этих условиях подводимая электрическая энергия увеличивает кинетическую энергию заряженных частиц, которая может быть в дальнейшем превращена в тепло при соударении с материалами, подвергающимися технологической обработке. Этот способ превращения электрической энергии в тепло с промежуточным получением весьма высокой кинетической энергии заряженных частиц особенно выгоден при использовании электронов — частиц с минимальной массой, разгоняемых в вакууме до скоростей порядка десятых долей скорости света. Соответствующее устройство, схематически показанное на рис. 62, получило название электронной пушки, фо единст- [c.203]

    Для процесса полимеризации хлористого винила характерны реакции передачи цепи через мономер и полимер. При передаче цепи через полимер образуются разветвленные малоподвижные макрорадикалы с увеличенной длительностью жизни. Реакция дальнейшей полимеризации, инициируемая такими радикалами, протекает с ускорением (вследствие уменьн1ения скорости реакции обрыва). Таким образом, снижению скорости обрыва роста макрорадикалов поливинилхлоридг путем соединения их друг с другом препятствует высокая вязкость среды, в которой протекает процесс полимеризации (набухшие в мономера полимерные частицы), и малая вероятность столкновения двух растущих макрорадикалов. Малая скорость обрыва приводит к увеличению общей скорости полимеризации. По мере полимеризации мономера в набухших полимерных частицах концентрация его в полимере постепенно снижается и оЗщая скорость полимеризации уменьшается. [c.262]

    Для сложных реакций характерным является ход реакции через промежуточные простые этапы (цепной механизм), который в дальнейшем будет рассмотрен более подробно. Стехиометрическое соотношение для сложной реакции, например для тримолекулярной реакции 2На + О2 = 2Н2О, отражает только материальный баланс совокупности простых промежуточных реакций. Протекание простых реакций, например со столкновением двух молекул, реально. Однако вероятность тройного столкновения молекул невелика. Кроме того, сложные прямые реакции, как правило, требуют больших энергетических затрат на разрушение исходных молекул — энергии активации для них велики. Поэтому реакция протекает через промежуточные этапы, в которых часто принимают участие активные центры — отдельные атомы, радикалы, возбужденные молекулы. Для реакций с активными центрами значения энергии активации меньше. Для простых реакций, слагающих сложную, применимы приведенные зависимости для скорости реакции. Однако и для многих сложных реакций формально можно записать, что скорость реакции пропорциональна произведению концентраций в некоторых степенях, необязательно совпадающих со стехиометрическими коэффициентами. (Совпадение было бы, если бы протекание реакции строго соответствовало стехиометрическому уравнению и удовлетворяло теории соударений). Коэффициенты и степени подбираются так, чтобы удовлетворить опытным данным (если это возможно). Сумма показателей степени при концентрациях носит название порядка реакции. Константа скорости реакции для такого уравнения, которую можно назвать кажущейся или видимой, обычно все же с той или иной степенью точности удовлетворяет закону Аррениуса. [c.99]

    Совершенно иная динамика изменения мезофазных превращений при дальнейшей карбонизации. С увеличением изотермической выдержки рост сфер происходит не только за счет изотрохшой фазы, но и за счет коалесценции уже образовавшихся сфер, причем рост сфер за счет коалесценции является превалирующим. Как показали наблвдения, слияние частиц происходит при столкновении, и этот процесс напоминает слияние дв рс капель вязкой изотропной жидкости. Движению сфер способствует движение потока изотропной жидкости и движение газовых пузырьков, выделяющихся в процессе деструкции. слияние происходит следующим образом в первый момент времени сферические частицы контактируют только в одной точке, затем контактная точка развивается в контактный перешеек, растущий с течением времени, при этом происходит сближение центров сфер. Аналогичный процесс описывается в работе [ 7 J. Конечно, сферы мезофазы - это не изотропные жидкие капли и процесс их ко-алесценции определяется не только вязкостными свойствами, но и определенной внутренней организацией, присущей жидкокристаллическому состоянию [ 8 .  [c.51]

    Дальнейшее повышение температуры способствует синтезу ядер бо.аьшей массы. Накопившиеся ядра гелия при столкновении образуют ядра бериллия, а при столкновении с последними — ядра углерода  [c.316]


Смотреть страницы где упоминается термин Столкновения дальние: [c.132]    [c.151]    [c.377]    [c.102]    [c.561]    [c.568]    [c.37]    [c.65]    [c.510]    [c.374]    [c.560]    [c.561]    [c.568]   
Введение в теорию кинетических уравнений (1974) -- [ c.239 , c.240 , c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Столкновения



© 2025 chem21.info Реклама на сайте