Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вакансии тепловые

    Активационная теория самодиффузии в плотных кристаллических и аморфных средах исходит из положения, что в кристаллической решетке вследствие теплового движения происходит непрерывное перераспределение дефектов структуры (вакансий). Движение вакансий эквивалентно миграции частиц. Перенос массы возможен при одновременном соблюдении двух условий возникновении вакансии и достижении достаточно большой энергии колебаний частицы около положения равновесия. Если энергия колебаний велика или размеры частицы незначительны (водород, азот, углерод) возможна их миграция в междоузлиях решетки, что имеет место в металлических мембранах. В твердых растворах замешения движение частиц может происходить не только за счет вакансий, но и в результате обмена с соседними частицами. В матрицах аморфной структуры роль вакансий играют микрополости или дырки . [c.77]


    Ограничимся одним классическим примером. Хорошо известно, что монокристалл в буквальном смысле этого понятия — фикция это нечто бесконечное в трех направлениях и лишенное дефектов. Реальный кристалл, помимо того что его размеры всегда ограничены, обязательно содержит дефекты (вакансии, или дырки, атомы или ионы в междоузлиях и т. п.), порожденные тепловым движением. В свою очередь, эти дефекты подвижны — уже в обычном смысле слова, — и тепловое движение в реальных кристаллах с равным успехом можно описывать в терминах движения атомов (молекул, ионов) или же дефектов [18, гл. I]. При любой отличной от абсолютного нуля температуре дефектный кристалл равновесен это доказывается тем, что для исправления его решетки, т. е. ликвидации дырок, к нему необходимо приложить огромное внешнее давление. [c.25]

    Вероятность встречи перемещающегося атома с вакансией в единицу времени пропорциональна количеству дислоцированных атомов и вакансий в единице объема. Но поскольку возникновение тех или иных дефектов обусловлено тепловым движением, их количество увеличивается с повышением температуры. [c.208]

    В то же время структурные рентгенографические измерения указывают, что расстояние между противоположно заряженными ионами в расплаве остается практически таким же, как и в твердом веществе, или даже несколько уменьшается. Эти данные могут быть объяснены на основе предположения о наличии пустот, или дырок, в структуре ионного расплава. Сравнение структуры кристалла и соответствующей жидкости (рис. 27, й и б) показывает, что в жидкости сохраняется лишь ближний порядок расположения ионов, тогда как уже вторая координационная оболочка в значительной степени нарушается. Дырки в расплаве непрерывно перемещаются, образуются и исчезают, увеличиваются в размере или становятся небольшими. Средний размер радиуса дырок близок к среднему ионному радиусу. Дырки образуются вследствие теплового движения компонентов жидкости, а также возникновения вакансий при движении ионов из объема к поверхности при плавлении вещества. Распределение дырок играет важную роль в процессах переноса в расплавах. [c.89]

    Точечные дефекты кристаллической решетки — атомы внедрения и вакансии (лишний атом или отсутствие атома в узле решетки). Они могут возникнуть под действием тепловых колебаний. С ними связана дополнительная потенциальна 1 анергия. Искажения перемещаются по решетке. Если атом внедрения встречается с вакансией, дефект решетки аннигилирует, выделяя энергию порядка 10 Дж в виде упругого импульса. Сигналы такого уровня обычно не регистрируются. [c.172]

    Для кристаллов с большой концентрацией вакансий или статистическим заполнением одной позиции атомами разного сорта значения, получаемые при обработке экспериментальных данных, являются эффективным параметром, учитывающим не только тепловые колебания, но и изменение fi из-за изменения заселенности. [c.185]


    При образовании дефекта по Френкелю ионы, испытывающие время от времени большие смещения под влиянием тепловых флуктуаций, покидают свои правильные положения в узлах и переходят в междоузлие, результатом чего является возникновение вакансии в решетке. Междоузельный ион и вакансия теряют связь друг с другом и свободно движутся в кристалле первый по междоузлиям, вторая по своей подрешетке. При встрече междоузельные ионы и вакансии могут рекомбинировать друг с другом. [c.191]

    В отличие от идеального, реальный кристалл имеет искаженную кристаллическую решетку. Тепловые колебания образующих ее частиц (молекул, атомов, ионов) приводят к появлению в ней дефектов. Даже при очень высоких температурах средняя амплитуда колебаний невелика, но вследствие флуктуации энергии амплитуда некоторых частиц оказывается настолько большой, что они отрываются от узлов решетки и переходят в междуузлия. Это вызывает появление в решетке точечных дефектов — внедренных атомов и вакансий, вокруг которых решетка искажается на значительные расстояния. [c.341]

    Дефектом строения кристаллов считается любое нарушение периодичности расположения частиц решетки, нарушение стехиометриче-ского состава, примеси, отсутствие частиц в отдельных узлах решетки (вакансии), смещение их из узловых положений в междоузлия, трещины, поры и т. д. Дефекты возникают в зависимости от условий образования кристалла, а также под влиянием тепловых, механических, оптических и других воздействий на кристалл. [c.135]

    Плавление—переход кристаллического минерала в жидкое состояние — осуществляется в результате увеличения внутренней энергии кристалла. При повышении температуры минерала возрастают тепловое колебание атомов и их диффузия в кристаллическом пространстве, а также число дефектов в решетке (вакансий, или дырок). В итоге при некотором значении Т кристаллическая структура твердого тела распадается на легкоподвижные частицы, соизмеримые с объемом элементарной ячейки. Вещество переходит в жидкое состояние, отличающееся высокой пластичностью. Подавляющая часть кристаллов плавится с небольшим увеличением объема (на 2—6%), что связано с разрыхлением структуры по границам между упорядоченными областями. Некоторые кристаллы (лед, висмут, германий) плавятся с уменьшением объема. Это обусловлено изменением структуры вещества в жидком состоянии. [c.112]

    Отметим принципиальную особенность вывода уравнений реологии (3.12.16) и (3.12.19). Он не содержит прямых указаний на то, что сопротивление деформированию ПКС является вязким. Более того, по форме выражение (3.12.17) напоминает уравнение состояния идеального газа. Фигурирующая в нем величина пкТ равна, как известно, давлению газа, а величина Р рассматривалась как сила упругого сопротивления, поскольку ее действие вызывало изменение потенциальной энергии частицы в узле решетки. Для сравнения отметим, что вывод формулы Эйнштейна и ее модификаций с самого начала предполагал вязкий тип напряжений. Это выразилось в том, что сопротивление деформированию суспензии определялось как сопротивление вязкой среды, усиленное благодаря особенностям ее течения в присутствии недеформируемой фазы. Примем во внимание, что силы вязкого сопротивления — это силы, обусловленные потерями энергии, подводимой к системе при ее деформировании. Для доказательства того, что сопротивление деформированию является вязким, необходимо выяснить, где и как при деформировании происходит диссипация энергии — ее превращение в теплоту. Ответ содержится в выражении для работы зРИ упомянутой силы. Согласно этому выражению, деформирующая сила совершает работу, идущую на увеличение потенциальной энергии частицы, только на первой половине (х/2) полного пути Л частицы из одного равновесного положения в другое. В силу симметричного вида зависимости потенциальной энергии частицы от ее смещения из положения равновесия на второй половине п>ти сила сопротивления меняет знак на обратный. Следовательно, на второй стадии движения частица не может оказывать сопротивления деформированию. По этой причине в выражении для работы и фигурирует только половина полного пути. Движение частицы на втором отрезке пути идет под действием внутренних сил деформированной решетки, которые не совершают никакой полезной работы, т. е. полученная на первой половине пути энергия теряется. Механизм превращения этой энергии в теплоту не имеет принципиального значения. Можно, например, считать, что она превращается в энергию упругих колебаний частицы возле положения равновесия, которые постепенно передаются всем частицам, превращаясь, таким образом, в их тепловое движение. В таком варианте диссипации не требуется наличия вязкой дисперсионной среды, и поэтому теория применима к описанию вязкостных свойств обычных жидкостей, в которых дисперсионной средой является ничто — межмолекулярные пустоты. Для суспензий более подходит схема передачи энергии вязкой дисперсионной среде при самопроизвольном движении в ней частицы на второй части пути. Это важно при вычислении времени релаксации вакансий и величины потенциального барьера движения частиц в решетке, величина которого определяет частоту переходов частиц в соседний узел. [c.694]


    При обычных температурах концентрация точечных тепловых дефектов сравнительно невелика, но при высоких температурах достигает существенных значений. Например, для золота концентрация вакансий при обычных температурах достигает 10 (т. е. одна вакансия на 10 атомов), а вблизи температуры плавления (1063°С) она увеличивается до 10 (т. е. одна вакансия на 10 000 атомов). [c.85]

    Дефекты по Френкелю в чистом виде, т. е. когда число вакансий равно числу межузельных атомов, могут иметь место только в кристаллах стехиометрического состава, в реальных кристаллах с координационными решетками этого, как правило, не наблюдается. Дефекты по Шоттки могут возникать за счет образования как катионных, так и анионных вакансий. В ионных кристаллах часто оказывается энергетически более выгодным образование пар вакансий, т. е. образование вакантного узла на месте катиона и аниона, так как при этом легче сохраняется электронейтральность поверхности кристалла и решетки в целом. Однако в принципе это не обязательно и в реальных кристаллах равенство тепловых катионных и анионных вакансий может и не соблюдаться. [c.86]

    Точечные атомные дефекты в кристаллической решетке обладают определенными свойствами. Например, вакансии в ионных кристаллах выступают носителями заряда, причем катионная вакансия несет отрицательный, а анионная — положительный заряд. Конечно, собственно заряд в вакансии не содержится, но возникающее вокруг нее электрическое поле такое же, какое возникло бы, если бы в вакансии располагался заряд, по значению равный, а по знаку противоположный заряду иона, который покинул данный узел решетки. Любые точечные дефекты обладают способностью к миграции (диффузии) в кристаллической решетке в результате тепловых флуктуаций или приложения к кристаллу внешнего электрического поля. Например, катион в междоузлии может переходить при соответствующем возбуждении в соседнее междоузлие, вакансии мигрируют за счет перемещения соседнего иона в вакантный узел, т. е. путем последовательного обмена позициями между ионами и вакансиями (при таком так называемом вакансионном механизме диффузии перемещение вакансий в одном направлении эквивалентно перемещению ионов в другом). Точечные дефекты могут взаимодействовать друг с другом, образуя в простейшем случае ассоциаты—дефекты, занимающие соседние кристаллографические позиции. Например, в решетке могут возникнуть связанные группы вакансий (кластеры). Связанные пары вакансий способны диффундировать быстрее, чем изолированные вакансии, а тройные кластеры еще быстрее. [c.87]

    Из сказанного ясно, что движение дислокаций переползанием связано с массопереносом вещества — диффузией атомов (и соответственно вакансий) в решетке. Это требует дополнительной энергии активации, поэтому движение переползанием является более трудным, чем движение скольжения, осуществляется более медленно и только при сравнительно высоких температурах, обеспечивающих энергичное тепловое движение частиц. Из описанного механизма движения дислокаций переползанием следует, что подобное движение сопровождается образованием вакансий или, наоборот, их исчезновением, другими словами, дислокации могут являться источником или ловушкой ( стоком ) вакансий. [c.95]

    Образованию вакансий, в первую очередь, способствуют тепловые колебания атомов. Вакансии возникают также при воздействии на металл механических напряжений, радиоактивного излучения и др. При образовании вакансий кристаллическая решетка искажается, и ближайшие к ней соседние атомы смещаются от своего равновесного положения. Например, для металлов с гранецентрированной [c.24]

    На практике в большинстве случаев наблюдается наложение и медленный рост дефектов в материале при напряжениях значительно меньше критического напряжения, оцениваемого по уравнению (1У.2). В результате наблюдается зависимость разрушающего напряжения от продолжительности действия сил. При этом под дефектами следует понимать не только микро- и субмикротрещины, но и прочие неоднородности структуры материала, приводящие к местным концентрациям напряжений или упругой энергии (полости, включения, вакансии, нарушения кристаллической и химической структуры, а также энергетические неоднородности, возникающие в результате флуктуации теплового движения атомов и молекул и др.) [8, с. 268]. Эти обстоятельства предопределяют кинетический характер прочности при температурах, достаточно далеких от абсолютного нуля. [c.112]

    Точечлые дефекты возникают по разным причинам, в том числе и в результате теплового движения частиц. Вакансии (а также дефекты внедрения) могут перемешаться по кристаллу — в пустоту попадает соседний атом, его место освобождается и т. д. Перемещением вакансий объясняется диффузия в твердых телах и ионная проводимость кристаллов солей и оксидов, которые становятся заметными при высоких температурах. [c.152]

    Впервые вопрос о причинах ионной проводимости твердых тел был рассмотрен Я. И. Френкелем (1926). Он предположил, что вследствие тепловых флуктуаций ионы могут приобрести энергию, достаточную для того, чтобы покинуть нормальные положения в узлах решетки и перейти ( испариться ) в межузельные положения. Межузельные ионы способны перескакивать из одного межузельного положения в другое. Оставшиеся вакантными узлы решетки также совершают перескоки, поскольку соседние ионы могут занимать эти вакансии, освобождая узлы решетки. В ходе перемещений межузельные ионы и вакансии могут встречаться и рекомбинировать. При наложении на кристалл электрического поля межузельные ионы чаще перескакивают в направлении поля, чем в обратном направлении, т. е. через кристалл протекает ток. Число межузельных ионов увеличивается с температурой. Межузельные ионы легче образуются в решетках с большими пустотами, а ионы малого размера легче переходят в межузельные положения, чем большие ионы. Комбинация вакансии и иона в межузлии называется дефектом по Френкелю. Концентрация этих дефектов пропорциональна ехр (—Egj2kT), где Eg — энергия, -необходимая для перевода иона из узла решетки в межузлие. Классическим примером соединения с дефектами по Френкелю может служить хлорид серебра. Сравнительно небольшие по размеру ионы серебра переходят в межузельные положения и обусловливают чисто катионную проводимость кристаллов Ag l. [c.106]

    Дефекты по Френкелю — не единственный тип дефектов в ионных кристаллах. В. Шоттки (1935) показал, что в реальном кристалле могут отсутствовать межузельные ионы и в то же время часть узлов решетки оказывается незанятой. Так как в целом должен соблюдаться баланс электрических зарядов, то каждой катионной вакансии соответствует анионная вакансия. Комбинацию катионной и анионной вакансий в ионном кристалле называют дефектом по Шоттки. Дефекты по Шоттки образуются, когда в результате тепловых флуктуаций ионы выходят из узлов решетки на поверхность кристалла, образуя внутри его вакансии. Процесс протекания тока в таком кристалле можно рассматривать как последовательное осуществление перехода ионов кристаллической решетки в соседнюю вакансию. Подвижности катионных и анионных вакансий в общем случае различны, что и определяет преимущёственную катионную или анионную проводимость. Типичный пример соединений с дефектами по Шоттки — галогениды щелочных металлов. [c.106]

    Точечные дефекты возникают по разным причинам, в том чнсле и в результате теплового движения частиц. Вакансии (а также дефекты внедрения) могут перемещаться ио кристаллу — в пустоту попадает [c.263]

    Малые размеры ОКР вызывают уширение линий, но это не единственная причина уширения, так как похожий эффект может быть вызван колебаниями в величинах парамет зов элементарных ячеек в пределах образца (определяется экспериментально среднее значение). Такая не вполне строгая периодичность связана с образованием вакансий или внедрением избыточных атомов. Если она не вызывает изменения в дальнем порядке, то влияние этих дефектов (микроискажений, микронапряжений) также отражается в ширине линий. Наконец, возможно статистическое смещение атомов из равновесных положений. Их влияние на дифракционную картину напоминает влияние тепловых колебаний интенсивность линий уменьшается, а диффузное рассеяние ( фон ) увеличивается. Перемещение атомов из неравновесных положений в равновесные может требовать энергии активации и не будет самопроизвольно происходить при низких температурах (например, при 25 С). Атомы колеблются около неравновесных положений, но амплитуда колебаний недостаточна для смещения их в равновесные. Поэтому такие дефек- [c.229]

    Нарушения идеальной структуры даже в самых мелких кристалликах возникают, главным образом, в результате тепловых колебаний, которые совершают частицы, находящиеся в узлах решетки. При таких колебаниях они смещаются из положений равновесия довольно значительно, особенно при высоких температурах. В некоторых случаях колебания столь велики, что частицы выходят из узлов решетки в междуузлия — так называемые дефекты Френкеля (рис. XIII.За). В других случаях частицы вовсе покидают кристалл (например, испаряются или выходят на поверхность), тогда в решетке остаются пустоты или вакансии, которые называются дефектами Шоттки (рис. XIII.36). И те и другие дефекты участвуют в тепловом движении и поэтому перемещаются внутри кристалла. Естественно, что присутствие дефектов облегчает диффузию примесей в кристаллах. Атомы примесей совершают скачки из одного узла решетки в другой. Такие скачки облегчаются, если возникают промежуточные незанятые узлы или между-узельные вакансии. [c.166]

    Дефекты по Френкелю состоят в наличии вакансий и междоузель-ных ионов в эквивалентных соотношениях. Механизм образования дефекта по Френкелю заключается в том, что ионы, испытывающие время от времени большие смещения под влиянием тепловых флуктуаций, покидают свои нормальные положения в узлах и переходят в междоузлие, результатом чего является возникновение вакансии ( дырки ) в решетке (рис. 49, а). Междоузельный ион движется в кристалле, переходя из одного междоузельного положения в другое ва- -кансии также подвижны. При встрече междоузельные ионы и вакансии рекомбинируют друг с другом. Между процессом образования вакансий и процессом рекомбинации устанавливается динамическое равновесие. Равновесная концентрация вакансий и междоузельных ионов в кристалле зависит от температуры (по условию электронейтральности системы концентрации вакансий и междоузельных ионов при любой температуре одинаковы). Как правило, дефекты по Френкелю об- [c.333]

    Если температура жидкости выше таковой в паре (трубке), то начнется перенос жидкости через перегородку, то есть осуществится своеобразный тепловой насос. Расчет показывает, что в случае воды при разнице температур в 100°С, процесс подъема прекратится, когда высота жидкости в трубке будет составлять несколько километров. Таким образом, этот тепловой насос способен поднимать жидкость на высоту, измеряемую в километрах. При термодиффузии градиент температуры вызывает перенос примеси. Величина такого переноса должна зависеть от механизма его осуществления. В простой теории Виртца, описывающей вакансионный механизм переноса, учитывается, что при совершении элементарного акта блуждания атом пёреходит от одной температуры к другой. При этом энергию, необходимую для преодоления активационного барьера, частица получает в начале блуждания и отдает в конце. Подобный переход возможен, если вакансия образуется в конце пути и исчезает в начале. В итоге тепло переноса должно составлять разницу энергий, равную высоте потенциального барьера и энергия образования вакансии. [c.539]

    Важным свойством изотопа В является способность ядер ег атомов захватывать замедленные тепловые нейтроны, служащие bos будителями и распространителями цепной ядерной реакции. С по мощью В можно регулировать ход цепной реакции и, если нужнс гасить ее. Способностью В активно захватывать нейтроны (благо даря наличию в ядре атома бора вакансии для нейтрона) пользуют ся и для защиты от нейтронного излучения. [c.370]

    Основное предположение колебательной теории Лнндеманна [10], развитой Гилварри [7], заключается в том, что плавление начинается тогда, когда амплитуда тепловых колебаний атомов достигает некоторой критической доли расстояния между равновесными положениями соседних атомов. Недавно предложенная модель В. И. Владимирова [1], где в качестве основных дефектов рассматриваются вакансии, также дает разумные предсказания параметров плавления. [c.45]

    С (Ня) до 3380 С ( У), плотность-от 0,531 г/см (У) до 22,5 г/см (Оз). Уд. электрич. сопротивление р при 25 °С имеет значения от 1,63 (Ая) до 140 (Мп) мкОм-см. Сопротивление движению электронов (рассеяние электронов) возникает вследствие нарушения кристаллич. решетки из-за теплового движения атомов, а также дефектов (вакансий, дислокаций, примесных атомов). Мерой его является длина своб. пробега электрона. При комнатной т-ре она равна 10 см у М. обычной чистоты и 10 см у высокочистых. Температурный коэф. р (в интервале 0-100 °С) меняется в пределах 1,0-10 (Ня)-9,0-10 К (Ве). При гелиевых т-рах (4,2 К) р практически не зависит от т-ры (ро5,). Его измерение используют для характеристики чистоты и совершенства кристаллов М. Чем больше отношение Р27з/Р4,2, тем чище М. В монокристаллах высокой чистоты оно достигает Нек-рые М. при низких т-рах ста- [c.53]

    Тепловое движение переносит часть электронов в зону проводимости в валентной зоне при этом появляются дырки-квантовые состояния, не занятые электронами. Обычно электроны занимают уровни, расположенные вблизи дна Е зоны проводимости, а дьфки - уровни, расположенные вблизи потолка Еу валентной зоны. Расстояния от этих уровней соотв. до Е и Еу порядка энергии теплового движения кТ, т. е. гораздо меньше ширины разрешенных зон ( -постояш1ая Больцмана). Локальные нарушения идеальности кристалла (примесные атомы, вакансия и др. дефекты) могут вызвать образование разрешенных локальных уровней энергии внутри запрещенной зоны. [c.56]

    Диффузионный поток и поток импульса в этой теории тесно связаны между собой. Для перескока молекулы в вакансию требуется тепловое возбуждение. Отношение числа возбужденных молекул к невозбужденным определяется множителем Больцмана рд дд — свободная энергия возбуждения. Отсюда появляются экспоненциальные зависимости коэффициентов самодиффузии и вязкости от температуры среды. На рис. 54 сплошной линией представлена зависимость коэффициента самодиффузии воды от температуры, измененная по Т-метке (диффузия НТО в Н2О (Уанг, 1965), и текучесть воды (Стокс н Миллс, 1965) 1/т1, нормированная к значе 1ию О в точке Т = 0°С. Как видно из рис. 54, такой подход обоснован лишь в первом приближении. [c.124]

    При повышении температуры происходит разупорядочение. В первую очередь возникают тепловые колебания составных частей решетки. Средняя амплитуда таких колебаний невелика и не превышает межузельного расстояния. Однако всегда существуют флуктуации энергии для частиц некоторые из них, имея су-нгественно большую энергию и амплитуду колебаний, могут покинуть регулярные позиции и попасть в междоузлие. Возникают дефекты двух типов (рис. 4) вакансии — незанятые места в решетке (дефект Шоттки), или внедрение частицы между узлами решетки (дефект Френкеля). Доказательство неизбежности наличия дефектов в кристаллах при температуре выше абсолютного нуля принадлежит Я. И. Френкелю. [c.46]

    Диффузия — самопроизвольное выравнивание концентрации— является универсальным преобразованием состава минеральных индивидов. Она осуществляется преимущественно в результате дефектов в кристаллах. В совершенном кристалле диффузия невозможна, но реально такой кристалл не может образоваться и тем более существовать в природе при явлениях флуктуации, которые неизбежны в реальном теле, идеальный кристалл взорвется . Причиной перемещения атомов в кристаллической решетке являетсЯх х тепловое движение, которое ведет к выравниванию состава. Дйффуз йя возникает только при наличии градиентов концентрации дефектов, примесей и т. д. В кристаллах диффузия происходит в результате перемещения атомов по вакансиям, межузлиям или обмена местами соседних атомов. [c.34]

    Если ионный радиус диффундирующих атомов значительно меньше атомов основного металла (растворителя), как в случае газов и некоторых металлов, то они перемещаются преимущественно по междоузлиям кристаллической решетки. Так как в твердых телах основным видом теплового движения являются колебания атомов около положения равновесия, то механизм диффузии при близких по размеру атомах диффузанта и основного металла представляет собой обмен вакансиями. При этом энергия активации растрачивается па образование вакансии и на работу, необходимую для преодоления потенциального барьера между диффундирующим атомом и вакансией. Обычно имеют место оба механизма диффузии. [c.14]

    В этом уравнении рещающее значение имеет отнощение времени релаксации вакансий к интервалу времени lfl между двумя последовательными тепловыми переходами частицы в вакантный узел решетки. Отношение времен фигурирует в уравнении (3.12.19) в виде произведения При 1/, 1 полученное уравнение совпадает с классическим уравнением (3.12.16) для активационного механизма течения. При 1 и малых напряжениях получается зависимость классического типа, т. е. вязкость уменьшается с ростом напряжения, но при достаточно большой величине напряжения произведение г4 Нх 2пкТ) в уравнении (3.12.19) увеличивается настолько, что единицей в знаменателе можно пренебречь. Тогда скорость деформации перестает зависеть от напряжения. Это означает, что вязкость начинает увеличиваться с увеличением напряжения. Такой смешанный пластично-дилатантный тип зависимости скорости сдвига от напряжения весьма характерен для концентрированных суспензий. При 1/, 1 суспензия практически во всем диапазоне напряжений проявляет дилатантные свойства (рис. 3.89). [c.694]

    Под действием тепловых флуктуаций в реальных кристаллах при каждой данной температуре идет не только процесс образования дефектов, ио одновременно за счет движения вакансий и дислоцированных в междоузлиях частиц процесс их исчезновения или залечивания . В результате этих противоположно направленных процессов при каждой температуре устанавливается определенное равновесие между числом образующихся и залечивающихся дефектов, т. е. каждой температуре, как уже отмечалось, соответствует определенная равновесная концентрация дефектов. Однако кристалл может содержать и избыточное (неравновесное) число точечных дефектов. Например, если кристалл с равновесной для данной температуры концентрацией вакансий или межузельных атомов достаточно быстро охладить, то они как бы заморажива- [c.86]

    Прежде всего, при снятии окисиого слоя с определенного участка поверхности изделия, например, ири механической обработке появляется свежая металлическая поверхность, окисление которой обусловливает выделение значительной тепловой энергии, способствующей эмиссии электронов. Поскольку эти процессы являются экзотермическими, первооткрыватель этого явления И. Крамер назвал эмитируемые электроны экзоэлектронами. При пластической деформации появление эмиссии связывают с миграцией вакансий к поверхности металла, где происходит их локализация в окисной пленке, что приводит к перестройке энергетических уровней в запрещенной зоне с высвобождением некоторой энергии, сообщаемой эмитируемым электронам. При образовании микротрещин, возникающих от разрывов в окисной пленке, стенки трещины оказываются электрически заряженными, а дно трещины с пониженной работой выхода действует как источник электронов. Со- [c.661]

    К нульмерным, или точечным, дефектам относятся вакансии (незанятые места в структуре), любые примесные частицы (атомы, ионы, молекулы), находящиеся как в узлах структуры, так и в межузлиях, а также собственные межузельные частицы. К этим дефектам приводит тепловое движение атомов. Чем выше температура, тем больше таких дефектов существует в кристалле. При тепловом равновесии вблизи температуры плавления в кристаллах большинства веществ доля вакансий от общего числа атомных мест в идеальной решетке достигает примерно 10 , доля меж-узельных атомов — приблизительно 10" . Вакансии, кроме того, образуются при вхождении в кристалл примесей с валентностью, отличной от валентности основных строительных единиц кристалла. Так, наличие примеси Са + в кристаллах НаС1 обусловливает существование катионных вакансий в количестве, соответствующем атомной концентрации примеси. [c.5]

    В результате теплового воздействия некоторые атомы или ноны могут покидать свои места в узлах решетки и образовывать дефекты, называемые вакансиями Атомы или ионы ( собственные и чужие ) также могут появиться между узлами кристаллической решетки В ионном кристалле (в отличие от атомного) вакансии должны быть обязательно скомпенсированы электрически Комбинация вакансии и иона в междуузлиях называется дефектом по Френкелк) а комбинация анионной и катионной вакансий — дефектом по Шоттки Дефекты по Френкелю и Шотткн относятся к так называемым точечным дефектам Эти дефекты могут мигрировать в кристалле, чем объясняется самоднффузия и ионная проводимость Наличие примесных атомов или ионов в структуре сильно влияет на физические и механические свойства кристаллов Так, например, при добавлении 20% КВг к КС1 теплопроводность снижается на 50% Добавление к железу 1% N1, Мп или Сг приводит к повышению его твердости соответственно на /го, /в и V Примесные атомы нли ионы поглощают свет в тех областях, где чистый кристалл прозрачен, что может влиять иа его цвет В некоторых случаях возбуждается люминесценция [c.239]

    Вакансии и занятые междоузельпые места, соотиетствую-щие состоянию теплового раиновесия кристалла (Я. Френкель [78], В. Шотки, К. Вагнер [79]). Состояние, установившееся при повышенной температуре, может в течение некоторого времени сохраняться в замороженном виде п при пизко температуре. [c.114]


Смотреть страницы где упоминается термин Вакансии тепловые: [c.71]    [c.147]    [c.99]    [c.174]    [c.156]    [c.257]    [c.194]    [c.194]    [c.195]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.550 , c.551 , c.584 ]




ПОИСК





Смотрите так же термины и статьи:

Вакансия



© 2024 chem21.info Реклама на сайте