Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Древесная методы выделения

    Метод выделения глюкуроноксилана заключается в следующем [7]. Смешивают 300 г древесных опилок, в пересчете на абсолютно сухие, с 3 л 5%-ного раствора надуксусной кислоты. [c.39]

    Элементный состав препаратов лигнина не постоянен, причем он зависит не только от древесной породы, но и от метода выделения лигнина. Для лигнина характерны более высокая массовая доля углерода (около 60%), по сравнению с полисахаридами (44,4% у целлюлозы), и высокое значение отношения С Н, типичное для ароматических соединений. В хвойных лигнинах массовая доля углерода (60...65%) выше, чем у лигнинов лиственных (55...60%), вследствие большего содержания в последних метоксильных групп и, следовательно, кислорода. При различных методах химической деструкции лигнина получены разнообразные мономерные ароматические соединения, например, ароматические альдегиды и кислоты при окислении (см. 12.8.7), ароматические кетоны при этанолизе и ацидолизе (см. 12.8.9), фенольные мономерные соединения при разложении металлическим натрием в жидком аммиаке, а при гидрогенолизе - производные циклогексана и циклогексанола. [c.375]


    Гидроксильные группы (-ОН). Они в лигнине не одинаковы -присутствуют фенольные и алифатические (спиртовые) гидроксильные группы в свободном состоянии и в связанном. Общее содержание свободных гидроксильных групп составляет примерно 1,1... 1,2 группы на ФПЕ (110... 120 групп на 100 ФПЕ), что соответствует их массовой доле примерно 10... 11%, (с интервалом от 10,4 до 14,6%), причем эти значения зависят не только от древесной породы, но и от методов выделения препаратов лигнина и анализа. [c.377]

    Размягчение лигнина, как и у всех полимеров, происходит в определенном интервале температур. Температуры размягчения (температуры стеклования) лигнинов в зависимости от древесной породы и метода выделения колеблются в пределах от 130 до 190°С для сухих образцов со структурой, близкой к природному лигнину, т.е. не подвергнутых окислению, сульфированию и т.п. На эту величину оказывает сильное влияние молекулярная масса препаратов лигнина. У еловых диоксанлигнинов температура размягчения снижается со 176°С при = 85000 до 127°С при [c.422]

    Вследствие большого разнообразия экстрактивных веществ и многофункциональности ряда соединений трудно добиться их единой строгой классификации по химическому составу. Предлагаемые системы классификации обычно громоздки и, тем не менее, не обеспечивают полного разделения соединений на отдельные классы. Поэтому наряду с классификацией по химическому составу для экстрактивных веществ широко применяют более общие принципы классификации, в которых эти вещества подразделяют на большие группы соединений с учетом методов выделения и физико-химических свойств. Иногда применяют и смешанные принципы классификации. Например, в анализе экстрактивных веществ древесной зелени кроме структуры веществ учитываются и их важнейшие биохимические и физико-химические свойства. [c.497]

    По методу выделения экстрактивные вещества подразделяют на эфирные масла, древесные смолы и водорастворимые вещества (рис. 14.1). Эфирные масла представлены веществами с высокой летучестью, способными отгоняться с водяным паром. В из состав входят преимущественно монотерпены и другие летучие терпены и терпеноиды, а также ряд низкомолекулярных соединений различных классов (летучие кислоты, сложные и простые эфиры, лактоны, фенолы и др.). [c.498]

    Химия древесины — наука о строении, составе и взаимодействии веществ, входящих в древесный комплекс, и тех превращениях, которые происходят с э ими веществами в процессах химической переработки и при воздействии различных природных факторов. Сложность и изменчивость древесного комплекса, трудности выделения отдельных компонентов обусловили развитие в качестве самостоятельных таких разделов, как методы выделения веществ и методы аналитического определения компонентов древесины. Химия древесины является теоретической базой создания новых технологий комплексной химической переработки древесины. [c.3]


    Первичными элементами надмолекулярной структуры, образующимися за счет водородных связей, являются фибриллы, из которых строятся слои клеточной стенки, и, наконец, вся стенка в целом. Кроме того, поверхности изолированных древесных клеток (волокон), не подвергавшихся сушке, способны связываться водородными связями друг с другом. Механические свойства целлюлозы и бумажного листа определяются межволоконными связями, которые возникают в результате образования Н-связей между макромолекулами на поверхностях волокон [82, 150]. Поверхностные свойства волокон и, прежде всего, число ОН-групп, способных образовать межволоконные связи, определяющие прочность листа, зависят от метода выделения целлюлозы [27, 140]. Исследования взаимодействия различных жидкостей с целлюлозными волокнами показали, что, кроме Н-связей, на прочностные свойства бумажного листа влияют и другие виды межмолекулярного взаимодействия [169]. [c.64]

    Содержание арабиногалактана колеблется и зависит от вида древесной породы, метода выделения и очистки. Например, в древесине даурской лиственницы в среднем найдено i 1 % этого полисахарида, в других хвойных — 2—3% [Ю7]. [c.86]

    Современные методы пирогенетического разложения древесины существенно отличаются от простой сухой перегонки. Внесенные усовершенствования увеличивают их рентабельность, и в странах, богатых лесом, термическая переработка древесины может иметь значение как источник получения древесного угля и древесной смолы. Усовершенствование методов выделения продук- [c.18]

    Сульфатный способ производства — щелочной метод выделения целлюлозы из древесины. Древесная щепа обрабатывается в варочном котле щелочным раствором — щелоком — при нагревании острым паром. Щелок содержит до 4,5% едкого натра, а также сернистый натрий, образующий в водном растворе сульфогидрат натрия и едкий натр (белый щелок)  [c.291]

    Этот раздел подразделен на три части, в каждой из которых дано описание промышленного способа извлечения древесной смолы в различных формах 1) из растущего дерева в виде живицы, 2) из старых пней в виде смолы ядровой древесины и 3) из срубленного дерева в виде таллового масла. В каждом конкретном случае состав продукта различен так же, как и применяемый метод выделения (схема 11). Вредная смола , которая выделяется за счет смолистых веществ древесины при производстве целлюлозы сульфитным способом, будет рассматриваться в пункте 3. В промышленности эта смола не используется. [c.496]

    В заключение следует подчеркнуть, что существенные различия в строении и химическом составе древесины и коры обусловливают необходимость раздельной переработки этих составных частей биомассы дерева как с технологической, так и с экономической точек зрения. Однако существующие методы удаления коры (окорки) сопряжены с потерями древесины. В отходах окорки наряду с корой содержится значительное количество древесины, что осложняет химическую переработку такого сырья. Разнообразие представленных в коре химических соединений делает привлекательной идею извлечения наиболее ценных компонентов. Развитие данного направления утилизации коры сдерживается относительно низким содержанием извлекаемых компонентов. Вследствие этого основные направления переработки коры все еще ограничены ее утилизацией как органического материала в качестве топлива, в сельском хозяйстве и т.п. Редкие примеры использования коры отдельных древесных пород для вьще-ления дубильных веществ, производства пробки, получения дегтя (из бересты березы) и выделения из коры растущих деревьев пихты пихтового бальзама не улучшают, к сожалению, общую картину неэффективного использования содержащихся в коре ценных органических соединений. [c.210]

    По результатам рентгенографического анализа у выделенной из природных источников целлюлозы СК в среднем составляет 65...75%, причем у древесной целлюлозы она меньше, чем у хлопковой. Доля аморфной части равна соответственно 35...25%. У гидратцеллюлозы, полученной мерсеризацией целлюлозы или регенерированием из растворов целлюлозы (см. главу 19), СК меньше и составляет 50...30%, причем меньше у регенерированной целлюлозы и больше у мерсеризованной. Однако другие данные, полученные главным образом на основании химических методов исследования, показывают, что доля аморфной части в природной целлюлозе значительно меньше - всего лишь 5... 10%. Необходимо отметить, что эти [c.243]

    В 50-70-е гг. текущего столетия были найдены экспериментальные методы, позволившие раскрыть строение лигнинов, изучить их реакционную способность, место в жизни растений и превращения в ходе технологических процессов. Прорыв произошел, когда были предложены способы выделения лигнинов из растительных тканей без существенного нарушения их химического строения, найдены мягкие методы деструкции макромолекулы, с одной стороны, и пути ее синтеза, моделирующие природный процесс, - с другой. Все это в совокупности с использованием современных физико-химических методов анализа позволило создать структурные модели макромолекулы лигнинов хвойных и лиственных древесных пород, разработать, принципы и изучить превращения лигнинов в ходе технологических процессов. [c.92]


    Исследования в области щелочных методов делигнификации, методов с использованием катализаторов делигнификации и органических растворителей привели к немалым успехам в познании этих процессов Механизм реакций делигнификации древесной матрицы обычно устанавливают, исследуя реакции превращения соединений, моделирующих фрагменты макромолекулы лигнина в том или ином варочном процессе, анализируя состав низкомолекулярных продуктов, образующихся в процессе варки древесины, а также изучая лигнин, выделенный в результате делигнификации растительного сырья Полное знание химической структуры такого лигнина, несомненно, может дать более реальные представления о процессах, происходящих в результате делигнификации древесины различными способами Большое количество работ посвящено исследованию лигнинов сульфатных варок хвойных пород древесины, в том числе методом спектроскопии ЯМР [129] При этом чаще всего производится функциональный анализ и анализ продуктов нитробензольного окисления или ацидолиза Только в одной работе с использованием количественной спектроскопии ЯМР [c.177]

    Вследствие каталитической стабильности палладий очень часто применяется для пропитки асбеста [13, 14]. Алексеевский [11] запатентовал метод получения палладиевого катализатора, в котором из смеси каолина с древесным углем формуют кольца, которые прокаливают при 950° для придания им пористости, после чего пропитывают раствором хлористого палладия в соляной кислоте, высушивают при 100° и восстанавливают парами формальдегида при нагревании восстанавливаемой массы в трубчатой электрической печи до 100 110°. Водород насыщается парами формальдегида пропусканием тока чистого водорода через 40% раствор формальдегида при комнатной температуре. Прекращение выделения из трубки паров хлористого водорода указывает на конец восстановления и на образование металлического палладия, который охлаждается до комнатной температуры в токе водорода. Полученный катализатор имеет темно серый или черный цвет, равномерно распределен по всему кольцу и активен при низких температурах. Окись палладия, по активности аналогичная окиси платины или платиновой черни, при каталитическом восстановлении получается путем сплавления хлористого палладия с азотнокислым натрием при 600° [6]. [c.262]

    Процесс сопровождается выделением воды. Фенолоформальдегидные смолы обладают замечательным свойством при нагревании они вначале размягчаются, а при дальнейшем нагревании (особенно в присутствии соответствующих катализаторов) затвердевают. Из этих смол готовят ценные пластические массы — фенопласты смолы смешивают с различными наполнителями (древесной мукой, измельченной бумагой, асбестом, графитом и т. п.), с пластификаторами, красителями, и из полученной массы изготовляют методом горячего прессования различные изделия. В последние годы фенолоформальдегидные смолы нашли новые области применения, например, производство строительных деталей из отходов древесины, изготовление оболочковых форм в литейном деле. [c.505]

    Интересно, что рядом с древесной тканью, служащей для проведения воды и поэтому нерастворимой в ней, возникает лубяная ткань, не содержащая лигнина, но пропитанная дубильными веществами, растворимыми в воде. При действии на нее 72%-ной серной кислоты (в условиях метода выделения лигнина по Jneтoдy Кенига [c.290]

    На сорбцию паров воды древесиной алияют химическое строение компонентов древесины, их надмолекулярная структура, а также ультраструктура клеточных стенок и анатомическое строение древесных тканей. Выделенные из древесины компоненты по сорбционной способности могут значительно отличаться от компонентов в древесине в зависимости от метода выделения. Выделенная из древесины целлюлоза набухает в воде в большей степени, чем сама древесина. [c.265]

    Получение медно-аммиачного лигнина. Медно-аммиачный лигнин (лигнин Фрейденберга) получают попеременной обработкой древесной муки кипящим 1...2%-м раствором Нз804 и холодным медноаммиачным реактивом - раствором [Си(МНз)4](ОН)2. Кислота катализирует гидролиз связей лигнина с гемицеллюлозами, а медно-аммиачный реактив растворяет полисахариды. В остатке получается медно-аммиачный лигнин светлого цвета, нерастворимый вследствие сохранения сетчатой структуры природного лигнина. Выход препарата около 80% по отношению к лигнину Класона в случае хвойной древесины и 55% - в случае лиственной. Кислотная обработка вызывает реакции конденсации, но изменения при этом менее глубокие, чем при получении кислотных лигнинов с концентрированными кислотами. Раньше препараты медно-аммиачного лигнина часто использовали для изучения строения лигнина, но позднее интерес к ним понизился вследствие разработки менее трудоемких методов выделения растворимых препаратов лигнина, по химическому строению более близких к природному. [c.368]

    Исследование химической структуры лигнина механического размола, диоксанлигнина, лигнина взрывного автогидролиза и биолигнина, выделенных из древесины осины, методом спектроскопии ЯМР н и С позволило не только на качественном, но и на количественном уровне определить, насколько видоизменяется структура макромолекулы лигнина при различном химическом воздействии на древесную матрицу, подтвердить предположения о том, что более жесткие в химическом отношении методы выделения лигнинов приводят к разрыву арил-алкильных простых эфирных связей с образованием фенольных ОН-групп, увеличением содержания групп С=0, степени конденсированности препаратов Изменяется не только количество функциональных групп и связей — таких, как пинорезинольные и сложноэфирные, но и количество основных структурообразующих звеньев макромолекулы лигнина — S, G, Н Более жесткий способ выделения лиг- [c.149]

    В обзоре представлены сведения о природных полисахаридах -арабиногалактанах, распространенных в хвойных древесных породах. Особое внимание уделено арабиногалактану лиственницы сибирской, в связи с тем, что древесина лиственницы сибирской содержит арабиногалактан в значительном количестве (10-15 %) и может служить надежным источником его пол5П1ения. Дана оценка методам выделения арабиногалак-тана из древесины лиственницы и очистки его от сопутствующих соединений, представлены его физико-химические свойства. Обсуждена практическая значимость арабиногалактана, его биологическая активность. Рассмотрена способность арабиногалактана участвовать в реакциях сульфирования, фос-форилирования, окисления. Раскрыта его способность при взаимодействии с солями металлов проявлять свойства либо лиганда, либо стабилизатора гидрофобных коллоидных систем. Обсуждены перспективы использования арабиногалактана в качестве полимерной биологически активной матрицы для направленного транспорта лекарственных веществ и биологически важных микроэлементов. Определен потенциал арабиногалактана в области получения отечественных препаратов нового поколения, обладающих кроме специфического свойства за счет привитой группы, мембранотропными и иммуномодулирующими свойствами. [c.328]

    Научные работы относятся к медицинской, органической и неорганической химии. Доказал (1832) электроположительную природу водорода Получил (1832) иодид платины. Вслед за Ю. Либихом и Ф. Вёлером высказал мысль о су-шествовании органических радикалов, которые принимают участие в химических реакциях подобно простым атомам указал на сходство таких радикалов (в частности, этила) с аммонием. Исследовал продукты перегонки древесины. Предложил (1835) метод выделения метилового спирта из древесной смолы с помощью хлорида кальция. Сообщил (1837), что при нагревании ацетона — компонента древесной смолы — с серной кислотой выделяется углеводород, который он назвал мезитиленом. Осуществленные им (1837) исследования аммонийных солей ртути, меди, цинка и других металлов принесли ему европейскую известность. Изучал [c.229]

    Техническая целлюлоза — волокнистый полуфабрикат, получаемый в пром-сти более или мепее полной очисткой волокон растительных тканей от нецеллюлозных компонентов применяется при производстве бумаги и картона, а также для химич. переработки, гл. обр. для иолучения гидратцеллюлоз-ных волокон (см. Волокна искусственные, Гидратцел-люлоза) и целлюлозы эфиров. Д., выделенная из растительных тканей, обычно наз. по виду исходного сырья (древесная, хлопковая), методу выделения из древесины (сульфитная, сульфатная), степени очистки от ири.месей, в частности окрашенных, а также по назначению (вискозная, ацетатная). [c.427]

    Бензол был открыт Фарадеем в 1825 г. в компрессорном нефтяном газе, однако лишь в 1848 г. А. Гофман и Мансфилд разработали метод выделения больших количеств бензола из каменноугольной смолы. Бензол образуется также при коксовании угля и при других пирогенетических процессах, например, при деструктивной перегонке древесной смолы или нефти. Теоретический интерес представляет образование бензола путем пиролиза ацетилена по методу Бертло и синтез бензола из пимелиновой кислоты по методу Виль-штеттера и Хатта. В тех случаях, когда требуются небольшие количества очень чистого бензола, даже в настоящее время предпочтительным остается метод получения его сухой перегонкой бензойной кислоты с известью. Этот метод был предложен Митчерлихом в 1833 г. [c.199]

    В 1943 г. исследования молекулярного веса различных препаратов целлюлозы и ее эфиров путем определения скорости седиментации в ультрацентрифуге и скорости диффузии были проведены Граленом и СведбергомЧ Ими были получены еще более высакие значения молекулярного веса целлюлозы, соответствующие значениям степени полимеризации 10800 (хлопок), 9300 (небеленый хлопковый пух), 36000 (лен), 12400 (рами), 2500—3100 (древесная целлюлоза, выделенная по сульфитному или сульфатному методу). По данным этих исследователей, максимальный экспериментально определенный молекулярный -вес целлюлозы составляет около 6 000000 (для целлюлозы льна). Найденные ими значения молекулярного веса хлопковой целлюлозы совпадают с результатами, полученными Головой и Ивановым путем вискозиметрических измерений. Необходимо, однако, отметить, что Гра-лен и Сведберг производили менее тщательную очистку раствора от кислорода, чем Голова. [c.30]

    Задачей целлюлозного производства является выделение из древесины или из других волокнистых растительных материалов целлюлозы и ее очистка. Процесс выделения целлюлозы заключается в удалении в большей или меньшей степени из древесины других ее составных частей лигнина, гемицеллюлоз, смолистых веществ и т. д.— путем обработки древесной щепы различными реагентами. Существуют различные методы выделения целлюлозы, отличающиеся друг от друга по применяемым реагентам и условиям обработки. Главнейшими из них, обычно применяемыми в промышленности, являются сульфитный и сульфат-н ы й. Известны также и другие методы хлорнощелочной, моно-. сульфитный, азотнокислотный, имеющие значительно меньшее распространение. [c.43]

    Результаты определения. Данных о молекулярном весе природной недеструктированной целлюлозы очень мало. Это обусловлено тем, что даже при применении самых лучших методов выделения и очистки целлюлозы она деструктируется. Например, величина СП = 3000 уже рассматривается как полученная в результате деструкции. При очень тщательном проведении эксперимента получают СП = 10 ООО, а по данным советских авторов —до 15 000. Обычная волокнистая целлюлоза имеет СП = 6000— 7000. Целлюлоза в первичной стенке клетки характеризуется СП = 1500— 3000. Степень полимеризации древесной целлюлозы (при осторожном ее выделении) равна 3000. При измерении СП с помощью ультрацентрифуги получены более высокие значения — до 11 ООО для хлопка и до 36 ООО для льна (по данным Гралена). [c.44]

    Эти данные показывают, что в результате химической обработки природ ной целлюлозы обычно уменьшается средняя длина молекулярных цепей. Наименьшие изменения имеют место при нитрации, если она производится быстро, при достаточно низких температурах и в безводных условиях. Ввиду этого нитрация считается весьма удобным методом выделения целлюлозной фракции из древесины [521 и для приготовления нитрата, пригодного для изучения степени полимеризации и полимолекулярности древесных целлюлоз 153—56]. Пользуясь этой техникой, Тимелл и Джан [56] установили, что у березовой целлюлозы для бумаги среднее значение СП равно 2975 и что она в высокой степени полимолекулярна, так как состоит из вещества со степенью полимеризации порядка 200—4000 и с таким же распределением молекул по длине цепей, какое было найдено раньше у хлопковых линтеров и осиновой древесной целлюлозы [54], но иным, чем у целлюлозь из хвойной древесины [53—55]. [c.258]

    Историческая справка. Истоки О. х. восходят к глубокой древности (уже тогда знали о спиртовом и уксуснокислом брожении, крашении индиго и ализарином). Однако в средние века (период алхимии) были известны лшпь немногие индивидуальные орг. в-ва. Все исследования этого периода сводились гл. обр. к операциям, при помощи к-рых, как тогда думали, одни простые в-ва можно превратить в другие. Начиная с 16 в. (период ятрохимии) исследования были направлены в осн. на выделение и использование разл. лек. в-в был вьщелен из растений ряд эфирных масел, приготовлен диэтиловый эфир, сухой перегонкой древесины получены древесный (метиловый) спирт и уксусная к-та, из винного камня-винная к-та, перегонкой свинцового сахара-уксусная к-та, перегонкой янтаря-янтарная. Большая роль в становлении О. х. принадлежат А. Лавуазье, к-рый разработал основные количеств, методы определения состава хим. соединений. [c.397]

    С9Н9,0зО2 77(ОСНз) ,зв. Общие формулы зависят как от природы лигнина (древесной породы), так и от метода его выделения. [c.376]

    Метод обратного осмоса на современной начальной стадии своего развития в качестве нового инструмента химической технологии продемонстрировал широкие возможности вьщеления воды высокого качества и концентрирования наиболее разбавленных стоков целлюлозно-бумажиого производства. В обработке сточных вод целлюлозных заводов и бумажных фабрик применение этого метода особенно выгодно при решении трех специфических задач а) выделение из сточных вод компонентов в виде органических веществ древесного происхождения и неорганических варочных и отбеливающих вешеств б) удаление из воды загрязнений в) получение пригодной к повторному использованию воды в технологических процессах производства целлюлозы и бумаги. Вследствие быстрого развития обратноосмотического оборудования и мембран и неполных знаний о сроке эффективной службы модулей и затрат на их замену пока невозможно точно предсказать объемы капитальных вложений на строительство крупной промьпплеиной о -ратноосмотической установки и расходов на ее эксплуатацию. [c.267]

    Циркон спекается с коксом или древесным углем с образованием карбида или карбонитрида циркония, который затем хлорируется до Zr U, Если нет необходимости в получении циркония реакторного сорта, то хлорид циркония непосредственно восстанавливается магнием при температуре 850°С в атмосфере гелия, а затем дальнейшим нагреванием до 960° С очищается от хлорида магння и избыточного магния. Хлорид цир-1.0НИЯ может также восстанавливаться натрием. Для получения циркония реакторного сорта необходимо отделить гафний противоточной экстракцией из водных растворов. Экстракция может проводиться из хлоридных пли нитратных растворов трибутилфосфатом или из тиоциаиатных растворов метилизобутилкетоном (гексо-пом). После разделения циркония и гафния они превращаются в хлориды для последующего восстановления до металла. Цирконий высшей степени чистоты можно получить разложением иодида циркония на раскаленной проволоке. Сущность этого метода состоит в том, что циркониевая губка, иолу. еиная прямым восстановлением, нагревается в парах иода с образованием летучего иодида. В свою очередь, иодид разлагается на раскаленной проволоке с выделением чистого циркония и регенерацией иода. Цирконий и гафний могут взаимодействовать с кислородом, азотом и водородом при температурах много ниже тех, при которых проводятся металлургические операции. Поэтому получение метал-, . ов необходимо проводить в вакууме, атмосфере инерт- [c.407]


Смотреть страницы где упоминается термин Древесная методы выделения: [c.28]    [c.176]    [c.417]    [c.9]    [c.321]    [c.199]    [c.199]    [c.339]    [c.386]    [c.364]    [c.384]    [c.485]    [c.47]    [c.456]    [c.315]   
Химия целлюлозы и ее спутников (1953) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Выделения методы

Древесный пок



© 2024 chem21.info Реклама на сайте