Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возбуждение перенос заряда

    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]


    Второй тип связи в возбужденных комплексах — донорно-ак-цепторная связь, обусловленная переносом заряда между компонентами комплекса. Волновая функция такого комплекса, который называется эксиплексом, является комбинацией волновых функций [c.79]

    Средние взаимодействия между молекулами проявляются на расстояниях между ними в диапазоне 0,3-0,7 нм и характеризуются малой долей переноса заряда, или, более строго, плотности вероятности распределения заряда электрона, с одной молекулы на другую. Энергия связи при этом колеблется в пределах 40-100 кДж-моль. Подобные значения энергии взаимодействия присущи комплексам с переносом заряда, которые образуются, например, при контакте молекул бензола в жидком агрегатном состоянии с молекулами СС1 . При образовании комплекса с переносом заряда одна молекула поставляет один возбужденный электрон на вакантную орбиталь заданной симметрии другой молекулы. [c.92]

    Так, В растворах иода в различных растворителях может осуществляться в различной степени взаимодействие неполярного молекулярного вещества с растворителем. Взаимодействие может протекать с образованием комплексов с переносом заряда и даже приводить к гетеролитическому расщеплению молекулы иода. Например, комплекс иода с бензолом относится к комплексам с переносом заряда, в которых при возбуждении происходит переход электронов с занятой орбитали одного атома на свободную орбиталь другого атома. Возбуждение молекулы приводит, таким образом, к переносу заряда от одного атома к другому. [c.496]

    Кроме того, имеется дополнительная классификация по степени переноса заряда [5]. Согласно этой классификации различают внутренние (сильные, ионные), средние (переходные), внешние (слабые, дативные) и контактные комплексы. Во внутренних комплексах оба компонента сильно ионизированы и представляют собой ион-радикалы (,Ч , А )- Внешние комплексы связаны слабыми силами, их компоненты нейтральны. Поэтому в основном состоянии степень переноса заряда в этих комплексах минимальна, а характерная полоса МПЗ в УФ-спек-трах наблюдается только в возбужденном состоянии. [c.9]

    Возбуждение в области полос переноса заряда сопровождается окислительно-восстановительными реакциями, ведущими к изменению степени окисления металла или лиганда, например [c.377]

    В н у т р и с ф е р н ы й перенос электрона. При возбуждении комплекса в области переноса заряда L M часто образуются свободные радикалы, происходящие от координированных лигандов Так, при фотолизе комплексов Се + с карбоновыми [c.378]


    Как явствует из их названия, донорно-акцепторные комплексы [29] всегда состоят из двух молекул донора и акцептора. Донор может поставлять либо неподеленную пару электронов (п-донор), либо пару электронов л-орбитали двойной связи или ароматической системы (я-донор). Присутствие такого комплекса можно установить по электронному спектру, такой спектр (наличие полосы переноса заряда) обычно отличается от суммы спектров двух индивидуальных соединений [30]. Поскольку первое возбужденное состояние комплекса относительно близко по энергии основному состоянию, в спектре присутствует пик в видимой или близкой ультрафиолетовой области донорно-акцепторные комплексы часто бывают окрашены. Многие комплексы неустойчивы и существуют только в растворах в равновесии со своими компонентами однако известны и устойчивые комплексы, существующие в твердом состоянии. В большинство комплексов молекулы донора и акцептора входят в соотношении 1 1 или в других соотношениях целых чисел, но известны некоторые комплексы с нецелочисленным соотношением компонентов. Существует несколько типов акцепторов, и в зависимости от их природы можно классифицировать донорно-акцепторные комплексы на три группы. [c.117]

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]

    Характер связей в эксимерах и эксиплексах явно зависит от наличия электронного возбуждения. Частично комплекс стабилизируется за счет перехода электрона с заполненной орбитали, которая должна быть разрыхляющей в основном состоянии димера или комплекса, на незаполненную связывающую орбиталь возбужденной пары. Стабилизация за счет переноса заряда также важна в эксимерах и особенно в эксиплексах. Обычно возбужденные частицы в эксиплексах являются лучшими донорами и акцепторами электрона, чем те же частицы в основном состоянии (см. гл. 6). При переходе электрона на более высокий энергетический уровень возбужденная молекула становится потенциально лучшим донором, чем в основном состоянии. Однако вакантное место может занять другой электрон, что приводит к увеличению акцепторных свойств. [c.133]

    Можно ожидать, что атомы и молекулы обладают различной реакционной способностью в зависимости от способа расположения электронов в соответствующих орбиталях, и, действительно, различия в реакционной способности разных состояний часто можно продемонстрировать экспериментально. Например, вслед за поглощением кванта света большинство ароматических карбонильных соединений испытывает быстрый интеркомбинационный переход в нижнее триплетное возбужденное состояние. В нормальных соединениях, таких, как бензофенон, это триплетное состояние представляет собой состояние (л, л ), хотя для некоторых 4-замещенных кетонов (например, 4-амино-бензофенона), по данным спектров фосфоресценции и ЭПР, можно предположить, что нижнее триплетное состояние есть состояние (л, л ) или состояние с переносом заряда. Реакции нормальных и аномальных соединений совершенно различны. Бензофенон в триплетном состоянии отрывает водород от подходящего растворителя, а также присоединяется к двойным связям. 4-Аминобензофенон в триплетном состоянии ни в одной реакции эффективно не участвует. Конечно, неудивительно, что активирование несвязанного электрона, локализованного главным образом на кислородном атоме карбонила, приводит к образованию частиц с другой реакционной способностью, нежели в случае активирования я-электрона группы С = 0. [c.149]

    Эффективность флуоресценции фу определяется конкуренцией излучательного процесса kf и безызлучательных процессов интеркомбинационной /г,,с и внутренней конверсии. Скорость излучательного процесса не зависит от температуры, поэтому изменения Ф/ с температурой связаны с изменением и Поскольку с увеличением температуры на верхние колебательные подуровни состояния попадает все большая часть молекул и вероятность перехода через области пересечения потенциальных поверхностей возбужденного синглетного, триплетного и основного состояний возрастает, то и й с увеличиваются с ростом температуры. При понижении температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего колебательного подуровня 5(. Если при комнатной температуре вещество флуоресцирует слабо, при низкой температуре оно может стать сильно флуоресцирующим. Ввиду большого разнообразия безызлучательных процессов трактовка зависимости квантового выхода флуоресценции от температуры обычно затруднена. Наряду с вышеуказанными процессами это могут быть взаимодействия типа переноса заряда с растворителем, заселение высоколежащих триплетных состояний, специфическое электронно-колебательное взаимодействие и т. д. Зависимость квантового выхода флуоресценции от температуры можно представить уравнением  [c.147]


    Второй тип связи в возбужденных комплексах — донорно-акцепторная связь, обусловленная переносом заряда между компонентами комплекса. Волновая функция такого комплекса, который называется экси-плексом, является комбинацией волновых функций состояния с локализованным возбуждением и с переносом заряда  [c.171]

    Важный вид мол. комплексов-комплексы с переносом заряда. В их основном квантовом состоянии перенос электронного заряда не более, чем при обычных видах М. в., однако при возбуждении происходит значит, перенос заряда от одной молекулы (донора) к другой (акцептору) в спектре поглощения появляется дополнит, полоса в ближней УФ области. Пример-мол. комплексы иода (акцептор) с аминами ККз. ИК спектры комплексов с переносом заряда сходны со спектрами комплексов с водородной связью. [c.14]

    В табл. 16 приведены данные для серии аддуктов сылш-трини-тробензола с ароматическими углеводородами (бср = 0,2 эв). Частота переноса заряда для этих относительно слабых полупроводников почти одинакова для комплексов в растворе и в твердом состоянии. Поэтому можно считать, что в данном частном случае кристаллическая структура не очень способствует переносу заряда. Значения б для ряда комплексов, подчиняющихся уравнению (3), обычно малы. Для таких комплексов возбуждение электрона в зону проводимости соответствует возбуждению переноса заряда, т. е. переходу электрона с наивысшей заполненной молекулярной орбитали донора на наинизшую вакантную орбиталь акцептора. [c.133]

    Фотозамещение часто наблюдается одновременно с окислительно-восстановительной фотореакцией при возбуждении переноса заряда в комплексе (см. раздел 11.3). Как с1 — -возбуждение, так и возбуждение переноса заряда ослабляет связь металл-лиганд в возбужденном состоянии молекул комплексного соединения. Реакции фотозамещения имеет смысл изучать только у кинетически стабильных комплексов, таких, как октаэдрические комплексы Сг(П1), Со(П1), Р1(1У) или плоскостные квадратные комплексы Р1(П), потому что они инертны при попытках термического обмена лигандов [57]. Если предполагать, что фотореакции протекают по механизмам, сходным с таковыми для темновых реакций, то обмен лиганда может происходить по 5л 1- или 5л 2-механизму. В действительности обычно механизм является промежуточным между этими предельными случаями. Будет ли реакция проходить преимущественно но механизму 5д-1 или 5л-2, в значительной мере зависит от геометрии комплексного соединения. У октаэдрических комплексов известны реакции как 5л-1 (переходное состояние с координационным числом 5), так и 5л-2 (переходное состояние с координационным числом 7). 5дт1-Реакции встречаются чаще. У плоскостных квадратных комплексов главным образом наблюдаются реакции 5л 2, так как присоединение приближающегося лиганда X в переходном состоянии более вероятно, чем образование промежуточной ступени с координационным числом 3. [c.223]

    В УФ- и видимой области спектра порфириновых димеров доминируют интенсивные полосы, которые обычно рассматривают как возникающие исключительно за счет интралигандного возбуждения или возбуждения переноса заряда. Трудно было надеяться установить местонахождение нормально слабых переходов поля лигандов, локализованных на ионе железа. Однако, как обсуждалось ранее, в [(РеОЭДТА)гО]2- и подобных соединениях наблюдалось усиление полос поля лигандов примерно в 100 раз. Возможно, что такое же или даже большее усиление может иметь место в оксомостиковых железопорфириновых димерах. Кроме того, можно ожидать, что такие димеры могут иметь в УФ-области довольно интенсивные полосы, возникающие из переходов, связанных с ОПЭ. По этим причинам мы полагаем, что необходимо повторное исследование электронных спектров димерных железо-порфиринов, причем особое внимание должно быть обращено на характерные спектральные особенности структурных единиц РегО. [c.144]

    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]

    Энергия четырех интенсивных (е — к) полос в ультрафиолетовом диапазоне слишком низка, и очень многое говорит о том, что они обусловлены переходами с переносом заряда. Интенсивность этих полос слишком высока для d — -перехода в единственом ионе металла, и авторы работы [48] приписывают их одновременным — -переходам в двух центрах железа(П1). Последние связаны, так что по спину разрешено парное возбуждение [50, 51]. Полоса при 29,2 -10 см отнесена [c.119]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Коротковолновая часть оптических электронных спектров формируется, как правило, в результате переходов с переносом заряда, которые проявляются в виде [пироких и интенсивных полос па краю видимой и в основном ближней УФ-областн. Термин перенос згряда в случае оксидов имеет вполне отчетливый смысл. Рс 1, идет о возбуждении электронов с несвязывающих орбиталей кислорода зоны М0 в зону (п—1) -состояний металла (см. рис. 8.3). Легко видеть, что край полосы в спектре переноса заряда соответствует переходу э.лектронов с верхней заполненной орбитали валентной зоны на нижнюю вакантную орбиталь зоны проводимости. Соответствующий энергетический зазор определяется в физике твердого тела термином ширина запрещенной зоны (в строгом смысле, при абсолютном нуле). Это фундаментальная характеристика твердого вещества. В случае, когда кран полосы в спектре переноса заряда выражен отчетливо, возможно достаточно надежное определение ширины запрещенной зоны АЕ (при соответствующей температуре) графическим методом, как это показано на рис. 8.6 (зная >1.кр, можно определить АЕ). [c.167]

    Кроме полос интраконфигурационных (й —d,f—f) переходов в спектрах комплексных соединений могут наблюдаться также интенсивные полосы так называемых интермолекулярных переходов, которые лежат в УФ-области и примыкающей к ней части области видимого спектра. Это — полосы переноса заряда. Они возникают при поглощении квантов света, вызывающих переход электрона с МО, локализованной на лиганде, на МО, локализованную на центральном атоме, или наоборот, т. е. при внутримолекулярном окислительно-восстановительном процессе. К интермолекулярным относятся также так называемые Ридберговы полосы в УФ-спектре, связанные с возбуждением электронов центрального атома (изменение квантовых чисел п или I). [c.246]

    Зй-Орбитали начинают заполняться в атоме скандия, в Зс1-обо-лочке атома хрома уже пять электронов (на внешней оболочке всего один 5-электрон). В атоме меди З -оболочка заполнена десятью электронами. Волновые функции основного и возбужденного состояний не являются чистыми -функциями. Примесь р-функций приводит к тому, что становятся возможными такие электронные переходы, которые вообще запрещены. Это отпосится к переходам между уровнями с одним и тем же значением квантового числа I. Фактически по указанной причине в спектре поглощения соединений переходных металлов с неспаренными электронами наблюдаются максимумы поглощения ( пики ) в видимой и инфракрасной областях. Интенсивность их невелика, но они обусловлены й— -переходами. Многие комплексы дают также иитсн-сивные пики поглощения в ультрафиолетовый области, обусловленные переносом заряда иона металла на орбитали присоединенных к нему групп (лигандов). [c.200]

    Особенно подробно исследованы реакции отрыва атомов водорода возбужденными триплетными молекулами ароматических ке-тонов. Возбужденные состояния п, я -типа по своей электронной структуре формально близки к обычным радикалам. Гетероатом содержит один неспаренный электрон на несвязывающей орбита-лии, и их реакционная способность в реакциях отрыва атомов во-< дорода близка к реакционной способности аналогичных радикалов. При импульсном фотолизе бензофенона образуется триплетное состояние бензофенона. В зависимости от заместителей и растворителя нижнее триплетное состояние может иметь и, п -характер с электрофильным кислородом ИЛИ Я, п -характер СО значительным переносом заряда. Для п, л -триплетного состояния карбонильных соединений наблюдается высокий квантовый выход Ф отрыва атома водорода от спиртов, углеводородов, давая в качестве промежу- [c.175]

    Таким образом, в возбужденной паре (MN) может возникнуть электростатическое взаимодействие между М+ и N направление перехода электрона зависит от химических особенностей взаимодействующих частиц. Эксиплексы имеют большие ди-польпые моменты из-за характера связывания при переносе заряда, и их спектр излучения зависит от диэлектрической проницаемости растворителя. При образовании эксимеров дипольный момент не возникает, поскольку две молекулы, составляющие эксимер, одинаковы. Однако резонанс между структурами M+M п М М+ в какой-то степени стабилизирует комплекс за счет переноса заряда. [c.134]

    Электронное возбуждение влияет на дипольные моменты не только путем изменений в геометрии молекулярного скелета, но и через перераспределение самих электронов. Определяя это распределение, дипольные моменты таким образом предполагают возможное химическое поведение возбужденных состояний. Изменения в дипольном моменте при возбуждении можно установить по влиянию полярных растворителей на спектры поглощения и флуоресценции и по воздействию приложенных электрических полей на деполяризацию флуоресценции, возбужденной поляризованным светом. Все эти изменения могут происходить как в сторону увеличения, так и в сторону уменьшения величины дипольных моментов. Например, в формальдегиде (метаноле) дипольный момент уменьшается от 2,3 дебая в основном состоянии до 1,6 дебая в состоянии ( , я ), тогда как для бензофенона эти значения составляют 2,9 и 1,2 дебая в основном и возбужденном состояниях соответственно. Уме1[ьше-ние дипольных моментов определяется уменьшением поляризации связи С = 0 в возбужденной молекуле. В то же время дипольный момент ароматической молекулы, такой, как 4-нитроанилин, при возбуждении увеличивается от 6 до 14 дебая. Это происходит в значительной мере благодаря процессам переноса заряда в возбужденном состоянии можно ожидать, что полностью биполярная структура 4-нитроанилина, с полностью отрицательными зарядами на каждом кислороде и полностью положительными зарядами на каждом азоте, должна иметь дипольный момент около 25 дебая. [c.150]

    Похоже, что замещение в положении 4 бензофенона влияет на эффективность фотовосстановления, изменяя характер возбужденного состояния. В табл. 6.1 представлены константы скорости восстановления триплетов бензофенона и некоторых его производных. Мы уже говорили о спектроскопии этих аномальных кетонов. Для арилкетонов конфигурации (п,я ) и (л,л ) гораздо ближе по энергии, чем для алкилкетонов и в случае некоторых замещенных производных низшим возбужденным состоянием может быть (л,л ). Например, время жизни фосфоресценции 4-фенилбензофенона почти в 50 раз больше, чем нормального бензофенона, если полагать, что нижний триплет является состоянием (л,л ). Это заключение подтверждается как структурой эмиссионных спектров, так и исследованиями ЭПР. В состоянии (я,л ) возбужденный карбонильный кислород не столь электронодефицитен, как в состоянии (л, л ), а энергия возбуждения частично делокализо-вана по л-системе, так что энергии активации не перекрываются. Вследствие этого состояние (л,л ) гораздо менее реакционноспособно, чем состояние (л, л ), поэтому фотовосстановление 4-фенилкетона будет неэффективным. У 4-метилкетона триплетное состояние, возможно, является смешанным, и скорость его восстановления лежит между таковыми для бензофенона и 4-фенилбензофенона. Если заместителями являются электронодонорные группы, как в аминобензофеноне, то нижними триплетами становятся состояния с переносом заряда [c.169]

    Поскольку тииловый радикал беден электронами, он является хорошим инициатором для богатых электронами мономеров типа виниловых эфиров (лучше чем для бедных электронами акрилатов). Эти реакции лежат в основе процесса с участием тиольных групп и двойных связей. Для фотоинициирования широко используются системы кетон — амин. Кетон в триплетном возбужденном состоянии и амин образуют эксиплекс (вероятно, комплекс с переносом заряда), который распадается на радикалы при переносе протона  [c.260]

    Рассмотрим теперь в качестве примера молекулы С1Рз и РР3, для образования которых характерен частичный перенос заряда от нейтрального атома хлора (или фосфора) на атомы фтора с одновременным возбуждением хлора (или фосфора), а также перенос части зарядовой плотности от 2р-орбиталей фтора на экстравалентный Зй-уровень центрального атома. [c.50]

    Кинетика образования возбужденных комплексов с переносом заряда — эксиплексов — описывается уравнениями (4.45) — (4.55), только вместо - [Р] подставляют к-. Готовят раствор пирена в гептане (Ю- М) с добавкой 1,4-дицианбензола (О, 2, 4, 6, 8-10 2 М). Измеряют спектры флуоресценции при возбуждении светом 350 нм и кинетику флуоресценции в полосе пирена (390 нм) и эксиплекса (500нм). Полученные данные представляют в координатах Р—1 и gF —t и, используя уравнения (4.45) — (4.60), находят константы входящих в кинетическую схему процессов, приняв к2< к.  [c.224]

    Настоящая работа (№ государственной регистрации 01.20.00 00161) направлена на решение фундаментальной проблемы протекания в твердых телах особого типа бимолекулярных химических реакций, не сопровождающихся массопереносом - реакций с участием квазичастиц, создаваемых внешними воздействиями. Новизна подхода заключается в изучении прежде всего особенностей химических механизмов деградации электронных возбуждений в ионно-молекулярных кристаллах. Автолокализация в ионных кристаллах, таких как ЩГК, процесс по сути физический, т.к. взаимодействие квазичастиц с решеточными фононами приводит, как правило, только к изменениям межъядерных расстояний. Аналогичный процесс в ионно-молекулярных кристаллах (ИМК) происходит при участии как решеточных, так и локальных, внутренних колебаний, что зачастую приводит к разрыву или перераспределению химических связей внутри сложных ионов с образованием различного рода новых частиц-изомеров, комплексов с переносом заряда, соединений с необычной степенью окисления. [c.97]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    При а > Ь образуются слабые, легко диссоциирующие комплексы с энтальпией образования ДН is 20— 30 кДж/моль. Стабилизация осн. состояния в них достигается гл. обр. за счет электростатич. сил, величина перенесенного заряда невелика. К слабым относятся распространенные комплексы типа яя (я-донора с я-акцеп-тором), обычно называемые я-комплексами, а также типа яа (напр., галогенов с аром, углеводородами). Осн. вклад в возбужд. состояние слабых М. к. вносит состояние ф), поскольку а Ь. Переход иа осн. состояния N и возбужденное Е сопровождается резким увеличением степени переноса заряда. Появляющаяся в электронном спектре полоса поглощения наз. полосой переноса заряда. М. к. часто наз. комплексами с переносом заряда (КПЗ). Гораздо более прочные комплексы образуют и-доноры с г)-акцепторами (напр., HaN- А1С1з), для к-рых—ДНк достигает200кДж/моль. [c.348]

    Для слабых комплексов отношение с2/с мало для основного состояния и велико для возбужденного, т. е. основное состояние почти полностью оп[[сывается несвязывающей волновой функцией, а возбужденное состояние — почти полностью дативной волновой функцией. Поэтому переход из основного состояния в возбужденное сопровождается почти полным переносом одного электрона от донора к акцептору, а возникающая спектроскопическая полоса поглощения называется полосой переноса электрона, или полосой переноса заряда. Такие полосы обычно имеются также в электронных спектрах комплексов переходных металлов, таких, как [c.365]


Смотреть страницы где упоминается термин Возбуждение перенос заряда: [c.441]    [c.133]    [c.233]    [c.80]    [c.177]    [c.178]    [c.80]    [c.177]    [c.56]    [c.69]    [c.304]    [c.306]    [c.521]    [c.692]    [c.257]   
Электроны в химических реакциях (1985) -- [ c.151 , c.152 , c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Перенос заряда



© 2025 chem21.info Реклама на сайте