Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация и молекул в растворе

    Донорно-акцепторное взаимодействие молекул. Если одна из молекул имеет электронные пары, а другая — свободные орбитали, то между ними возможно донорно-акцепторное взаимодействие. Это взаимодействие проявляется в первичных актах многих химических реакций, лежит в основе каталитических процессов, обусловливает сольватацию молекул и ионов, в растворах, может приводить к образованию множества новых соединений. [c.91]


    Идея о распаде вещества в растворе на ионы была высказана Сванте Аррениусом (1857). Основоположниками современной теории электролитической диссоциации как процесса, вызываемого сольватацией молекул, являются И. А. Каблуков и В. А. Кистяковский. В отличие от гипотезы ионизации С. Аррениуса, не учитывающей взаимодействие растворенного вещества с растворителем, в их тео-[ ии к объяснению электролитической диссоциации привлекается имическая теория растворов Д. И. Менделеева. [c.128]

    При проведении эксперимента измеряется молярная вязкость — макроскопическая величина. Она имеет смысл для внутреннего трения слоев жидкости. Экспериментальные данные показывают, что уравнения броуновского движения, полученные на основании классической гидродинамики, оказываются применимыми к частицам, размеры которых превышают размеры молекул растворителя в 3—5 раз. В общем случае молекулярная (микроскопическая) вязкость не равна молярной. По мере уменьшения относительных размеров молекул растворенного вещества, вследствие наличия свободных пространств в жидкости часть времени движение будет происходить без трения, а значит, эффективное значение вязкости должно уменьшаться. На вязкость растворов оказывает существенное влияние сольватация молекул растворителем. [c.53]

    Значительное снижение энтропии фуллерена в насыщенных растворах при температурах выше ТМР может быть связано с процессом сольватации молекул фуллерена молекулами растворителя. Данное состояние раствора можно уподобить состоянию жидкого расплава кристаллосольвата. При увеличении температуры происходит распад некоторой части сольватированных комплексов. Образующийся при этом раствор, содержащий несольватированные молекулы С60, является метастабильным, что проявляется как снижение концентрации насыщения при увеличении температуры. [c.70]

    Изучение растворимости иода. 5. В пробирки наливают по мл этилового спирта и бензола и растворяют маленькие кристаллы иода. Наблюдают окраску полученных растворов. Разная окраска растворов иода в полярных и неполярных растворителях обусловлена неодинаковой сольватацией молекул Ь. [c.203]

    Выполнение. В цилиндры поместить одинаковые объемы растворителей. В один цилиндр налить спирт, в другой— бензол, в третий — ССЦ. Затем в каждый внести несколько кристалликов иода (по возможности одинаковые количества). Закрыть цилиндры пробками и жидкости встряхнуть. После растворения оказывается, что в первом цилиндре получается желто-коричневый раствор (окраски не должны быть темными), во втором — желтовато-фиолетовый и в третьем — фиолетовый (белый фон ). Коричневый цвет раствора иода указывает на сильную сольватацию растворенных молекул, в то время как фиолетовая окраска раствора указывает на незначительную сольватацию молекул иода в бензоле и еще меньшую в растворе ССЦ. [c.69]


    Молекулярно-кинетический аспект сольватации. О. Я- Самойлов обосновал молекулярно-кинетическое представление о гидратации ионов. Явление гидратации трактуется им не как прочное связывание определенного числа молекул воды, а как действие ионов на тепловое движение ближайших к ним молекул раствора. Он различает два [c.274]

    Например, ддя воды при 18 °С диэлектрическая проницаемость е = 81, т. е. энергия электростатического взаимодействия между электрическими зарядами в водной среде уменьшается в 81 раз по сравнению с вакуумом. Для электролитов в водных растворах это означает увеличение их способности к ионизации. Полагают, что значительную роль при этом играют процессы сольватации молекулы растворителя, например, воды, окружая катион и анион, создают сольватные (гидратные — в случае воды) оболочки вокруг ионов и как бы растаскивают их. [c.57]

    Неводная среда способствует образованию комплексов в растворах и помогает изучить природу взаимодействия "хозяин-гость" для биологических реакций. В результате исследований взаимодействия краун-эфиров с аминокислотами было обнаружено [35], что добавление краун-эфира к насыщенным спиртовым растворам аминокислот способствует увеличению растворимости последних. Из данных по термодинамическим параметрам комплексообразования аминокислот с 18-краун-б в метаноле и этаноле показано [55, 56], что макроциклические лиганды не способны селективно связывать различные аминокислоты в спиртах. В то же время процесс их взаимодействия характеризуется различными энтальпийными и энтропийными вкладами. Таким образом, сольватация молекул "хозяина", "гостя" и комплекса играет значительную роль в процессе комплексообразования. [c.207]

    Действительно, сольватация в растворе всегда переводит любую трансформацию координационной сферы в процесс замещения лигандов с возможностью сохранения координационного числа, причем координация молекул растворителя позволяет реализовать в растворе большое количество промежуточных форм (ступенчатое равновесие)  [c.11]

    Координационное число и число сольватации отражают то простое предположение, в соответствии с которым сольватация молекул или ионов сводится к координационному связыванию молекул растворенного вещества и растворителя. Координационное число — это не что иное, как число молекул растворителя в первой координационной сфере иона в растворе [103]. Первая координационная сфера состоит только из молекул растворителя, находящихся в непосредственном контакте с ионом или на таком расстоянии от него, что другие молекулы растворителя не могут располагаться между ними и ионом. Иногда такой тип сольватации называют первичной или химической сольватацией. Координационные числа, определяемые различными экспериментальными методами [103], в случае воды изменяются приблизительно от 4 для Ве до 9 для ТН , хотя для большинства ионов координационное число близко 6 (например, для АР). [c.59]

    Целлюлоза может также растворяться в смесях гидразина и воды или ДМСО при температуре от 100 до 250 °С под давлением. Полученный раствор в течение нескольких часов не изменяет свою вязкость, что свидетельствует об отсутствии деградации целлюлозных молекул [108, 120]. Еще одна новая система растворителей, состоящая из ДМСО, хлораля и триэтиламина, также была использована для вискозиметрического определения СП [154]. Целлюлоза переходит в раствор в результате взаимодействия гидроксильных групп с хлоралем. Образование полуацетальных и координационных связей приводит к значительной сольватации молекул целлюлозы. [c.57]

    Исключительно важную роль в состоянии вещества в растворе играет явление сольватации или в водных растворах — гидратации, характеризующее взаимодействие между молекулами растворенного вещества и растворителя с образованием относительно устойчивых молекулярных групп. Природа явлений, протекающих прн сольватации молекул н ионов, изучена недостаточно. По традиционным представлениям этот процесс приводит к образованию оболочки из молекул растворителя вокруг молекул или нонов растворенного вещества в результате межмолекулярных и нон-ди-польных взаимодействий, которые определяются как структурой и некоторыми молекулярными характеристиками растворителя (размерами и строением его молекул, дипольным моментом, распределением зарядов в них, поляризуемостью, электронной структурой и т. д.), так и сольватируемых молекул или ионов. [c.64]

    Здесь Цк—-вязкость раствора в капиллярах пористого тела Гщ—радиус молекул исследуемого вещества с учетом их ассоциации или сольватации в растворе Гор — средний радиус капилляра (поры) носителя. [c.124]

    В технологии часто применяются смешанные растворители, а многие из жидких технических продуктов, например бензин, представляют собой трудно разделяемую смесь близких по свойствам соединений. Эти обстоятельства требуют обратить внимание на нетипичные поверхностно-активные вещества, когда любой из компонентов смешанного растворителя можно рассматривать как слабое поверхностно-активное вещество. В литературе этот случай классифицируется как адсорбция из раствора неограниченно смешивающихся компонентов. Характерные особенности адсорбции в этом случае иллюстрируются серией изотерм (рис. 3.29), когда состав раствора выражен в мольных долях X второго компонента (растворенного вещества), который изменяется от О до Г Решающее влияние на вид изотермы оказывают два параметра адсорбционной системы неидеальность раствора, которую можно характеризовать энергией Гиббса сольватации молекул в растворе и избирательностью взаимодействия ком- [c.588]


    Величины энергии сольватации ионов, рассмотренные в предыдущих параграфах, как и величины энергии сольватации молекул, которые будут рассмотрены в следующей главе, имеют большое значение в теории растворов, так как ими определяются многие их свойства. Данные о химической энергии сольватации вместе с данными об энергии кристаллической решетки соли определяют такое важное свойство электролитов, как растворимость. Химические энергии сольватации ионов и молекул электролита вместе с данными о сродстве ионов диссоциирующих веществ определяют положение равновесия между ионами и молекулами электролита, т. е. константу их диссоциации. Химическая энергия сольватации ионов в значительной степени определяет электродвижущую силу химических элементов. Наконец, химическая энергия сольватации протонов определяет абсолютную кислотность растворов. [c.211]

    Метод ЯМР чувствителен к малейшему изменению состояния электронных оболочек атомов, входящих в молекулы. Он регистрирует даже слабые межмолекулярные взаимодействия, поэтому в последние годы ЯМР вошел в число самых популярных приемов экспериментального изучения явления сольватации в растворах электролитов и структуры растворов. [c.104]

    Бросается в глаза, что рассмотренный вид потенциальной кривой существенно отличается от вида кривой с двумя минимумами, который обычно схематически изображают для переноса протона в гомогенном катализе. Это различие объясняется тем, что в гомогенных системах координата реакции не имеет смысла простого удлинения ОН-связи, а включает в себя перестройку сольватных оболочек и пространственное разделение основной части кислого центра и протонированного субстрата. Иными словами, в этом случае происходит реальная диссоциация кислоты с полным переносом протона к основанию, что возможно лишь благодаря эффектам сольватации образующихся при электролитической диссоциации положительного и отрицательного ионов. Реакции же гетерогенного кислотного катализа обычно проводят при повышенных температурах в отсутствие полярных молекул растворителя, в результате чего перенос протона не сопровождается разделением основной части кислого центра и протонированного субстрата. Вместо этого на поверхности катализатора образуются ионные пары, в которых протонированная форма субстрата и кислотный остаток связаны сильным кулоновским взаимодействием. Это взаимодействие и является основным фактором, компенсирующим менее выгодный по сравнению с гомолитическим гетеролитический разрыв ОН-связей в поверхностных гидроксильных группах. В этом смысле оно аналогично эффектам сольватации в растворах сильных электролитов. В основе гомогенного и гетерогенного катализа лежат, таким образом, совершенно различные физические модели. [c.28]

    В результате процесса сольватации в растворе должны присутствовать не свободные иопы, а ионы с сольватной оболочкой. Как уже отмечалось, Бокрис и Конвеи различают первичную и вторичную сольватную оболочки. Для понимания многих электрохимических процессов важно знать, сколько молекул раствортеля входит во внутреннюю сольват11ую оболочку. Это количество молекул называется числом сольватации п,., или, в случае водных растворов, числом гидратации ионов Пу. Они имеют относительное значение и дают ориентировочные сведения о ч теле молекул растворителя, входящих во внутренний слой. Различные методы определения чисел сольватации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно замерзанию воды. Такое представление разделяют и многие другие авторы, Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 25,08 Дж/моль град, то число гидратации [c.66]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Таким образом, изменение термодинамических параметров фазовых переходов и-парафинов в присутствии синтетических депрессоров ДЦА связано с изменением характера структурообразования в системе. Калориметрические исследования показали, что действие депрессоров может проявляться по механизму сольватации или сокристаллизации. Сольватация молекул и частиц ДЦА тормозит образование ассоциатов молекул нормальных парафинов, а сокристаллизация эффективно предотвращает образование объемных структурных сеток в растворах. Депрессорное действие ДЦА в парафинистых растворах является комплексным и, регулируя состав ДЦА, можно наиболее эффективно воздействовать на конкретную депресси-руемую систему. [c.164]

    Электрохимические и оптические данные, следовательно, указывают на возможность присутствия в растворах свободных молекул, сольватированных молекул и ионных ассоциатов. Сольватированные ионные молекулы и ионные пары различаются различной степенью и различным характером сольватации молекул. В продукте присоединения молекула сольватируется в целом, в ионной паре сольватированы ионы, входящие в молекулу. В случае кислот и оснований ионные пары представляют молекулы лиониевых солей по Гантчу. [c.305]

    Межмолекулярные (межатомные) силы притяжения весьма малы, не обладают способностью насыщаться, как это свойственно химическим силам, и действуют на близких расстояниях (порядка 10" °—10"2 м). Их обычно называют ван-дер-ваальсовыми силами. С проявлением этих сил приходится считаться при изучении таких явлений, как поверхностное натяжение, растворение, сольватация молекул в растворах, адсорбция, коагуляция и т. д. [c.68]

    Растворение.ч, как мы уже сказали, называют само(ЕроизволЬ ный процесс образования термодинамически устойчивой гомогенной (однофазной) системы. Прн самопроизвольном растворе-иин полимеров происходят следующие процессы диффузия молекул растпорителя в матрицу полимера, сольватация молекул растворителя на активных центрах макромолеку.ч распад надмолекулярных образований вследствие сольватации н ослабления межмолекулярного взаимодействия отделение предельно [c.400]

    Различия в растворимости в воде комплексонов аминокарбонового и аминофосфонового ряда хорошо согласуются с особенностями их строения в кристаллическом состоянии. Аминополи-карбоновые кислоты, как известно, отличаются сильными внутримолекулярными водородными связями, придающими, молекулам хеланта свернутую конфигурацию, что в свою очередь ослабляет сольватацию молекулы комплексона (взаимодействие молекулы комплексона с молекулами растворителя) Аминофосфоновые кислоты, несмотря на бетаиновое строение в кристаллическом состоянии, образуют малочисленные и ослабленные внутримолекулярные водородные связи и нередко имеют развернутую конфигурацию Вместе с тем для этих хелантов, как отмечается в [203], в твердом состоянии характерны сильные межмолекулярные водородные связи комплексон-комплексон, которые, по-видимому, при переходе в раствор заменяются на не менее прочные водородные связи комплексон— растворитель Таким образом, одной из причин различной растворимости комплексонов аминокарбонового и аминофосфонового ряда является, вероятно, изменение соотношения между внутри- и межмолекулярными водородными связями Другим фактором, несомненно является большая кислотность фосфоновых групп по сравнению с ацетатными, при растворении НТФ легче и в большей степени диссоциирует на ионы, чем НТА Наконец, лучшей растворимости хелантов, содержащих фосфоновые группы, способствует их большая полярность по сравнению с алкилкарбоновыми фрагментами. [c.391]

    ОН и др.) связывают такое же количество воды, как и в молекулах жирной кислоты или спирта. Расчеты сольватации полимеров по числу полярных групп в 1 юлекуле, с учетом данных табл. 15, хорошо сходятся с прямыми весовыми определениями сольватации (в граммах растворителя на 1 г полимера), которые для ряда белков в воде составляют 0,25—0,35 г/г, для нитроцеллюлозы в ацетоне 0,47 г/г, для крахмала—0,35 г/г, и др. Этот результат показывает, что при сольватации молекулы растворителя располагаются в виде одного слоя лишь вокруг полярных групп полимера, приблизительно пропорционально их содержанию в цепи. Неполярные участки, лежащие между полярны1 ш группами в полимерах, и составляющие, например, в белках или нитроцеллюлозе около половины веса полимера, остаются свободными от растворителя, т. е. топография гидратного слоя выражается рядом островков на молекуле полимера. На каждом из этих центров сольватации связанные 1 юлекулы растворителя обладают определенной продолжительностью жизни и статистическое равновесие связывания и освобождения молекул растворителя на сотнях центров, существующих в 1 юлекуле полимера, аналогично электрохимическому равновесию при ионизации поливалентных электролитов (стр. 105) или динамическому равновесию адсорбции-десорбции, выражаемому изотермой Лангмюра (стр. 93), хотя лишь в последнем случае процесс происходит на физической поверхности раздела. Этим объясняется, почему сольватационное равновесие или взаимодействие полимерных 1 юлекул в растворе иногда выражают уравнением адсорбционной изотермы или говорят об адсорбции молекул растворителя молекулами полимера. В наличии внутренней связи этих различных процессов заключается одна нз характерных особенностей коллоидных систем, которая отсутствует в растворах низко молекулярных веществ (см. главу первую). [c.175]

    Сольватация рассматривается на молекулярном уровне и включает всю совокупность взаимодействий, осуществляющихся в растворе, которые в зависимости от свойств растворителя и растворенного вещества могут иметь различную природу и проявляться по-разному. Например, сольватация молекул иода молекулами четыреххлористого углерода, молекул фосфора или серы молекулами сероуглерода осуществляется исключительно за счет слабого вандерваальсова взаимодействия, но все же энергия сольватации оказывается больше, чем энергия взаимодействия частиц в молекулярных кристаллах растворяющихся веществ. Как правило, из таких молекулярных растворов растворитель легко удаляется, а растворенное вещество остается в химически неизменном виде. При испарении растворителей из перечисленных растворов можно получить хорошо образованные кристаллы иода, фосфора, серы. Это пример слабых сольватационных взаимодействий (рис. 7.2). [c.100]

    Влияние растворителя. Стабильность аниона суще- твенно зависит от его сольватации в растворе нем более соль-<атирован ион, тем он устойчивее. В общем случае сольватация рем больше, чем меньше размер иона и чем меньше делокали-юван в нем заряд. Как правило, сольватация иона означает Образование водородных связей с окружающими молекулами растворителя. Поскольку растворителем в биологических услови-И является вода, то далее будет рассматриваться только эффект ( дратации. [c.107]

    Писаржевский и Глюкман [42] исследовали влияние растворителя на каталитическое разложение перекиси водорода над платиной и двуокисью марганца на угле. Растворителями служили вода, эфир, смесь эфира и воды и ацетон. Каталитическое разложение в водных растворах происходит мономолекулярно. Кинетика реакции сильно меняется, если в качестве растворителя употреблять смесь воды и эфира скорость реакции в воде с эфиром всегда выше, чем в чисто й Воде или чистом эфире. Наиболее важный фактор во влиянии растворителя на разложение перекиси водорода — действие эффективного пространства растворителя. Оно накладывается на взаимодействие молекул растворителя с ионами действующ его как катализатор металла и ведет к образованию сольватов ионов, участвующ,их тем или иным способом в катализе. Сольватация молекул перекиси водорода, повидимому, не играет особой роли. Пользуясь в качестве растворителя ацетоном, который в противоположность эфиру смешивается с водой во всех пропорциях, Рлюкман [19] обнаружил, что вода ускоряет реак цию, и присутствие 10—15% воды необходимо в этом случае для получения того же эффекта, как и при содержании 0,7% воды в эфире. Небольшое изменение концентрации растворенной в эфире воды (0,7—1,2%о) всегда сильно влияет на скорость реакции (20—30 раз). Для достижения такого же изменения скорости реакции в растворе ацетона приходится добавлять гораздо больше воды, именно до 80%. Кривые, изображающие зависимость скорости реакции от содержания воды, в случае эфира имеют максимум, но этого не наблюдается у ацетона. [c.682]

    При таком понимании структуры раствора в это понятие включается и структура сольватного слоя. Поэтому исследования, выполненные В. А. Каргиным по сольватации в растворах полимеров, имеют принци-циальпое значение. Они находятся в согласии с работами Маринеско [25], в которых было показано, что во внешнем электрическом поле могут поворачиваться только диполи, не входящие в сольватный слой диполи, находящиеся в сольватном слое, прочно связанные с полимером, не принимают участия в этом движении. Одновременно с этим А. Г. Пасынским было показано, что сишмаемость сольватных слоев значительно меньше сжимаемости остальной жидкости, что свидетельствует о более плотной упаковке молекул растворителя в сольватном слое [26]. [c.197]

    Если считать, что в среднем по времени молекула циклогексена равномерно окружена молекулами этилового спирта, то для взаимодействия циклогексена с водородом, адсорбированным на дублете [Р г], должно произойти o вoбaнiдeниe >С = С< от молекул спирта. Следовательно, образование активного комплекса требует флюктуаци-онного перераспределения молекул спирта, приводяш его к образованию дырки на двойной связи. Такого рода флюктуация сопряжена с локальным понижением энтропии. Если это так, то при проведении реакции в растворе следует ожидать и меньшего значения константы скорости, чем в паровой фазе в отсутствие растворителя. Обнаруженная нами идентичность центров каталитической активности процессов жидкофазного и парофазного гидрирования циклогексена подтверждает предложенную гипотезу энтропийного торможения гидрирования циклогексена за счет его сольватации молекулами растворителя. [c.299]


Смотреть страницы где упоминается термин Сольватация и молекул в растворе: [c.130]    [c.183]    [c.300]    [c.398]    [c.133]    [c.137]    [c.115]    [c.52]    [c.107]    [c.52]    [c.250]    [c.261]   
Кинетика реакций в жидкой фазе (1973) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация

Сольватация ионов и молекул в растворе

Сольватация недиссоциированных молекул и свойства растворов неэлектролитов

Сольватация недиссоциированных молекул и свойства растворов неэлектролитов Термодинамика растворов неэлектролитов



© 2025 chem21.info Реклама на сайте