Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные окисление

    Кетон, получающийся в качестве основного продукта разложения гидроперекиси, подвергается дальнейшему окислению, причем преимущественно окисляется метиленовая группа, расположенная по соседству с карбонильной и обладающая, как известно, повышенной реакционной способностью. [c.466]

    В результате окисления карбонильный кислород появляется у того же атома углерода, у которого раньше находилась нитрогруппа. Отсюда можно заключить, что при нитровании высших парафиновых углеводородов нитрогруппа вступает главным образом в положение 2. [c.562]


    Цианид-ион, будучи отрицательно заряженным, — относительно плохой л-акцептор. Поэтому цианидные комплексы металлов в низких степенях окисления не так устойчивы, как соответствующие карбонильные производные. С другой стороны, благодаря наличию заряда N--hoh как сг-донор сильнее, чем СО, и поэтому образует относительно устойчивые производные с металлами [c.408]

    Химические методы анализа более широко применяются при анализе работающего масла для идентификации и определения количества продуктов окисления и загрязнения. Например, по результатам определения количества металлов делаются выводы о процессах износа деталей двигателя, по содержанию карбонильных групп (ИК спектроскопия) -о степени окисления масла и ресурсе работы. [c.41]

    При производстве формальдегида и других карбонильных соединений окислительным дегидрированием спиртов одновременно происходят реакции эндотермического дегидрирования и экзотермического окисления спиртов  [c.324]

    Химически связанный кислород в окисленном битуме распределяется следующим образом от 40 до 60 % (масс.) в виде сложноэфирных групп (—СООК), остальное количество примерно поровну между гидроксильными (—ОН), карбоксильными (—СООН) и карбонильными (- СО) группами. [c.106]

    Как показали наши исследования, наиболее информативный признак окисления нефтей — появление в ИК<пектре нефти п. п. 1710 см", интенсивность которой пропорциональна содержанию карбонильных групп. [c.127]

    При таком окислении об окисляемости топлив судят по времени расходования 50% кислорода, по времени достижения максимальной концентрации образующихся продуктов окисления (например, гидропероксидов) и по численному значению этой концентрации. Результаты окисления топлива Т-6 при 150°С, имевшего исходную концентрацию растворенного кислорода примерно 1,8 ммоль/л, показывают, что пероксиды, спирты и карбонильные соединения являются промежуточными продуктами окисления [54]. Их концентрации в ходе испытания проходят через максимумы, смещенные по времени друг относительно друга. Первым достигают максимума соединения, имеющие функциональную группу ООН, затем соединения с ОН и СО и, [c.50]

    Дальнейшее окисление карбонильных производных ведет к образованию кислот. Альдегиды, получаемые из первичных гидроперекисей, окисляются до кислот либо кислородом, либо гидроперекисями [56]. Подобным же образом, но с большим трудом, происходит окисление кислородом кетонов до кислот [93, 94]. [c.297]


    Высокая температура в работающем двигателе обеспечивает значительную скорость инициирования перекисного окис.пения. Полученные перекиси быстро подвергаются термическому или каталитическому разло жению, образуя, кроме обычных карбонильных соединений и спирта, кислоты, воду и двуокись углерода. Подобное глубокое окисление до кислотных продуктов является основной причиной ухудшения качества смазочных массл в двигателях внутреннего сгорания. [c.307]

    Давление, при котором протекает реакция, как было показано на примере индивидуальных углеводородов, влияет на характер продуктов окисления. Основными переменными являются парциальные давления углеводорода и кислорода, если вместо кислорода применяется воздух, в этом случае азот просто служит разбавителем. Высокие давления в большей мере способствуют образованию спиртов, чем карбонильных соединений, а также благоприятно влияют на углеродный скелет углеводородной молекулы. [c.343]

    В процессе окисления парафиновых углеводородов наряду с кислотами и другими кислородсодержащими соединениями в продуктах реакции образуется значительное количество высших жирных спиртов. В результате исследований было установлено, что в начальный период окисления скорость образования спиртов значительно превышает скорость образования кислот и карбонильных соединений. С увеличением глубины окисления парафинов содержание спиртов достигает максимума, а затем в результате дальнейших окислительных превращений начинает падать. Чтобы избежать нежелательных превращений спиртов, необходимо либо ограничить время пребывания продуктов окисления в зоне реакции, либо обеспечить защиту образовавшихся спиртов путем введения в реакционную зону ингибиторов их дальнейшего окисления. Работы, проведенные в каждом из указанных направлений, привели к разработке двух различных процессов получения высших жирных спиртов путем прямого окисления парафиновых углеводородов в жидкой фазе. [c.160]

    Карбонильные группы, за некоторым исключением, имеют склонность увеличивать способность первоначального углеводорода к окислению. В то время как ацетон окисляется более медленно, чем пропан (но быстрее этана), 3-пентанон окисляется несколько быстрее, чем пентан. [c.72]

    В табл. П-4 приведено сравнение продуктов окисления циркулирующим кислородом некоторых типов углеводородов при 110° С. Величины выражены в процентах от общего количества поглощенного кислорода. Парафины и нафтены дают наибольший выход кислот, карбонильных соединений и двуокиси углерода. Парафины дают наибольший выход воды, нафтены — наибольший выход перекисей. За исключением перекисей (вызывающих коррозию металлов [111]), связи между какими-либо из этих продуктов и материальным исполнением двигателя не установлено. [c.82]

    Данные о составе продуктов окисления тяжелых керосиновых фракций с 4ип. = 240—350 °С (низшие и высшие кислоты, спирты и карбонильные соединения) приведены на рис. 62. [c.150]

    Природа и состав продуктов более глубокого окисления (карбонильных соединений, кислот, лактонов, сложных эфиров), полученных при различных условиях, заставляют (из-за отсутствия кинетических данных) предположить несколько схем радикальных последовательных реакций  [c.152]

    В настоящее время лишь 10% всего метилового спирта получают попутно при сухой перегонке дерева, целевым продуктом которой является металлургический кокс, а 90% — окислением низших углеводородов и гидрированием окиси углерода. Приблизительно 50—60% метилового спирта идет на производство муравьиного альдегида, 20—30% используют в качестве антифриза, остальное —в различных химических производствах или в качестве топлива. Этиловый и изопропиловый спирты используют для получения карбонильных производных уксусного альдегида и ацетона. Из втор-бутилового спирта получают в основном метилэтилкетон. [c.205]

    Альдегиды и кетоны можно получать окислением соответствую [цих спиртов, т. е. имеющих такой же углеродный скелет и гидрО ксильную группу при том же атоме углерода, когорый в получаемом альдегиде или кетоне образует карбонильную группу. На пример  [c.485]

    Установлено, что кислород связывается с молекулами битума в виде гидроксильных, карбонильных, карбоксильных и сложноэфирных групп, В среднем в сложноэфирных группах содержится 60% химически связанного кислорода. Остальные 40 /о распределены примерно поровну между гидроксильными, карбоксильными и карбонильными группами в битумах, полученных при- температуре окисления 150 °С, а в битумах, полученных при 250 °С, на гидроксильные и карбонильные группы приходится приблизительно по 16—18% и на карбоксильные 5—8%. [c.45]


    Дополнительным источником самоторможения окисления на глубоких стадиях является образование ингибиторов окисления, таких, как фенолы, непредельные соединения с карбонильными группами и др. Фенолы образуются как побочные продукты при окислении алкилароматических углеводородов по следующим реакциям. [c.52]

    Измерение кинетики образования других промежуточных соединений — спиртов, карбонильных соединений, кислот — позволяет характеризовать динамику их поведения в ходе окисления топлива растворенным кислородом. Метод позволяет сравнивать топлива по окисляемости и выявить специфику окисления топлив растворенным кислородом. [c.72]

    В опытах 1 и 2 резина подвергалась воздействию углеводородов, в опытах 3 и 4 — углеводородов, содержащих стабильные продукты окисления кислоты, спирты, карбонильные соединения в опыте 5 в топливе протекали окислительные процессы, в опыте 6 резину окисляли кислородом воздуха. Сопоставляя [c.230]

    Из опубликованных в этой области данных известно, что процесс окисления углеводородов [82, 213, 236, 274] протекает как ряд последовательных реакций через образование перекис-ных соединений (теория Баха). Он сопровождается дегидрированием, отщеплением атомов углерода сырья и образованием некоторых кислородных соединений сложных эфиров, гидроксильных, карбонильных и карбоксильных групп в зависимости от химических особенностей сырья и условий процесса [52] По-видимому, внедрение кислорода в молекулы сырья вызывает специфические спиновые взаимодействия, которые выражаются в создании локальных полей [19]. [c.33]

    В условиях хранения окисление топлива происходит в жидкой фазе под действием кислорода воздуха. При этом содержащиеся в топливах парафиновые и нафтеновые углеводороды почти не подвергаются действию кислорода — главная роль в снижен 1и стабильности топлив принадлежит органическим соединениям, содержащим кислород, серу (полисульфиды и ароматические тиолы) и азот, и ненасыщенным углеводородам. Кислород активно взаимодействует с алкилароматическими углеводородами, имеющими ненасыщенные боковые цепи. Основными продуктами этого взаимодействия являются спирты, карбонильные соединения и другие вещества, которые в дальнейшем образуют смолы причем оксикислоты и смолы кислотного характера ускоряют дальнейшее окисление, а нейтральные смолы его тормозят. [c.253]

    Кинетика поглощения кислорода и образования продуктов окисления для ДТ при 140°С представлена на рис. 3.13 [88]. Показано, что первичными продуктами окисления являются гидропероксиды и их соединения, содержащие карбонильную группу. Вторичными продуктами окисления являются соединения, содержащие карбоксильную и эфирную группы [88]. Характер кинетических кривых накопления осадков свидетельствует о вторичной природе их происхождения и указывает на возможность появления уже на малых глубинах окисления. Имеет место корреляция между скоростью накопления соединений, содержащих карбоксильную группу, и скоростью образования осадков. [c.106]

    Хорошему окислению пропилена в ароматических углеводородах способствует добавление к реакционной смеси Na2 Oз [40] или К2СО3 [41] для нейтрализации образовавшихся кислот. По первому методу при конверсии 12,5% получают 28,8 мол. % окиси пропилена п 18 мол. % пропиленгликоля наряду с кислотами и эфирами. Для инициирования реакции рекомендуется вводить соединения с карбонильными пли карбоксильными группами, наиример пропионовый альдегид или ацетальдегид. По второму методу [41], благодаря специальной конструкции реакционной камеры, получают высокую конверсию (94,2%) и высокий выход на единицу объема в единицу времени 100 г/ч окиси пропилена и 50 г/ч пропиленгликоля. [c.77]

    Т.А. Ботнева, Я.А. Терской, Н.С. Шулова, изучавшие карбонилсодержащие соединения, главным образом связанные со смолисто-асфальтено-выми компонентами нефти, на примере окисленных нефтей Прикаспийской впадины установили различия в составе этих соединений. Соотношение в нефтях содержания кетонов и кислот не зависит от степени окислен-ности нефти и суммарного содержания карбонильных и кислородсодержащих соединений, различия в их распределении характерны для нефтей разных стратиграфических комплексов. Так, в нефтях, залегающих в палеозойских отложениях, величина отношения кетоны/кислоты изменяется от О до 0,10, а в мезозойских отложениях - от 0,36 до 0,83. Эти пока немногочисленные данные позволяют предположить, что нефть наследует такую характеристику смол, как состав кислородсодержащих соединений. [c.33]

    НИН и выветривании, как в аэробных (более существенно), так и в анаэробных условиях значительно возрастает количество кислородсодержащих карбонильных группировок, что отражается на интенсивности п. п. 1710 см О 0,1). В природных условиях нефти с такими значениями интенсивности п. п. 1710см" (>0,1), как отмечалось выше, встречаются в зоне идиогипергенеза - на небольших глубинах, где идут интенсивные процессы окисления. Опыты показали также, что во всех случаях возросла роль ароматических структур как в ароматических кольцах (1610 см ), так и в замещенных ароматических соединениях (750 см" ) за счет, видимо, сокращения доли алифатических УВ. [c.131]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах не только не арепятствует образованию комплексов, но, по-видимому, облегчает комплексообразование, так как окисленные соединения с более короткими углеродными цепями дают комплексы. Ацетон с тремя углеродными атомами в прямой цепи, масляная кислота с четырьмя углеродными атомами и их высшие гомологи образуют комплексы с мочевиной. [c.206]

    Уббелоде получил измеримые количества продуктов, кипящих выше температур кипения карбонильных соединений от С до С4 при окислении н-пентана при атмосферном давлении. Он проводил окисление в системе с циркуляцией при температурах от 320 до 350° С, отделяя к-пентан и низкокипящие продукты от конденсата и возвращая их в реактор [63]. Во фракции конденсата 65—95° С он выделил 2-метилтетрагидрофуран и обнаружил несколько ненасыщенных соединений, вероятно, дигидро-пиранов. Предположение Уббелоде относительно образования циклической окиси путем внутренней дегидратаций гидроперекиси является, по-видимому, наиболее удовлетворительным объяснением из всех, которые могут быть предложены. [c.339]

    Шебекинском комбинате кубовый остаток направляется в термическую печь цеха СЖК для извлечения и облагораживания кислот. На каждую тонну высших спиртов получается свыше 200 кг смеси жирных кислот, из которых более половины представлено кислотами мыловаренной фракции. По качественной характеристике кислоты, выделенные из кубового остатка, значительно уступают кислотам, полученным по обычным схемам окисления парафинов до синтетических жирных кислот. Согласно опубликованным данным, кислоты кубового остатка после термической обработки и отгонки неомыляемых имели следующие показатели кислотное число 213, эфирное число 4,5, йодное число 39,3, карбонильное число 43,5 и содержали 9,6% неомыляемых [86]. Таким образом, раздельная переработка кубового остатка не обеспечивает производство синтетических кислот, соответствующих действующим техническим условиям. Кубовый остаток может быть переработан только совместно с омыленным продуктом цеха СЖК, хотя и в этом случае качество товарных кислот, естественно, несколько понизится. [c.165]

    При термоокислении ПДМС образуются формальдегид и параформ, окись и двуокись углерода, вода, метанол, муравьиная кислота и обычные продукты термодеструкции — циклосилоксаны, метан, водород. В окисленном полимере появляются боковые си-ланольные группы, в состав которых входит часть атомов водорода отщепившихся метильных групп, но в нем отсутствуют перекисные, карбонильные, карбоксильные и кремнийгидридные группы [66]. Накопление боковых силанольных групп приводит к ускорению как структурирования полимера в результате их конденсации, так и термодеструкции с выделением циклосилоксанов и метана по реакциям (34) и (35) [66, 67]. Потери массы очи щенного ПДМС за одинаковое время при 300 °С на воздухе в 2—3 раза выше, чем в вакууме. Термоокисление ингибируется различными антиоксидантами [66—68. Все имеющиеся данные [c.487]

    Накапливающиеся в систёме гидроперекиси подвергаются распаду по связи 0—0, имеющей относительно низкую энергию активации (30—40 ккал моль) [16], образуя не только активные раДикалы, продолжающие цепь окисления, но и сравнительно стабильные продукты окисления (спирты, соединения с карбонильной группой и др.)- [c.223]

    Кинетика поглощения кислорода и образования продуктов окисления для топлива Т-6 при 130°С показана на рис. 4.6. Растворенный кислород окисляет топливо с образованием спиртов, карбонильных соединений и кислот. Характер кинетических кривых продуктов окисления указывает па то, что гидроперок-сиды, спирты и карбонильные соединения являются промежуточными соединениями. Концентрация каждого продукта в ходе опыта проходит через максимум, но максимумы смещены относительно друг друга во времени. Раньше всего максимум достигается на кинетической кривой накопления гидропероксидов [164]. Кислоты являются конечным продуктом, хотя в ряде случаев [119] кривая накопления кислот также имеет максимум, что можно объяснить их участием в образовании смолистых соединений и сложных эфиров. [c.86]

Таблица 4 7. Кинетика образования гидроперокеида, спиртов, карбонильных соединений и кислот при окислении топлив растворенным кислородом з замкнутом объеме Таблица 4 7. <a href="/info/24721">Кинетика образования</a> гидроперокеида, спиртов, <a href="/info/1049">карбонильных соединений</a> и кислот при окислении топлив <a href="/info/641946">растворенным кислородом</a> з замкнутом объеме
    Несмотря на значительно меньшую концентрацию енольной формы (на 5— 7 порядков), чем кетонной, она окисляется легко, и, видимо, через енольную форму идет в основном окисление кетонов ионами переменной валентности. При изучении окисления метилэтилкетона комплексами марганца меди и железа в водных растворах было отмечено, что скорость енолизации намного выше скорости окисления кетона [310]. Однако нельзя исключить возможность окисления кетонной формы через предварительное вхождение в координационную сферу металла карбонильного кислорода [306], В углеводородном растворе окислению предшествует комплексообразование, что доказано на примере окисления циклогексанона стеаратом трехвалентного кобальта [309] [c.196]

    В обзоре [35] проанализированы данные по стабильности а-связи металл—углерод, образованной атомом переходного металла. Из опубликованных данных следует, что стабильность а-комплексов возрастает с увеличением степени окисления металла (для л-комплексов наоборот) дает стабильные а-комплек-сы, а такие же комплексы Р 2+могут быть получены лишь при введении стабилизируюш,их лигандов. о-Комплексы за 1етно стабилизируются галогенами, карбонильными и циклопентадиенильными группами, а также электронодонорными молекулами — эфирами, аминами и особенно фосфинами. Например, чистый (СНз)4Т1 стабилен лишь при —78 °С, а его зфират стабилен до О С. [c.103]

    Второй важной группой карбонильных соединений нефти являются сложные эфиры. О концентрации этих КС чаще всего судят по разности кислотных чисел до и после смыления вещества. В последние годы для той же цели широко используется метод, основанный на анализе области поглощения карбонильных функций в ИК спектрах [110, 659—661]. С помощью такого метода Г. Дженкинс [659] измерил концентрации сложных эфиров в 29 нефтях различных месторождений. Он считает, что в большей части нефтей присутствовали только нативные эфиры, хотя не исключает и возможности загрязнения некоторых образцов компонентами поверхностно-активных веществ, применявшихся при добыче и обезвоживании нефти, или продуктами окисления, образовавшимися при хранении. Обнаруженные им сложные эфиры являют я высокомолекулярными, так как они не содержались в [c.108]

    Подогретый пропан поступает в низ реактора. Продукты нитрования II окисления вместе с непрореагировавшим пропаном, который берут в значительном избытке, охлаждаются водой в холодильнике 3 и поступают в абсорбер 4 для улавливания продуктов окисления (альдегиды и кетоны) и конденсации нитросоединений. Абсорбер оронгается водным раствором солянокислого гидроксил-амнпа связывающего летучие карбонильные соединения в виде оксимов. Жидкость из куба абсорбера направляется в отпарную колонну б, где нитропарафины, а также альдегиды и кетоны, образовавшиеся при гидролизе оксимов, отгоняются от абсорбента, который после охлаждения в холодильнике 5 возвращают в абсорбер. Пары из отпарной колонны 6 конденсируются в холодильнике-конденсаторе 7, а в сепараторе 8 разделяются на два слоя. Нижний, водный слой возвращают на верхнюю тарелку отпарной колонны, а верхний, органический слой направляют в ректификационную колонну 9. Там отгоняются легколетучие альдегиды и кетоны, а смесь нитропарафинов собирается в кубе колонны. Нитропарафины поступают на дальнейшую переработку, состоящую в их очистке и ректификации, при которой последовательно отгоняют воду, нитрометан, нитроэтан, 2-нитропропан и 1-нитропропан. [c.349]


Смотреть страницы где упоминается термин Карбонильные окисление: [c.586]    [c.129]    [c.688]    [c.13]    [c.43]    [c.395]    [c.67]    [c.160]    [c.189]    [c.196]   
Препаративная органическая химия Издание 2 (1964) -- [ c.678 ]

Курс физической органический химии (1972) -- [ c.425 ]




ПОИСК





Смотрите так же термины и статьи:

Зфиры карбоновых кислот окислением карбонильных соединений

Карбонильные окисление альдегидов

Карбонильные окисление нитратом серебра

Карбонильные соединения получение окислением

Катализаторы окисления боковых цепей алкилзамещенных ароматических углеводородов или гетероциклов в ароматические (гетероциклические) карбонильные соединения

Катализаторы окисления олефинов (диолефинов) и их производных в ненасыщенные карбонильные соединения

Нефть нефтепродукты окисление в карбонильные, карбоксильные соединения, ненасыщенные углеводороды

Обзор литературных данных по перекисному окислению карбонильных соединений

Окисление активированных метальных и метиленовых групп в карбонильных соединениях

Окисление активированных метильных и метиленовых групп в карбонильных соединениях

Окисление алифатических карбонильных соединений в карбонильные соединения с меньшим числом атомов в кислоты

Окисление гидрокси карбонильных соед

Окисление группы СН цикла в карбонильную группу

Окисление и восстановление карбонильных соединений

Окисление карбонильных групп

Окисление карбонильных кислот

Окисление карбонильных соединений

Окисление карбонильных соединений надкислотой (реакция Байера — Виллигера)

Окисление ненасыщенных углеводородов в карбонильные соединения

Окисление неполное карбонильные соединения

Окисление неполное ненасыщенных спиртов, карбонильных

Окисление неполное олефинов в насыщенные карбонильные

Окисление первичных и вторичных спиртов в карбонильные соединения

Окисление различных классов карбонильных соединений

Окисление спиртов и их производных в карбонильные соединения, кислоты

Окисление у атома углерода, соседнего с карбонильной группой

Примеры перекисного окисления карбонильных соединений

Присоединение галогенов и галогенводородов Таутомерия. Присоединение спиртов Присоединение синильной кислоты. Окисление Замещение водорода галогенами. Металлирование Взаимодействие с карбонильными соединениями Полимеризация. Изомеризация по Фаворскому Применение алкинов

Реакции алкинов Присоединение галогенов и галогенводородов. Гидратация. Таутомерия. Присоединение спирПрисоединение синильной кислоты. Окисление. Замещение водорода галогенами. Металлирование. Взаимодействие с карбонильными соединениями. Полимеризация. Изомеризация по Фаворскому

Спирты окисление карбонильными соединениями

Способы получения ацетиленов Карбидный метод. Термоокислительный пиролиз метана. Дегидрогалогенирование дигалогеналканов. Пиролиз углеводороРеакции алкинов Присоединение галогенов и галогенводородов Таутомерия. Присоединение спиртов. Присоединение синильной кислоты. Окисление. Замещение водорода галогенами. Металлирование. Взаимодействие с карбонильными соединениями. Полимеризация. Изомеризация по Фаворскому



© 2024 chem21.info Реклама на сайте