Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры межфазной

    При межфазной поликонденсации образование полимера происходит на границе раздела двух несмешивающихся жидкостей одно из исходных веществ обычно растворяют в воде, а второе в органическом растворителе, не смешивающемся с водой. При сливании этих растворов на границе раздела между ними образуется полимер. Межфазная поликонденсация может осуществляться при перемешивании и в статических условиях. Примеры синтеза ароматических полиамидов межфазной поликонденсацией приведены в работах [13—20]. [c.11]


    Механизм действия гидродинамических факторов на процесс синтеза полимеров межфазным способом в настоящее время еще не совсем ясен, однако это влияние настолько существенно, что процесс поликонденсации из диффузионной области может перейти в кинетическую [1]. [c.54]

    Поликонденсация бис(8-оксихинолинов) с солями или хелатами металлов интенсивно исследовалась только в последние годы. Наиболее подробно изучена термическая стабильность полученных полимеров. Поликонденсацию производных бис(8-оксихино-линов) с ацетатами двухвалентных металлов [уравнение (УП-9)] проводили в диметилформамиде. Однако при кипячении (150° С) реагентов в таком сильно полярном растворителе образующиеся веш ества выпадают в осадок ун<е на ранней стадии реакции и поэтому имеют низкий молекулярный вес [9,27—29, 32,69]. В качестве растворителя может быть использован также диметилсульфоксид. Описано получение таких полимеров межфазной поликонденсацией бензольных растворов лигандов и аммонийных комплексов металлов, но никакими преимуш ествами этот метод не обладает [31]. Применялись также растворы ацетилацетонатов металлов в диметилформамиде [47]. [c.187]

    Таким образом, метод синтеза полимеров межфазной поликонденсацией интересен также и тем, что он таит в себе потенциальные возможности изготовления изделий из полимеров (волокна, пленки) непосредственно в процессе их синтеза. Это особенно интересно в случае плохорастворимых высокоплавких полимеров, температуры плавления которых лежат вблизи их температур разложения или превышают их. [c.519]

    В реакции поликонденеации появился ряд новых направлений [16—19, 22—27] среди них нужно отметить полирекомбинацию [66—74], позволяющую получать полимеры из насыщенных углеводородов и других мономеров дегидрополиконденсацию [63, 75—79], приводящую к получению ряда принципиально новых полимеров межфазную поликонденсацию [80—82] и низкотемпературную поликонденсацию в растворе [83, 84], которые являются новыми перспективными методами синтеза гетероцепных полимеров реакцию полициклизации [59, 85—98], позволяющую получать полимеры путем замыкания гете-ро- или карбоциклов реакцию поликоординации [19—24, 27, 99—102], открывающую возможность получать полимеры, содержащие в полимерной цепи различные металлы. В настоящее время поликонденсацией могут быть синтезированы почти все известные классы высокомолекулярных соединений, а для некоторых из них — это единственный путь синтеза. Огромное значение поликонденсационные процессы имеют и в природе. Такие важнейшие биополимеры, как белки, нуклеиновые кислоты, натуральный каучук и некоторые другие, повидимому, также получаются в живом организме в результате процессов ноликонденсации. [c.10]


    Полиамидные волокна, за исключением волокон специальных типов (термостойкие, структурированные), -формуются из расплава полимеров. Другие методы формования из растворов, дисперсий полимеров, межфазным способом —до сих пор не получили. практического применения. [c.109]

    Хотя межфазные катализаторы обычно не регенерируются, это, конечно, необходимо при применении их в больших количествах или при использовании в непрерывных процессах. В этих случаях нерастворимые, связанные с полимерами катализаторы ( трехфазные катализаторы ) обладают широкими потенциальными возможностями применения. Как будет подробно показано в других разделах, такими катализаторами мо- [c.97]

    Процессы адгезии играют значительную роль в технологии получения текстильных и композиционных материалов, битуминозных материалов для дорожного строительства, новых клеев и т.д. Существующие термодинамические теории адгезии основаны на результатах исследований энергии межфазного поверхностного натяжения, краевых углов на границе субстрат - адгезив , а также смачивания и растекания адгезива на межфазных границах с учетом вязкости и различного вклада межмолекулярных сил [1-3]. При этом недостаточно учитывается структура молекулярных растворов полимеров и их отклонения от идеальных. [c.111]

    Липатов Ю. С. Межфазные явления в полимерах. Киев Наукова думка, [c.222]

    Излагаются основные понятия современной теории адгезии и фазовых переходов. Предложена модель адгезии на межфазной границе раствор полимера - субстрат , как расширение двумерного поверхностного газа в поле межмолекулярных сил субстрата. Показаны особенности фазовых переходов и адгезии в полимерных смесях. Изложены результаты экспериментов по изучению влияния хаоса компонентного состава на характеристики фазовых переходов в многокомпонентных высокомолекулярных системах. Установлено, что концентрационный хаос искажает критические константы фазовых переходов, определяемые из классов универсальности. Обнаружен эффект пространственно-временного совмещения фазовых переходов в многокомпонентных высокомолекулярных системах с концентрационным хаосом. Учебное пособие предназначается для студентов и аспирантов химических, химико-технологических и инженерных специальностей вузов и может быть рекомендовано специалистам в области технологии, физики и химии полимеров, композиционных материалов, текстильной промышленности и нефтехимии. [c.2]

    Фазовые переходы и связанные с ними критические явления являют собой яркие примеры единства и универсальности законов природы. Современная теория фазовых переходов является не только достоянием физики конденсированного состояния, Методы теории фазовых переходов все чаще применяются в различных областях естествознания, технических и даже в гуманитарных науках. Объединяют явления адгезии и фазовых переходов межфазные процессы массопереноса и межфазные взаимодействия. Особо велико значение теории фазовых переходов и адгезии для технологии получения композиционных и полимерных материалов с заданными свойствами. К сожалению, в большинстве образовательных и специальных курсов по физики и химии полимеров, а также теоретических основ технологии композиционных материа юв, волокон и полимеров, адгезии и фазовым переходам не уделяется должное внимание. Цель данного материала ознакомить учащихся и специалистов с основами теории. Поэтому в разделах 1 и 3 приведен обзор современных теорий. В части 2 и 4 приведены результаты, полученные авторами. [c.4]

    Поскольку внешней фазой сорванных твердых частиц в присутствии полимеров являются эластичные полимерные межфазные слои, то вокруг полимерного ядра наклеиваются парафиновые отложения с образованием сложных фигур. Данный подвижный комплекс непрерывно растет в объеме в потоке отрываемых отложений в виде легкоподвижной (парафино-полимерной) вязкой грязевой пробки, которая изменяет свою форму при прохождении через внутренние устройства трубопровода и частично наслаивается на твердые поверхности отложений. Прочность этих образований в начальный период незначительна, и они легко разрушаются до мелких частиц на решетках фильтров и в насосных агрегатах. Наличие микромолекул полимера на кристаллах парафинов предупреждает их повторное осаждение в виде отложений. [c.163]

    Создание градиента скорости (напряжения сдвига) перемешиванием и перекачиванием растворов, особенно при повышенной температуре, может приводить к увеличению взаимной растворимости полимеров [168]. Этот эффект аналогичен эффекту удаления от критической температуры растворения в сторону однофазной системы или разбавления системы растворителем. При достаточно большом напряжении сдвига раствор становится однофазным вследствие того, что размер капель в результате дробления становится соизмеримым с размерами межфазного слоя. Чем меньше кон центрация раствора, тем меньше напряжение сдвига. Однако при С > Сг однофазное состояние системы при увеличении напряжения сдвига не достигается, хотя смещение системы в этом направлении имеет место. Таким образом, увеличение взаимной растворимости полимеров, достигаемое изменением температуры, может быть усилено действием сдвига (перемешивание, взбалтывание, перекачивание). При этом отмечается [168], что повышение температуры оказывает большое воздействие на растворы смесей полимеров в плохих растворителях, а увеличение напряжения сдвига - на растворы смесей полимеров в хороших растворителях. Малые добавки веществ, вводимые в количествах, не меняющих качества растворителя в целом, могут привести к изменению предела расслаивания, его предотвращению, замедлению или ускорению. Механизм их действия мо- [c.78]


    В последние годы довольно широкое распространение получило мнение, что основную роль в агрегативной устойчивости обычных латексов играет структурно-механический фактор. Однако эту точку зрения применительно к латексам, стабилизованным мылами, нельзя считать правильной. Было показано, что поверхность глобул стабилизованных латексов обычно покрыта слоем эмульгатора лишь на 30—40%. При значительной ненасыщенности адсорбционного слоя на поверхности глобул говорить о наличии вокруг частиц двухмерных студней и о их структурно-механических свойствах едва ли возможно. Устойчивость латексов, стабилизованных мылами, определяется, в основном, действием отталкивающих сил между двойными электрическими слоями, возникающих при перекрытии ионных атмосфер. При этом собственно стабилизующей частью молекулы стабилизатора является ее гидратированные ионизированные группы, а роль углеводородного радикала сводится к фиксации молекулы стабилизатора на межфазной поверхности полимер — вода. [c.384]

    Межфазную поликонденсацию обычно проводят при комнатной температуре. Повышение температуры реакции, как правило, приводит к уменьшению выхода молекулярной массы образующегося полимера. Механизм межфазной поликонденсации недостаточно изучен, поэтому условия ее проведения определяются эмпирическим путем. Преимущества этого процесса — высокие скорости и низкие температуры реакции. Кроме того, не требуется высокая степень очистки реагентов (при низких температурах побочные реакции не столь важны), стехиометрический состав поддерживается автоматически. [c.62]

    Применение межфазной поликондеисации в промышленности ограничено необходимостью использовать дорогостоящие мономеры с высокой реакционной способностью (например, дихлорангидриды дикарбоновых кислот), большими объемами фаз и затратами на регенерацию растворителя. Этот метод целесообразно использовать для получения продуктов, синтез которых другими методами затруднен, например из термически нестойких мономеров, высокоплавких полимеров, для получения высокодисперсных полимерных порошков. [c.62]

    Свободнорадикальная полимеризация в эмульсии углеводородных мономеров в воде получила наиболее широкое распространение, и большая часть промышленных полимеров получается н настоящее время этим способом. Система эмульсионной полимеризации содержит мономер, воду, как дисперсионную среду, инициаторы, эмульгаторы, различные добавки, в частности, призванные регулировать pH среды. В результате эмульгирования мономеров в воде в присутствии эмульгаторов — поверхностно-активных веществ (ПАВ)—образуется гетерогенная коллоидная система с развитой межфазной поверхностью. В зависимости от типа эмульгатора, мономера, инициатора полимеризация в этой системе может протекать на границе раздела фаз мономер-вода, в мицеллах эмульгатора, содержащих мономер, а также иногда в истинном растворе мономера в воде. Образующийся полимер в воде нерастворим и представляет собой высокодисперсную суспензию (латекс). Система в целом является многокомпонентной, что затрудняет выделение полимера в чистом виде. Поэтому используются различные приемы его отмывки. Однако возможность применения [c.82]

    В последнее время стал известен метод межфазной поликонденсации. По этому методу реакция протекает на границе двух фаз — несмешивающихся растворов мономеров. Например, одна фаза — водный раствор мономера, другая — раствор другого мономера в органическом растворителе. Полимер, образующийся вблизи границы раздела фаз в результате диффузии мономера [c.44]

    Межфазная поликонденсация происходит на границе раздела фаз газ — раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой. [c.357]

    Об адгезии или аутогезии можно говорить, конечно, лишь в том случае, если разрушение происходит но межфазной границе (в плоскости первоначального контакта). При разрушении адгезионного соединения но адгезиву получаемые при измерениях величины характеризуют уже когезионную прочность полимера. [c.157]

    Влияние стабилизатора и растворимости. Влияние изменения концентрации стабилизатора и растворимости его якорной цепи, воздействующие на степень его адсорбции на межфазной поверхности, могут быть формально введены в теорию посредством учета их влияния на поверхностное натяжение на границе разбавитель—осадившийся полимер. Межфазное натяжение в принципе может быть измерено независимо в макроскопических системах, хотя, очевидно, было бы чрезмерным упрощением применять эти результаты к субмикрос- [c.177]

    В НИИПМ был разработан агрегат секционного типа для получения полимеров межфазной поликонденсацией, в котором учтены недостатки известных конструкций . Аппарат представляет собой полый цилиндр, состоящий из отдельных секций, собранных на валу и стягиваемых болтами. Кольцевые секции выполнены полыми и сплошными. В полую кольцевую секцию врезаны штуцера для подачи ж отвода теплоносителя и хладоагента. На вал, проходящий внутри секций, насажены и укреплены при помощи шпонок винтовой элемент и перемешивающий диск. Диск снабжен радиальными лопастями. Конструкция секции позволяет применять для перемешивания мешалки различных типов, например лопастные, пропеллерные и др. В аппарате предусмотрена возможность отбора проб из каждой секции. Рабочие органы агрегата на валу приводятся во вращение от электродвигателя. С помощью регулятора скорости можно плавно изменять скорость вращения ротора . [c.166]

    Большой интерес представляет синтез хелатных полимеров межфазной поликонденсацией. Хотя получение низкомолекулярных хелатных соединений на границе раздела жидкость — жидкость известно давно и широко применяется при экстракции металлов из водных растворов, закономерности межфазного синтеза таких полимеров еще не изучены. Одним из примеров межфазной поликонденсации хелатных полимеров является их синтез из 4,4 -(ацетоацетил)-дифенилоксида и ацетата цинка на границе раздела вода — бензол . Полученный в различных условиях полимер имел один и тот же молекулярный вес ( Ю00), что соответствует примерно тетрамеру. [c.220]

    В последние годы в полимерной химии большое распространение получили способы синтеза ноликонденсационных полимеров межфазной поликонденсацией и низкотемпературной поликопденсацией в растворе. В этих реакциях неравновесный характер поликоиденсации обусловлен как химической природой исходных веществ и образующегося нолимера, так и самими условиями проведеиия процесса. [c.36]

    Скорость получения полимера межфазной поликонденсацией в неперемешивае-мой системе зависит от природы использованного для органической фазы растворителя, концентрации реагентов, коэффициентов распределения исходных веществ в фазах, величины поверхности раздела, скорости удаления пленки, которую, ко- [c.209]

    В последнее десятилетие внимание исследователей привлек способ получения полимеров межфазной поликонденсацией [1—12, 16, 17]. В основе синтеза межфазной поликонденсацией полиамидов и полиэфиров лежит давно известная реакция бензоилирования по 1Поттен — Бауману [13, 14], заключающаяся во взаимодействии хлористого бензоила с веществами, содержащими в молекуле подвижный атом водорода, например с аминами или фенолами, в присутствии водной щелочи. Замена хлористого бензоила на хлорангидриды дикарбоновых кислот, а фенолов и аминов на бис-фенолы и диамины и привела к возникновению нового метода синтеза разнообразных нолимеров, названного межфазной поликонденсацией. [c.476]

    Кноблох и Раушер [24], Блок и сотр. [25], Коршак, Кронгауз и сотр. [26] для синтеза координационных полимеров применили метод межфазной поликонденсации. Так, Кноблох и Раушер [24] синтезировали этим методом координационные полимеры тетраацетилэтана и хинизарина с медью. В качестве органической фазы, содержащей исходный лиганд, ими были использованы бензол или хлористый этилен. Исходное металлическое производное — тетрааммиакат меди растворяли в воде. Полимер получался в течение нескольких минут при сливании несмешивающихся растворов ис--ходных веществ при комнатной температуре. Авторы подчеркивают, что при получении координационного полимера межфазной поликонденсацией в качестве исходного металлического производного целесообразно применять сравнительно непрочное комплексное соединение. [c.63]

    Кноблох и Раушер [20] получили полимеры межфазной поликонденсацией 1,1-ферроценилдикарбонилхлорида (впервые ими синтезирован) с диаминами (этилендиамином, гексаметилендиамином, пиперазином и -фенилендиамином) и гликолями (4,4-изопропилидендифенолом и гидрохиноном). Вязкость полиамидов колебалась от 0,14 до 0,22. Полимеры окрашены от желто-оранжевого до коричневого цвета выход составлял 79—93%, т. пл. ПО—160° С (полимер -фенилендиамина не плавился). Полиэфир из 4,4-изопропилендифенола имел вязкость 0,1, т. пл. 165° С, из гидрохинона образовался нерастворимый и неплавкий продукт. Выход — 70 и 63% соответственно. Молекулярные веса полимеров, рассчитанные по вязкостям, составляли 8300—12 ООО. [c.214]

    При моделировании было найдено (рис. 5.31), что величина радиуса R сферической ячейки (кислоты), приходящейся на одну гранулу, обусловливает величину степени превращения при сульфировании сополимера и время установления межфазного равновесия в системе. Иными словами, модель учитывает соотношение загрузки аппарата по кислоте и полимеру. Результаты моделиро- [c.366]

    В растворах полимеров, как и в золях, частицы (макромолекулы) находятся в тепловом движении, н поэтому понятие о гетерогенности пли гомогенности системы не может являться однозначным ирн всех условиях. В хороших растворителях молекула линейного полимера вытянута, в ней отсутствует однородное внут-ренее ядро, характерное для микрофазы. В плохих растворителях макромолекула свернута в компактную глобулу и ее можно рассматривать как частицу отдельной фазы. Такое свертывание макромолекул аналогично возникновению новых фаз. При формировании глобул происходит определенное ориентирование углеводородных цепей и полярных групп, подобное тому, как это наблюдается при образовании мицелл из молекул ПАВ. Максимальное межфазное натяжение на границе макромолекула — среда определяется, как и для всех термодинамически устойчивых коллоидных систем, уравнением Ребиндера и Щукина (VI. 32). [c.311]

    Показаны особенности фазовых переходов и адгезии в сложных высокомолекулярных системах. Изложены результаты экспериментов, проведенных на кафедре технологии полимерных материалов УТИС и в лаборатории новых материалов и методов ИПНХП АН РБ по изучению влияния хаоса компонентного состава на хара1гге-ристики фазовых переходов в многокомпонентных высокомолекулярных системах. Предложена модель адгезии на межфазной границе раствор полимера - субстрат как расширение двумерного поверхностного газа в поле межмолекулярных сил поверхности субстрата. Показана адекватность этой модели для адгезии растворов и гелей полимеров и сложных многокомпонентных адгезивов на металлических и полимерных субстратах. [c.4]

    Вид металла, способ его введения и вариации технологических режимов карбонизации волокон определяют структуру, элементный и фазовый состав формирующихся Ме-УВ, позволяют в широких пределах регулировать их свойства Металлосодержащие включения в составе Ме-УВ в виде оксидов, карбидов, высокодисперсных (3-20 нм) восстановленных металлов придают им высокие адсорбционно-каталитические свойства в ряде химических реакций, улучшают смачивание волокон различными видами связующих, влияют на характер взаимодействия реагирую1Ш1Х компонентов на границе раздела фаз волокнистый наполнитель-полимер. Структурно-активные фуппы Ме-УВ могут служить центрами кристаллизации полимеров, ориентировать макромолекулы в гюверхностном слое, изменяя структуру и свойства межфазного слоя и в целом всего армированного волокнами композита. [c.182]

    Задача математического описания стратифицированного (слоистого) течения полимерных расплавов между бесконечными параллельными пластинами со строго определенной поверхностью раздела может быть легко рещена для ньютоновских жидкостей [59] методом проб и ощибок можно решить ее и для степенных жидкостей (см. Пример 13.6). В действительности стратифицированное течение полимерных расплавов очень сложно, так как форма и положение поверхности раздела непрерывно меняются. Кхан и Хан [60] установили, что менее вязкий расплав обволакивает более вязкий, сильнее смачивая внутренние поверхности головки и образуя искривленную поверхность раздела, В длинных головках ситуация еще сложнее. Проблема межфазной стабильности имеет большое значение при производстве бикомпонентных волокон [61—63]. Два потока расплавов экструдируются в круглую фильеру, выходят из нее в виде концентрического круглого изделия, в котором менее вязкий компонент распределяется по периферии. Здесь, как и при смешении расплавов полимеров (см. гл. 11), определяющее значение имеет соотношение вязкостей, а не упругостей [63]. [c.487]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Межфазная поликонденсация (поликонденсация на границе раздела фаз) протекает на границе раздела двух несмешивающихся жидкостей или жидкости и газа. Межфазная поликонденсация — гетерогенный необратимый процесс, скорость которого лимитиру- ется скоростью диффузии реагентов к поверхности раздела фаз. Наиболее подробно изучена поликонденсация на границе раздела двух несмешивающихся жидкостей. Для проведения поликонденсации исходные реагенты растворяют раздельно в двух несмешивающихся жидкостях (фазах). При контакте приготовленных растворов на границе раздела фаз мгновенно образуется полимер. Для более полного контакта реагирующих соединений фазы обычно перемешивают. При синтезе, например, полиамидов или полиуретанов на границе раздела фаз образуется тонкая полимерная пленка, при удалении кото(рой йбмедленно образуется новая пленка. Таким образом, полимер может непрерывно удаляться из зоны реакции и процесс можно вести до полного исчерпания мономеров. [c.61]

    Преимущество метода межфазной поликонденсации — получение полимеров при нормальной температуре с более высоким молекулярным весом и с большей скоростью, чем обычным методом, Не требуются тщательная очистка мономеров и соблюдение строгой их эквимолекулярности. [c.45]

    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]

    Диффузионная теория адгезии. Согласно этой теории, предложенной для объяснепия адгезии полимеров друг к другу, адгезпя, равно как и аутогезия, обусловливается дпффузией ценных молекул пли их сегментов через межфазную границу и образованием вследствие этого прочной связи между полимерами. Отличительным признаком этой тоорнп является то, что она исходит из основных особенностей полимеров — цепного строения и гибкости макромолекул, позволяющих им изменять свою конфигурацию вследствие теплового движения. [c.159]


Библиография для Полимеры межфазной: [c.83]   
Смотреть страницы где упоминается термин Полимеры межфазной: [c.157]    [c.14]    [c.273]    [c.340]    [c.168]    [c.102]    [c.80]    [c.29]    [c.9]   
Успехи в области синтеза элементоорганических полимеров (1966) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные



© 2025 chem21.info Реклама на сайте