Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные особенности строения полимеров

    Основные особенности строения полимеров, определяющие их свойства 1) существование двух различных типов связей 2) гибкость цепей, обусловленная внутренним вращением звеньев. [c.305]

    Основные особенности строения полимеров, определяющие их свойства  [c.295]

    ОСНОВНЫЕ ОСОБЕННОСТИ СТРОЕНИЯ ПОЛИМЕРОВ [c.180]

    Основная особенность строения полимеров состоит в огромных размерах молекул этих веществ. В связи с этим в полимерной молекуле возможны различные виды внутримолекулярного теплового движения. Макромолекулы построены из одинаковых мономерных звеньев. Полимеры, молекулы которых не имеют разветвлений, называют линейными полимерами. [c.19]


    Исходя из современных представлений о химической технологии как точной, а не описательной науке, и ее месте в системе подготовки специалиста-химика, а также из необходимости улучшения химической и, особенно, инженерной подготовки учителя средней школы, в пособии усилено внимание к изложению общих принципов и теоретических основ химической технологии, которые используются в последующем при описании конкретных технологических процессов. В то же время, учитывая адресность пособия (химик - учитель химии, а не химик -инженер-технолог), в тексте книги опущены излишняя математизация при изложении теоретических основ технологических процессов и подробное описание химической аппаратуры. Так как в учебных планах педвузов отсутствует курс Процессы и аппараты химической технологии , в пособии дается краткое освещение основных процессов, их классификация и описание типовой химической аппаратуры. По этой же причине, вследствие отсутствия в учебных планах педвузов отдельного курса химии высокомолекулярных соединений, в пособии рассматриваются такие общие вопросы как свойства полимерных материалов, особенности строения полимеров, основы реологии и принципы переработки полимерных материалов в изделия. [c.4]

    Основными кинетическими единицами полимеров являются сегменты (отрезки цепных молекул). Молекулярная масса сегмента почти в 100 раз больше, чем масса молекул простых жидкостей, что вместе с другими особенностями строения полимеров приводит к [c.42]

    Особенности строения полимеров обусловливают характерные закономерности их механических свойств, в том числе и механической прочности. Основное специфическое свойство макромолекул — их гибкость накладывает отпечаток на процесс разрушения полимеров. [c.54]

    Однако пользуясь этим методом, трудно выяснить особенности закономерностей прочности полимерных материалов и установить связь между строением полимера и его прочностью. Между тем в настоящее время основная задача, стоящая перед химиком-технологом при создании нового полимерного материала и разработке технологии его переработки в изделие, обладающее заданными свойствами, состоит в установлении связи между строением и прочностью полимера. Учитывая это, мы будет основываться в дальнейшем изложении на экспериментальных фактах и обобщениях, позволяющих вскрыть в той или иной мере механизм разрущения и установить связь между особенностями строения полимера и его поведением в процессе разрушения. [c.78]


    I. Основной особенностью строения молекул линейных полимеров является их длина, превосходящая поперечные размеры в тысячи и десятки тысяч раз. Такая форма молекулы (при наличии известной свободы вращения соседних групп атомов относительно друг друга) приводит к возникновению гибкости молекул, проявляющейся в появлении высокоэластических свойств [1—3]. В отличие от обычной мгновенной упругой деформации, высокоэластическая деформация развивается во времени. Эта зависимость от времени обусловлена наличием межмолекулярного взаимодействия, а также внутримолекулярным сопротивлением изменению формы цепной молекулы. Последнее вызывается взаимодействием соседних групп атомов в цепной молекуле, препятствующим внутримолекулярному вращению. [c.242]

    Вместе с тем, вопрос о роли диффузионных процессов при аутогезии значительно усложняется в связи с современными взглядами на структуру полимеров. Представления о пачечном строении полимеров, развиваемые Каргиным, Китайгородским и Слонимским [3], в настоящее время подтверждены многочисленными экспериментальными данными, относящимися к самым различным свойствам полимеров. Концепция об упорядоченной структуре полимеров должна неизбежно привести к уточнению механизма адгезии и аутогезии. Представляло большой интерес исследовать основные особенности аутогезии полимеров, обладающих различными надмолекулярными структурами с целью выяснить влияние этих структур на условия образования аутогезионной связи. С другой стороны, интересно было установить возможность применения аутогезии для изучения подвижности макромолекул, входящих в эти структуры. [c.319]

    При холодной вытяжке полимеры приобретают особую структуру, образованную плотноупакованными элементами диаметром 10—15 нм, называемыми фибриллами. Это явление хорошо известно и описано в многочисленных оригинальных работах и монографиях [1—3]. Тем не менее физические особенности этого процесса остаются еще далеко не очевидными и, в частности, не вполне ясным остается фундаментальный вопрос о том, каков механизм, приводящий при холодной вытяжке к диспергированию полимерного материала на мельчайшие агрегаты макромолекул. Для того, чтобы понять это, следует обратиться к основным особенностям строения и свойств твердых (стеклообразных и кристаллических) полимеров. [c.6]

    Деформация валентных углов и увеличение межатомных расстояний, происходящие одновременно, очевидно, оказывают взаимное влияние, их следствия суммируются, и общий эффект, находящий отражение в активации молекулярной цепи и повышении ее уязвимости к действию химических реагентов, будет связан с особенностями строения полимера и реагента, участвующих в реакции механически активированного химического обрыва. Естественно предположить, что никакой химической специфики этот вид активации не вносит, и поэтому происходят только своеобразно активируемые, но типичные реакции для данного вещества при его химической деструкции. Выше уже отмечалось , что при ударных высокочастотных воздействиях могут возникать промежуточные активные состояния, характеризуемые ослаблением многих связей, и не только в основной цепи, что приводит к повышению их реакционной способности. В результате последующих превращений могут возникать свободные радикалы и без обрыва цепей. [c.36]

    Проблема количественного описания ориентации кристаллов в различных условиях растяжения состоит в оценке того, до какого уровня размеров структурных элементов, составляющих сферолит, справедлива концепция подобия деформации. Ответ на этот вопрос неоднозначен и зависит от особенностей строения полимера и условий деформирования. Экспериментальные поиски ответа на этот вопрос и составляют содержание основного направления современных исследований в рассматриваемой области. Цель этих исследований — выяснение совпадений теоретических предположений, полученных при использовании моделей, различающихся предполагаемым уровнем перехода от макроскопически-однородной к структурно-неоднородной деформации, с реальными результатами оптических и рентгеноструктурных исследований процессов деформаций и смещений структурных элементов разного порядка. [c.176]

    Гибкость линейных макромолекул. Основной особенностью строения молекул линейных полимеров является огромная величина отношения их длины к поперечным размерам. Действительно, размеры повторяющихся групп атомов (обычно несколько ангстрем) приблизительно соответствуют размерам молекул низкомолекулярных веществ и не различаются сколько-нибудь заметно для разных полимеров. Очевидно, что, когда такие звенья соединены друг с другом в длинные цепи, длина цепи должна превышать ее поперечные размеры тем больше, чем выше степень полимеризации. Таким образом, отношение продольной длины цепной молекулы к ее поперечным размерам по порядку величины равно степени полимеризации. Эта величина, например, для полиэтилена, имеющего молекулярный вес 25 000—30 000, равна приблизительно двум тысячам. Известны полимеры со степенью полимеризации до 10 и более. [c.222]


    Именно в этом и состоит основная особенность строения полимерных тел . Поэтому мы можем теперь утверждать, что весь комплекс аномальных свойств полимеров определяется наличием линейных цепных молекул с относительно слабым межмолекулярным взаимодействием. Разветвление этих молекул или соединение их в сетку вносит некоторые изменения в комплекс свойств, но не меняет положения дел по существу до тех пор, пока остаются достаточно длинные цепные линейные отрезки. Напротив, утрата цепного строения молекул при образовании из них глобул или густых сеток приводит к полной потере всего комплекса характерных для полимеров свойств. Поэтому прежде всего необходимо изучить и понять свойства линейных регулярных полимеров. [c.14]

    Различие в показателях свойств поликонденсационных стереорегулярных полимеров (по сравнению с полимерами нерегулярного строения), по-видимому, будет меньше по сравнению с аналогичными показателями для полимеризационных полимеров. Это также связано с основной особенностью поликонденсационных полимеров— довольно большим периодом чередования элементов макромолекул по сравнению с полимеризационными полимерами. [c.251]

    Эти структурные факторы в свою очередь определяют основные свойства полимера . Если известны все особенности строения полимера, то можно предсказать и нее его свойства. Практически, детали строения полимера всегда остаются неизвестными, но цель структурных исследований — получить как можно более полное описание тонких особенностей строения полимера и связать макроскопические свойства образца со структурными особенностями. [c.242]

    Величину АЯ можно отождествлять с теплотой плавления Д5 определяет степень молекулярной упорядоченности и связана с гибкостью цепей. Некоторые особенности строения полимеров влияют на температуру плавления так же, как и на температуру стеклования. Так, например, при повышении гибкости цепей снижается температура плавления и температура стеклования. Политетрафторэтилен плавится при более высокой температуре, чем полиэтилен, поскольку чем жестче молекулярная цепь, тем выше потенциальный барьер свободного вращения. Алифатические полиэфиры плавятся при более низкой температуре, чем полиэтилен благодаря повышенной гибкости связи С—О—С по сравнению со связью С—С. Бензольные кольца в полимере, особенно в пара-положении, увеличивают жесткость цепи и повышают температуру плавления . С,другой стороны, некоторые факторы по-разному влияют на Tg и Тт- Так, большие боковые группы и разветвленность основной цепи снижают температуру плавления, но повышают температуру стеклования. Полярные группы и водородные связи, увеличивающие силы внутримолекулярного взаимодействия, повышают температуру плавления. [c.12]

    ПАН-Волокно наряду с гидратцеллюлозным волокном является одним из основных видов сырья, применяемого для получения углеродных волокнистых материалов. Из него изготовляют главным образом высокопрочные высокомодульные углеродные волокна. Одним из преимуществ ПАН-волокна является большой выход углерода (около 40% от массы полимера). Благодаря особенностям строения полимера и его промежуточным переходным структурам высокопрочные углеродные волокна удается получить сравнительно простым способом. К недостаткам этого способа относится выделение синильной кислоты в процессе переработки ПАН-волокна. [c.133]

    Основной особенностью строения молекул линейных поли меров является огромная величина отношения их длины к поперечным размерам. Естественно, что при таких соотношениях длины и диаметра стержень из материала любой реальной твердости окажется способным к достаточно большому изгибу. Нет ничего удивительного, что цепные молекулы полимеров также обладают гибкостью. [c.315]

    УВ изготовляются в основном из полиакрилонитрильных (ПАН) волокон, вискозных гидратцеллюлозных волокон (ГЦВ), нефтяных и каменноугольных пеков. ПАН-волокно служит для получения высокомодульных и высокопрочных УВ. Одним из преимуществ ПАН-волокна является большой выход углеродного остатка (примерно 40%) от массы полимера (из ГЦВ - немногим более 20%). Благодаря особенностям строения исходного полимера высокопрочные УВН удается получить сравнительно простым способом. [c.59]

    Эти особенности молекулярного строения ПЭВД и ныне отличают его от всех известных синтетических полимеризационных полимеров. Рассмотрим подробнее результаты изучения молекулярной структуры и основных свойств этого полимера. [c.115]

    Другой важной особенностью строения мономеров, которую необходимо учитывать при получении полимеров поликонденсацией и от которой существенно зависит ее успех, является их способность в ряде случаев к интермолекулярным реакциям с образованием циклических продуктов [3, 4]. Еще Карозерс в ряде своих работ отмечал, что циклообразование является важной конкурирующей реакцией в процессе поликонденсацни, и установил, что решающую роль при этом играет строение исходных веществ [34, 117]. Если число атомов, входящих в состав основного звена полимера, равно пяти, шести и семи, то возникает опасность образования, наряду с полимерной молекулой, и низкомолекулярных циклических продуктов. Возможность возникновения таких циклов и даже более многочленных в ряде случаев неравновесной поликонденсацни, несомненно, увеличивается благодаря проведению ее в весьма разбавленных растворах, в частности в случаях межфазной поликонденсации и низкотемпературной поликонденсацни в растворе [4]. [c.27]

    Резюмируя итоги рассмотрения свойств модели субмолекул, прежде всего следует отметить, что она послужила фундаментом для весьма подробного математического описания процесса установления равновесия в аморфных полимерах. При этом возможности детализации математической картины неравновесных процессов на основе этой модели еще далеко не исчерпаны, о чем свидетельствуют непрерывно появляющиеся новые работы (см., например, [114—118]). Модель правильно передает основные особенности вязко-упру-гого поведения полимеров, обусловленные длинноцепочечным строением их молекул. [c.23]

    В предыдущих главах были рассмотрены особенности строения наполненных полимеров и причины, определяющие различие свойств полимеров в поверхностных слоях и в объеме. В настоящей главе на основе развитых выше представлений будут рассмотрены основные механические и реологические свойства наполненных аморфных и кристаллических полимеров. Разумеется, что при этом мы будем останавливаться только на наиболее общих положениях, не анализируя специально литературу по свойствам наполненных композиций и армированных пластиков, так как это не входит в задачу данной монографии. [c.149]

    Во-первых, ири низких температурах можно описать физические свойства как кристаллических, так и аморфных полимеров, находящихся в стеклообразном состоянии, используя идеи и представления современной физики твердого тела. Во-вторых, поведение полимеров, находящихся в высокоэластическом состоянии, может быть описано в рамках представлений статистической физики и термодинамики. Хронологически раньше была разработана статистическая физика полимеров, находящихся в высокоэластическом состоянии, которая позволила объяснить наиболее важную и специфическую особенность полимеров — способность испытывать большие обратимые деформации. Это оказалось возможным сделать в силу того, что у разных по химическому строению полимеров оказалась одна общая черта — в высокоэластическом состоянии у всех полимеров существует внутреннее вращение. Следует заметить, что использование основных представлений и математического аппарата статистической физики для описания поведения полимеров, находящихся в высокоэластическом состоянии, возможно в первую очередь благодаря тому, что полимерные молекулы состоят из очень большого числа одинаковых повторяющихся звеньев и еще большего числа атомов. [c.17]

    Поскольку основными пленкообразователями являются полимеры и олигомеры на процесс образования их растворов сильное влияние оказывает их строение и связанные с ним особенности взаимодействия с жидкими средами. [c.108]

    Аналогия между основными соотношениями, получаемыми в моделях сетки и ожерелья , позволяет связать скорость образования и длительность существования узлов сетки с измеряемыми временами релаксации системы. Значение этого результата состоит еще и в том, что он дает основание при построении механических (или молекулярно-кинетических) моделей и теорий не только разбавленных, но и концентрированных растворов полимеров ограничиваться рассмотрением поведения единичной цепи, разбиваемой на динамические сегменты. Трение при движении каждого из этих сегментов в однородной среде, окружающей цепочку, моделирует не только сопротивление перемещению макромолекулы в низкомолекулярном растворителе, но и взаимодействие данной цепочки с остальными, с которыми она образует сетку флуктуационных контактов (физических взаимодействий любого типа). Конкретные особенности строения системы должны учитываться правильным выбором закона трения. В простейшем случае это может быть линейный закон Ньютона — Стокса, а для концентрированных растворов может вводиться некоторый постоянный или переменный эффективный коэффициент трения. Конкретная форма закона трения может быть либо -априорной, либо найденной из каких-либо физических соображений. Но в любом случае существует возможность рассматривать поведение отдельной макромолекулярной цени для моделирования проявления вязкоупругих (релаксационных) свойств любых полимерных систем, включая концентрированные растворы и расплавы полимеров. [c.298]

    Диффузионная теория адгезии. Согласно этой теории, предложенной для объяснепия адгезии полимеров друг к другу, адгезпя, равно как и аутогезия, обусловливается дпффузией ценных молекул пли их сегментов через межфазную границу и образованием вследствие этого прочной связи между полимерами. Отличительным признаком этой тоорнп является то, что она исходит из основных особенностей полимеров — цепного строения и гибкости макромолекул, позволяющих им изменять свою конфигурацию вследствие теплового движения. [c.159]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]

    В обзоре [13] отмечается, что полифторалкоксифосфазены имеют лабильную структуру, зависящую от условий получения полимера и его термической предыстории. Главной причиной формирования мезоморфного состояния этих полимеров является специфическое взаимодействие основной полимерной цепи с боковыми цепями, содержащими большое число электроотрицательных атомов фтора. Особенно большое внимание уделялось исследованию поли[бис(трифтор-этокси)фосфазена]. Отмечается, что своеобразное строение мезофазы этого полимера обуславливает способность полимерного материала в мезоморфном состоянии течь подобно жидкости. Структура изотропного расплава полифосфазена сохраняет основные черты строения мезофазы, отличаясь свернутой конформацией макромолекул [212]. В области 453-493 К существенно изменяются реологические свойства и ряд структурных характеристик мезофазного расплава полимера, что сопровождается тепловым эффектом [213]. Предполагают, что в этой области температур происходит конформационное превращение макромолекул полимера с образованием структуры, промежуточной между одномерной слоевой и двумерной псевдогональной. Обнаружена высокая чувствительность мезофазы поли[бис-(фторэтокси)фосфазена] к приложенному давлению (до 400 МПа) повышение температуры перехода полимера (Г]) из кристаллического состояния в мезофазу, резкое расширение области существования мезофазы с ростом давления, а также ее упорядочение [211]. [c.352]

    Величина по своей природе близка к G, а слабая зависимость Са от температуры указывает на то, что она имеет в основном энергетическую природу На величину влияют условия эксперимента и особенно сильно химическое строение полимера известное значение, по-видимому, имеет физическая структура (наличие перехлестов, скользящих в направлении мостиков при деформации полимера). Хотя уравнение Муни—Ривлина носит эмпирический [c.379]

    Другой, не менее важной особенностью является место разрыва, по которому происходит механокрекинг. В настоящее время имеются некоторые доказательства локализации механокрекинга для немногих полимеров. Но, ло всей вероятности, эта локализация и не может быть единственной для данного полимера, а зависит от многих факторов, связанных не только с химическим строением полимера, но и конкретными условиями механодеструкции (среда, температура, частота воздействия и т. д.). Локализация механокрекинга определяется концентрацией напряжений на отдельных узлах полимерной цепи. Наиболее вероятными точками концентрации напряжений при деформациях полимеров являются места стыка ответвлений с основной цепью в разветвленных полимерах [76], поперечные связи в сетках, острые изломы главной ц пи в месте включения гетероатомов или жесткие узлы у четвертичных у Гле,родных атомов [55] и т. д. Оиецифическим местам [c.22]

    Основным следствием механодеструкции является уменьшение молекулярной массы, происходящей по определенному закону. На рис. 20 приведены зависимости молекулярной массы ряда карбо-и гетероцелных полимеров от продолжительности измельчения в шаровых мельницах при низких температурах в атмосфере азота [197, 198]. Из рисунка видно, что существует четкая зависимость между временем измельчения, т. е, временем механического воздействия, и значением молекулярной массы различных полимеров. Эта зависимость связана с особенностями химического строения полимера, режимом механического воздействия, окружающей средой и т. д. Количественная форма этих связей может быть установлена только при всестороннем рассмотрении процесса механодеструкции (в частности, других следствий деструкции), а также при анализе влияния различных факторов на обсуждаемое явление. [c.62]

    В этом случае направление сополимеризации зависит от прочности валентных связей в основной цепи полимера, определяющей интеисивность механокрекинга, активности образующихся макрорадикалов и от химической природы мономеров. Особенности строения мономеров определяют их способность реагировать с макрорадикалами, активность вторичного макрорадйкала, образующегося после наращивания первого звена мономера, и т. д. [c.191]

    Наиболее важные физические свойства полимеров определяются их химическим строением. На первый взгляд кажется, что многие свойства, особенно свойства кристаллических полимеров, в основном определяются их структурой. Однако на самом деле тот или иной вид надмолекулярной организации (при всем ее разнообразии) в конечном счете зависит от химического строения полимерной цепи. Полимерная цепь содержит в себе важнейшую информацию о возможной надмолекулярной организации полимера, об основных физических свойствах, об оптимальных условиях переработки. По-видимому, эта информация задается в процессе синтеза полимера характером взаимного расположения атомов, атомных групп, повторяющихся звеньев, а также молекулярной массой и, возможно, молекулярно-массовым распределением. К сожалению, до сих пор неизвестен код, с помощью которого, зная химическое строение полимерной цепи, можно расшифровать всю содержащуюся в ней информацию. Основная задача физики полимеров и заключается в том, чтобы найти этот код. Таким образом, основная задача физики полимеров — установление связи между химическим строением, структурой и физическими свойствами полимеров, по существу, аналогична проблеме ро-зетского камня , с помощью которого когда-то Ф. Шампольон нашел ключ к расшифровке древнеегипетской письменности. [c.9]

    Ширина запрещенной зоны у насыщенных полимерных молекул составляет около 10 эВ, т. е. переход электрона из валентной зоны в зону проводимости мало вероятен. Кроме того, делокализация хотя бы одного а-электрона в основной цепи приводит к разрыву макромолекул. Иное положение у полимеров, молекулы которых состоят из длинных цепей сопряженных двойных связей с я-электронами. У таких низкомолекулярных и полимерных органических веществ в пределах цепи сопряжения п-электроны делокализованы и обладают высокой подвижностью. Особенности строения таких веществ макроскопически проявляются в ряде особенностей физических свойств. Например, с увеличением длины цепи сопряженных двойных связей в алифатических углеводородах энергия возбуждения л-элек-тронов, соответствующая переходу из основного состояния в возбужденное сипглетное, уменьшается. Для этих веществ характерна высокая заселенность триплетных уровней с двумя неспаренными электронами, дающими сигнал ЭПР. Повышенная подвижность л-электронов вдоль цепи сопряжения приводит к значительной экзальтации рефракции. С ростом длины сопряжения возрастает электрическая проводимость низкомолекуляр-ных органических полупроводников [4, с. 41]. [c.65]

    В ранних исследованиях динамических свойств концентрированных растворов и расплавов измерения выполнялись на образцах с широким молекулярно-массовым распределением (ММР). Это затрудняло анализ экспериментальных данных и делало невозможным получение однозначных результатов относительно связи молекулярных параметров полимера и особенностей его химического строения с вязкозгпругими свойствами материала, так как основные особенности проявления релаксационных свойств высоконолимера в случае образца с широким ММР оказываются сглаженными, ибо результирующие зависимости образуются наложением большого числа функ- [c.272]


Смотреть страницы где упоминается термин Основные особенности строения полимеров: [c.328]    [c.43]    [c.16]    [c.352]    [c.365]    [c.215]   
Смотреть главы в:

Коллоидная химия -> Основные особенности строения полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры строение



© 2025 chem21.info Реклама на сайте