Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции физических факторов на ско

    Ускорение реакции. . Физические факторы [c.570]

    Для сложных реакций, для реакций, на скорость которых оказывают влияние физические факторы (например, диффузия и адсорбция), а также для ряда каталитических реакций характер температурной зависимости весьма сложен. Пояснения к некоторым типам температурной зависимости, показанным на рис. 1-1, приведены ниже  [c.30]


    ПОД простой реакцией здесь подразумевается реакция, механизм которой соответствует стехиометрическому уравнению, или реакция, не осложненная побочными, последовательными или обратными реакциями, а также физическими факторами. [c.51]

    Многие промышленные процессы основаны на реакциях между реагентами, находящимися в различных фазах. Подобные реакции осложняются тем, что реагенты до начала взаимодействия должны переместиться по крайней мере к поверхности раздела фаз. Следовательно, скорость гетерогенной реакции, кроме химических факторов, зависит также от физических факторов, влияющих на скорость массопередачи между фазами. К физическим факторам относятся  [c.173]

    Подобие двух систем, эквивалентное равенству критериев подобия, зависит от многих факторов, связанных с кинетикой реакции, физическими свойствами веществ и аппаратурными особенностями. [c.231]

    Данные о задержке самовоспламенения при впрыске горючего в камеру с высокой температурой приведены на рис. 4.27. Видно, что коэффициент В [формула (4.42)],пропорциональный энергии активации химической реакции, с повышением температуры уменьшается. При достаточно высоких температурах самовоспламенение смеси контролируется физическими факторами. [c.140]

    При моделировании химических процессов размеры печи не сказываются на скорости химического превращения, если процесс определяется только скоростью химической реакции. Однако химическая реакция приводит к изменению состава реагируемой смеси и температуры. Следствием этого является возникновение процессов переноса вещества и теплоты, на скорость которых существенно влияет характер концентрационного и температурного полей в печи, В свою очередь состав смеси и температура существенно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в полной зависимости от размеров печи, так как с изменением масштаба меняется структура или соотношение между его составными частями, химическими стадиями и стадиями процессов переноса вещества и теплоты. В связи с вышеизложенным невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в печах разного масштаба, кроме тех случаев, когда химическая реакция протекает с большей скоростью, чем процессы переноса. [c.130]


    В модификации активности катализаторов могут играть роль и физические факторы. Среди них первостепенную роль играет величина поверхности. Так, при сравнении в реакции гидрирования фенола различных образцов WS2, освобожденных от физических загрязнений (в том числе от механически увлеченной избыточной серы) прокаливанием в вакууме, показано что активность катализатора была прямо пропорциональна его удельной поверхности. Следовательно, развитая поверхность — обязательное условие получения активного катализатора. В ходе эксплуатации поверхность катализатора уменьшается за счет упорядочения кристаллической структуры и образования углистых отложений. Считают что упорядочение кристаллической структуры протекает не вследствие перехода из моноклинной в гексагональную систему, как полагали ранее так как все образцы катализаторов независимо от отношений S W состояли из одной фазы с одинаковыми порядками решетки. Свежий катализатор представляет собой небольшие тонкие пакеты, образованные беспорядочно смещенными по отношению друг к другу слоями WSg. Упорядочение при кратковременном нагревании происходит только при температуре выше 700 °С. При этом быстро уменьшается удельная поверхность в основном за счет пор радиусом 20—80 А. По этой же причине уменьшается и поверхность ката- [c.272]

    Рассматривая развитие физической химии, можно заметить, что познание некоторых явлений начиналось на основе чисто физических теорий, отражающих влияние физических факторов, но в дальнейшем возникла необходимость учитывать влияние химических закономерностей и особенностей. Примером этого может служить развитие теории электролитической диссоциации, теории кинетики гомогенных химических реакций, теории растворов неэлектролитов и др. [c.20]

    Исходя из общих представлений о скорости массопере-дачи А при гомогенной реакции второго порядка в пленке, удобно ввести множитель, отражающий увеличение скорости максимальной физической массопередачи в результате химической реакции. Это фактор химического ускорения Р , который, по определению, равен  [c.167]

    Отсутствие подобия объясняется тем, что невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в реакторах разного масштаба. Лишь в предельном случае, когда химическая реакция протекает с большей скоростью, чем процессы переноса и поэтому не влияет на суммарную скорость процесса (как, например, при абсорбции газов, быстро реагирующих с поглотителем, или в каталитических реакторах в области внешней диффузии), критерии химического подобия выпадают, и теория подобия становится применимой. [c.466]

    Давление следует рассматривать как физический фактор процесса крекинга и как фактор, воздействующий на направление и скорость реакций. При увеличении давления температура кипения компонентов и продуктов крекинга повышается. Поэтому чем выше давление, тем больше относительный объем жидкой фазы. [c.40]

    При определении реакционной способности углеродистых материалов стараются устранить влияние физических факторов и выбрать условия, приближающиеся к кинетическим условиям реагирования. По мере сдвига процесса из кинетической области реагирования в диффузионную наблюдается снижение энергии активации реакции. Так, в работе [191], где изучалось горение антрацитового кокса, наблюдались следующие перегибы кривых в системе [c.167]

    Скорость таких реакций в отличие от гомогенных зависит как от химических, так и от физических факторов. К первым относится темп взаимодействия на границе фаз, ко вторым — величина поверхности раздела фаз и быстрота переноса вещества из объема к поверхности раздела фаз и от нее в объем. Процесс можно расчленить на три последовательные стадии — диффузия реагента (реагентов) к зоне взаимодействия, химическая реакция, удаление продукта (продуктов ) процесса. Диффузионный поток будет тем интенсивнее, чем больше окажется разность между концентрацией реагентов в данной точке Со и в зоне взаимодействия а также коэффициент диффузии О и чем меньше толщина слоя б, через который совершается массопере-дача. Если за рассматриваемый промежуток времени расходуется столько данного вещества (веществ), сколько доставляется его к поверхности раздела фаз (стационарный режим), то [c.153]

    Основной принцип нового направления масштабного перехода, сформулированный Боресковым и Слинько [37], заключается в осуществлении ряда процедур 1) в дифференциации единого сложного химико-технологического процесса на отдельные уровни и относительно самостоятельные разнородные явления, к каковым относятся все химические процессы, выраженные кинетикой химических превращений, и все физические процессы — перенос массы и теплоты, движение потоков 2) в установлении первичных закономерностей процесса путем раздельного изучения скоростей химических реакций и физических факторов 3) в установлении их взаимосвязи как элементов на каждом уровне 4) в последующем синтезе всей информации посредством общей математической модели по иерархическому принципу из моделей отдельных частей сложного процесса. [c.161]


    Среди физических факторов, способных инициировать хими ческие реакции в полимерах, тепловое воздействие занимает важное место, так как является причиной одной из важнейших характеристик полимеров - их термостабильности. Последняя определяет верхнюю температурную границу пределов эксплуатации изделий из полимеров. Кроме того, распад молекулярной структуры полимеров при тепловых воздействиях на них является одной из причин старения полимеров, которая приводит к снижению механических свойств и невозможности эксплуатировать дальше то или иное полимерное изделие в конкретных условиях его работы. Не менее важным обстоятельством является и выделение различных низкомолекулярных продуктов при термическом распаде полимеров, многие из которых являются токсичными. Это тоже приводит к снижению сроков службы полимерных изделий, [c.230]

    Таким образом, окисление полимеров молекулярным кислородом— одна из самых распространенных химических реакций, которая является причиной старения полимеров и выхода из строя изделий. Окисление ускоряется под действием ряда химических реагентов и физических факторов, особенно тепловых воздействий. Процесс окисления протекает по механизму цепных свободнорадикальных реакций с вырожденным разветвлением. Механизм и кинетический анализ процесса термоокислительной деструкции полимеров показывают влияние химической природы полимера на его стойкость к этим воздействиям. Стабилизация полимеров от окислительной деструкции основана на подавлении реакционных центров, образующихся на начальных стадиях реакции полимера с кислородом, замедлении или полном прекращении дальнейшего развития процесса окислительной деструкции. ЭтЬ достигается введением ингибиторов и замедлителей реакций полимеров с кислородом, причем одни ингибиторы обрывают цепные реакции, другие предотвращают распад первичных продуктов взаимодействия полимерных макромолекул с кислородом на свободные радикалы. Сочетание ингибиторов этих двух классов позволяет реализовать эффект синергизма их действия, приводящий к резкому увеличению времени до начала цепного процесса окисления (индукционного периода). [c.275]

    Еше более сложные вопросы возникают, если подтвердить экспериментально обратимость гальванического элемента не удастся даже при высоких концентрациях электродноактивных частиц. Здесь в первую очередь необходимо установить, каковы механизм электродных реакций и факторы, определяющие их скорость. Кроме того, следует считаться с чистотой раствора, физическим состоянием электрода, состоянием его поверхности, а также быть уверенным, что конструкция электрода обеспечивает оптимальные условия его работы. [c.541]

    Механизм цепных реакций очень сложен, так как на развитие реакции влияют скорость зарождения активных частиц, скорость разветвления цепи (зарождение новых активных частиц), скорость обрыва цепи (время жизни активных частиц), а также внешние физические факторы — давление, температура, скорость отвода тепла. Математическая теория и физические основы течения цепных реакций получили свое развитие в работах Н. Н. Семенова, [c.124]

    Все известные химические реакции независимо от природы реагирующих веществ сопровождаются различными физическими явлениями — выделением или поглощением теплоты, света, изменением объема, возникновением электрического тока и др. В свою очередь на химические реакции. влияют и физические факторы — температура, давление, свет, радиация и т. п. Так, например, химические реакции в гальванических элементах являются причиной появления электрического тока, горение сопровождается выделением теплоты и света. Пример действия электрического тока — это различные химические реакции при электролизе. Свет вызывает многие химические реакции, в том числе и сложные превращения в результате которых из воды и диоксида углерода синтезируются углеводы. Все это указывает на тесную взаимосвязь физических и химических явлений. Установление этой связи в химических реакциях—основная задача физической химии. [c.9]

    Раздел физической химии, в котором изучается скорость химических реакций и механизм химического взаимодействия, а также влияние на скорость реакций различных факторов (концентрации реагирующих веществ, температуры, давления, света, катализаторов и др.), называется химической кинетикой. [c.82]

    Механизм цепных реакций очень сложен, так как на развитие реакции влияет скорость зарождения активных частиц, скорость разветвления цепи (зарождение новых активных частиц), скорость обрыва цепи (время жизни активных частиц), а также внешние физические факторы — давление, температура, скорость отвода тепла. Математическая теория и физические основы течения цепных реакций получили свое развитие в работах Н. Н. Семенова, Н. М. Эммануэля, Хиншельвуда и др. В настоящее время создана стройная теория цепных реакций различного вида и проведена опытная проверка, так как современные методы физико-химического эксперимента позволяют регистрировать частицы, участвующие даже в очень быстро протекающих процессах. Теоретические результаты получили ши,-рокое применение в современной технике и энергетика. [c.129]

    Теория подобия оказывается неприменимой к химическим реакторам, так как гидродинамические, тепловые и химические условия подобия не совместны [1]. При изменении масштабов изменяются гидродинамический режим, а также режим процессов массо- и теплопередачи, влияющих на химические превращения. Нельзя обеспечить в большинстве случаев условия, при которых физические факторы оказывают одинаковое влияние на скорость химической реакции в реакторах разного масштаба.. [c.3]

    Как уже кратко отмечалось, в ядерных реакторах не существует однозначно определимой связи мел<ду определенной номинальной мощностью, физическими параметрами и размерами, с одной стороны, и динамическими свойствами — с другой. Эти динамические свойства характеризуются, например, определенными постоянными времени этого объекта, так как даже реакторы большой номинальной мощности с большими тепловыми емкостями могут иметь незначительные постоянные времени, прежде всего при низкой мгновенной мощности. Ни один ядерный реактор, который уже проработал в течение какого-то времени, нельзя полностью остановить , поскольку даже при сильно докритическом режиме, т. е. в остановленном реакторе, протекает цепная реакция, в которой участвуют как нейтроны из источника 8 (), так и запаздывающие нейтроны (образовавшиеся во время предыдущей работы реактора). Мощность остановленного реактора часто в 10 —раз меньше начальной номинальной мощности. Однако безопасный пуск реактора требует максимально возможной мощности остановленного реактора, в связи с чем применяются источники нейтронов как можно большей мощности. В определенном смысле ядерный реактор тем безопаснее, чем меньше его мгновенная мощность. При высоких мгновенных мощностях обратная связь между мощностью и реактивностью в результате влияния температуры активной зоны реактора и целого ряда других физических факторов весьма эффективна, так как ее усиление почти пропорционально мощности реактора. Для большинства реакторов она отрицательна и всегда запаздывает. Благоприятное влияние этой обратной связи может возникнуть, если мощность превысит определенный предел, но [c.577]

    Внутримолекулярные превращения происходят под влиянием как химических реагентов, так и физических факторов (свет, тепло, радиация и т.д.). К внутримолекулярным реакциям относят такие, в результате которых изменяется строение, а часто и химический состав макромолекул. Эти процессы происходят не за счет присоединения реагентов, а вследствие внутримолекулярных перегруппировок или реакций функциональных Фупп одной макромолекулы. Типичным примером таких реакций может являться циклодегидратация полиамидокислот с превращением их в полиамиды (схема 3.7, а). Эти реакции, в некотором аспекте, можно рассматривать и как полимераналогичные превращения. [c.101]

    Чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез ка-кого-то вещества, необходимы оптимальные условия окружающей среды химические факторы — состав и концентрация питательных веществ, присутствие активаторов и ингибиторов физические факторы — температура, давление, реакция, плотность, подвижность среды, освещение, радиация и т. д. При нарушении оптимальных границ этих факторов нарушается обмен веществ, прекращается или ограничивается рост и размножение культуры. [c.52]

    При относительно медленных реакциях физические факторы, влияющие на скорость реакции, часто удается устранить путем увеличения поверхности раздела. Для этого в случае гетерогенно-каталитических реакций можно использовать высокую скорость потока вокрлт таблеток катализатора и дробление их до таких размеров, когда диффузионным сопротивлением в порах можно пренебречь. Параллельно следует проводить эксперименты с тем же катализатором, имеющим размеры зерна, применяемые на практике. [c.238]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Результаты алкилирования в значительной мере определяются физическими факторами, так как лимитирующей стадией процесса является скорость транспортирования реагирующих веществ к поверхностн раздела фаз, где протекают основные химические реакции. Скорость транспортирования реагирующих веществ зависит от интенсивности перемешивания эмульсии кислота—углеводороды, соотношения изобутан олефины на входе в реактор и времени их пребывания в реакционной зоне, концентрации химически инертных соединений в углеводородной фазе, объемного соотношения кислотной и углеводородной фаз. Качество применяемого сырья, состав кислоты и температура реакции оказывают существенное влияние как на скорость транспортирования, так и на скорость химических превращений. [c.168]

    Влияние температуры. Химическая реакция значительно чувствительнее к измененню температуры, чем остальные чисто физические факторы. Таким образом, проводя процесс при разных температурах, можно быстро установить, что лимитирует его скорость химическая реакция или сопротивления слоя золы и пленки газа. [c.342]

    Физические факторы при алкилировании изобутана определяют условия проведения всего процесса, состав и качество алкилата [3]. Транопортирование изобутана к месту реакции (про тека-ющей на поверхности раздела двух фаз или вблизи нее) является основным фактором. Оно зависит от нескольких параметров. Конечно, важнейшим является интенсивность перемешивания, поскольку оно влияет не только на подвод изобутана, но и на величину поверхности раздела фаз. К числу других важных параметров относятся соотношение изобутан олефин в сырье, время пребывания в реакторе, концентрация химически инертных соединений в углеводородной фазе, объемное соотношение кислотной и углеводородной фаз. Важно также, какая из фаз эмульсии является непрерывной. От температуры, состава кислоты и олефина, используемого для алкилирования, также зависят транспортирование изобутана и кинетика реакции [4]. [c.130]

    Внутримолекулярные превращения происходят под действием физических факторов (излучения, тепла, света) или химических реагентов. При этом в отличие от полимераналогичных превращений химические реагенты, вызывающие внутримолекулярные превращения, не входят в состав полимерной цепи. К внутримолекулярным реакциям относится дегидратация, ангидризация, дегидрохлорирование, декарбоксилироваяие и др. Так, при дегидратации поливинилового спирта или при дегидрохлорировании поливинилхлорида получается поливинилен — полимер, содержащий систему сопряженных связей и обладающий полупроводниковыми свойствами  [c.88]

    К химическим (классическим) относят такие методы, в которых аналитический сигнал возникает в результате протекания химических реакций и фактором интенсивности служит либо масса (гравиметрия), либо объем (титриметрия). Если сигнал возникает вследствие протекания химических реакций, а фактором интенсивности служат не масса и не объем, а другие измеряемые величины (светопоглощение, электропроводность и т. п.), аналитические методы называют физико-химическими. К физико-химическим причисляют также методы, использующие сигналы, которые возникают при взаимодействии атомов, молекул, ионов с электронами (электрохимические методы анализа). Наконец, если для аналитических целей используются физические явления (испускание света при повыщенной температуре, люминесценция, ядерный и парамагнитный резонансы и т. п.), аналитические методы называют физическими. Иногда физико-химические и физические методы объединяют в одну группу и называют инструментальными методами анализа. Этим хотят подчеркнуть значение измерительной аппаратуры при работе этими методами. [c.13]

    Течение химических реакций в промышленных условиях всегда ослож-пяется неравномерностью распределения температур в зоне реакции, цир-кз ляцией продуктов в пустотелых реакторах большого диаметра, диффузионными явлениями при многофазных и каталитических процессах и другими физическими факторами. Влияние гидравлических и температурных режи-5юв на эффективность работы реакционных устройств детально изучалось А. Н. Плановским М. Ф. Нагиевым Г. К. Боресковым С. Н. Обряд-чпковым , А. П. Зиновьевой п Д. И. Орочко . В настояшее время влияние режимов работы начали оценивать коэфициентами полезного действия реакторов представляющими собой отношение объемов эталон ного аппарата работающего в теоретически оптимальных условиях, [c.126]

    Таким образом, на основании данных, представленных в настоящем разделе, можно заключить следующее. Результаты большого числа экспериментальных работ во всех областях реакций полимеров (поликонденсация, полимеризация, поли-мераналогичные превращения) свидетельствуют о том, что принцип равной реакционной способности не является всеобщим. Можно полагать, что соблюдение указанного принципа вызвано компенсирующим действием различных причин. В каждом конкретном процессе полимерообразования необходимо учитывать действие на активность макромолекул как химических, так и физических факторов. Большое влияние в этом аспекте оказывают концентрация реагентов, природа растворителя, температура и степень завершенности реакции. Как следует из приведенных данных, химические факторы, связанные со взаимодействием фрагментов цепи с активными центрами макромолекул (эффект соседа, эффект дальнего порядка и т.д.), существенно влияют на реакционную способность макромолекул. В области поликонденсации роль химического фактора раскрыта еще крайне мало, что объективно указывает на целесообразность дальнейших исследований в этом направлении. [c.58]

    Так, детальное изучение межфазной поликонденсацни дихлораигидридов изофталевой, терефталевой, себациновой, адипиновой кислот, бис(и-карбокси)-фенилметилфосфиноксида с 4,4 -дигидроксидифенил-2,2-пропаном, 3,3 -диаллил-4,4 -дигидроксидифенил-2,2-пропаном, резорцином и гексаметилендиамином, лс-фе-нилендиамином, пиперазином показало, что это весьма сложный процесс. На его протекание оказывают влияние как химические, так и физические факторы, такие, как реакционная способность исходных веществ, большая или меньшая склонность к гидролизу хлорангидридов дикарбоновых кислот, скорость диффузии исходных веществ в зону реакции, растворимость образующегося полимера и многие другие, которые в конечном итоге определяют активность исходных веществ при образовании полиамидоарилата [299-305]. [c.73]

    Степень замещения (количество лиганда, иммобилизованного в 1 мл геля) выражаются в наномолях на 1 мл геля, когда лиганд состоит из небольших молекул, и в миллиграммах на 1 мл геля в случае макромолекул. Эта степень замещения зависит от активации носителя и методов иммобилизации лиганда. Реакция активации зависит от физических условий (температура, pH), времени реакции и количества активирующих агентов. Иммобилизация лиганда обусловливается теми же физическими факторами, временем и концентрацией лиганда. Требуемые условия указываются изготовителями носителей в соответствии с используемыми лигандами и фиксирующими плечами. [c.83]

    Скорость подачи воздуха. Важное значение в процессах жидкофазного окисления углеводородов, и в частности алкилбензолов, имеет парциальное давление кислорода. При каталитическом окислении алкилбензолов люжно использовать кислородсодержащий газ или чистый кислород, однако на практике предпочтителен воздух [191], реже — кислород [192]. Скорость окисления зависит от парциального давления следующим образом с увеличением давления кислорода скорость окисления растет до определенного значения, после чего практически не изменяется. Это согласуется с принятой схемой ра-дикаль но-цепиого механизма окисления [4]. При малой концентрации растворенного кислорода преобладает реакция (2.2) [К] >[КОО ], и обрыв цепи происходит по реакции (2.5) (см. с. ]]). Лимитирует скорость окисления реакции (2.1), поэтому с увеличением [Ог] реакция ускоряется. При большой концентрации [Оа] реакция (2.1) протекает быстро ([КОг ] [К ]) и обрыв цепей происходит по реакции (2,7). В этом случае скорость окисления не зависит от [Ог] и лимитирует процесс реакции пероксидного радикала с углеводородом (2.2). Расход подаваемого воздуха должен обеспечивать необходимую скорость реакции, которая зависит не только от хим ических, но и от физических факторов поверхности контакта фаз, скорости диффузии, парциального давления кислорода и др. [c.47]

    Обработка экспериментальных данных по уравнению (I) при температурах вшпе 440°С не дала удовлетворительных результатов. Данное обстоятельство может быть связано либо с изменением механизма реакций 1фекинга с ростом температуры, либо с более значительным,/ чем при низких температурах, непостоянством кинетических параметров с увеличением глубины превращения, либо с более существенным, чем цри низких температурах, влшшием физических факторов, а также рядом других факторов, которые не учитываются уравнением (I). В частности, представляет интерес сопоставление скоростей цроцессов распада и уплотнения цри воздействиях различных давлений и температурах. [c.143]


Смотреть страницы где упоминается термин Реакции физических факторов на ско: [c.60]    [c.236]    [c.192]    [c.153]    [c.267]    [c.236]    [c.13]    [c.26]    [c.222]    [c.111]    [c.369]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Факторы физические



© 2025 chem21.info Реклама на сайте