Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид светопоглощение

Рис. 1. Спектры светопоглощения растворов галогенов и хлорида брома в ССЦ Рис. 1. <a href="/info/1683026">Спектры светопоглощения</a> <a href="/info/583268">растворов галогенов</a> и хлорида брома в ССЦ

    Роданидный комплекс вольфрама можно экстрагировать с помощью органических растворителей. Кривая светопоглощения комплексного соединения вольфрама с роданидом в изоамиловом спирте приведена на рис. 19, кривая 2. В присутствии такого сильного восстановителя, каким является хлорид титана (III), молибден (VI) восстанавливается до Мо (III), который с роданидом образует лишь слабо окрашенное соединение 1 мг Мо соответствует 0,02 мг вольфрама. При определении вольфрама в присутствии молибдена можно вводить поправку на содержание последнего. [c.172]

    Хлориды кобальта при растворении в воде образуют ра-творы розового цвета однако при введении раствора соляной кислоты или различных органических растворителей розовая окраска переходит в синюю или голубую. Предложены различные теории, объясняющие эти переходы окраски [269, 804]. В настоящее время синюю. окраску солянокислых растворов кобальта связывают с образованием комплексных анионов o lJ и СоС Г. Эта точка зрения подтверждается, в частности, тем, что при электролизе солянокислых растворов кобальта последний передвигается к аноду [638]. Кривая светопоглощения хлоридного комплекса кобальта имеет максимум при 660—670 ммк, причем положение максимума зависит от концентрации НС1. При прибавлении H I к водному раствору перхлората или сульфата кобальта максимум светопоглощения сдвигается от 510 ммк (аквоион кобальта) в более длинноволновую область и в 4—5Л/НС1 наблюдаются три максимума при 625, 660 и 685 ммк [1514]. При дальнейшем увеличении концентрации НС1 появляется еще один максимум при 395 ммк. При детальном исследовании спектров поглощения водных растворов хлорида кобальта в области длин волн от 220 до 1800 ммк было показано [24,25], что в [c.17]

    ИЛИ более (рис. 13.2), наблюдаются две отчетливые изобестические точки. Хотя этот факт, как уже отмечалось в разд. 2.2, сам по себе не дает бесспорного доказательства присутствия только двух поглощающих частиц, однако он согласуется с результатами, полученными при анализе ранга матрицы светопоглощения. Спектр 1 на рис. 13.2 явно не проходит через изобестические точки, что совместно с результатами анализа ранга матрицы светопоглощения дает основание предположить существование по крайней мере еще одной частицы при низких концентрациях хлорида. [c.234]

    В неводных растворах или смешанных растворителях оптические свойства хлоридных комплексов кобальта отличаются от этих свойств в водных или солянокислых растворах. Спектрофотометрическое исследование водно-метанольных растворов хлорида кобальта показало, что они имеют два максимума поглощения— при 605 и 495 ммк. Эти максимумы отвечают синей и красной сольватной формам хлорида кобальта, причем с увеличением концентрации спирта количество синей формы в растворе возрастает [281]. Температурная зависимость светопоглощения хлорида (и других галогенидов) кобальта была изучена в работе [57]. [c.18]


    Растворы хлорида кобальта в ацетоне и в бутиловом спирте исследовались также в других работах [139, 369, 899, 900]. О светопоглощении растворов хлорида кобальта в этиловом и метиловом спиртах, ацетоне и метилэтилкетонов в области от 230 до 2000 ммк см. [26, 250]. [c.19]

    Продукт, полученный в результате восстановления хлоридом олова, характеризуется более сильным светопоглощением, чем при восстановлении сульфатом железа, однако в первом сл ае необходимо создать концентрацию кислоты в более "узком интервале кислотности. [c.49]

    Реагент не является селективным. Мешают Си, А1, 2п и Ре, поэтому проводят цементацию тяжелых металлов на металлическом кадмии с последующей экстракцией галлия в виде хлорида из 6 N НС1. Мешающего влияния элементов, частично переходящих в экстракт вместе с галлием, можно избежать проведением измерений оптической плотности растворов не в области максимума светопоглощения, а при 590—594 нм. [c.139]

    Простые (гидратированные) ионы слабо поглощают свет, т. е. их молярные коэффициенты поглощения невелики (см. гл. 4). Так, молярные коэффициенты поглощения хлоридов или нитратов редкоземельных элементов составляют от единиц до нескольких десятков молярные коэффициенты поглощения растворов простых солей меди, никеля и хрома (III) составляют 100—200 единиц. Таким образом, фотометрические методы, основанные на измерении собственного светопоглощения гидратированных ионов некоторых металлов, как правило, обладают малой чувствительностью. В то же время определение любого иона без предварительного проведения химической реакции имеет большие преимущества [11, 12]. Прежде всего, такие методы требуют очень мало времени для выполнения анализа. В этом случае необходимо время только для наполнения кюветы и проведения измерения. Второе преимущество состоит в том, что не требуется расходовать реактивы. Но главное достоинство метода заключается в легкости применения автоматики в контроле производства, так как в данном случае по пути движения жидкости или газа необходимо лишь установить фотоэлемент и освещать его через слой контролируемых жидкости или газа светом с определенной длиной волны. Показания фотоэлемента записывают с помощью автоматических самописцев. Так можно определять содержание окислов азота при проведении различных процессов, содержание основного компонента в ваннах никелирования, меднения или хромирования, а также многие другие компоненты, которые поглощают свет в доступной для исследования области с помощью простой аппаратуры. [c.373]

    Тананаев и Руднев [111] изучали применение этанола для уменьшения растворимости сульфата бария. Светопоглощение возрастает при увеличении концентрации этанола примерно до 30%, а затем резко падает. Избыток хлорида бария оказывает очень большое влияние на максимум, который вначале уменьшается, а затем при увеличении концентрации хлорида бария резко возрастает. Как пола- [c.312]

    Малые количества фосфора можно определять колориметрически следующими способами 1) превращением в синий комплекс, который фосфор образует е молибденом, восстановленным хлоридом олова (II), и сравнением интенсивности окраски со стандартом визуально или в фотоколориметре 2) по реакции образования желтого комплекса с ванадием (V) и молибденом (VI) и измерением светопоглощения раствора при 450 ммк в спектрофотометре . Последний метод применим также к продуктам, содержащим значительные количества фосфора, как, например, фосфатные породы и основной фосфат кальция [c.792]

    Раствор комплексного хлорида иридия, содержащий 5 мг иридия, помещают в колбу емкостью 25 мл, добавляют 1 мл 0,5%-ного ацетатного раствора о-дианизидина, 2 мл ацетатного буфера (pH 4,7) и доводят до метки концентрированной НС1. При этом раствор приобретает малиновую окраску. Измерение светопоглощения производят при длине волны 530 ммк. Эталоном служит вода. [c.179]

    К 30—50 мл раствора, слабо подкисленного 0,5 н. уксусной кислотой, прибавляют 5 мл 5%-ного раствора комплексона, кипятят в течение 5 мин. и после охлаждения и доведения объема до 100 мл определяют светопоглощение раствора в фотоколориметре с зеленым светофильтром (длина волны 550 шр). Получаемые окраски подчиняются закону Ламберта—Беера в пределах концентрации хрома 0,1—8 мг в. 100 мл раствора. Окраска устойчива, на нее не оказывает влияния избыток комплексона, и она не разрушается даже при 30-минутном кипячении. Сильные неорганические кислоты действуют разрушающим образом. Хлориды и нитраты не оказывают влияния при большом содержании сульфатов получаются пониженные результаты (до 1%), Определение хрома можно проводить в присутствии всех неокрашенных катионов, но только при достаточном количестве комплексона, необходимого для связывания этих катионов. Окрашенные катионы мешают определению, и их необходимо отделить, например, осаждением гидроокисью натрия в присутствии перекиси водорода при этом трехвалептный хром переходит в хромат. При колориметрировании хроматов комплексон одновременно реагирует как восстановитель. Восстановление катализируется при нагревании следами ионов Мп . Присутствие перекиси водорода сильно повышает светопоглощение, повидимому, вследствие образования пероксокомплексов . Поэтому при восстановлении хроматов (полученных окислением перекисью водорода) комплексоном необходимо для колориметрирования пользоваться калибровочной кривой, построенной в присутствии, перекиси водорода (1,5 мл 30%-ной перекиси водорода в 100 мл). Подробности приведены в оригинальной работе [67]. [c.88]


    Авторы [Л. 5-41, 5-43, 5-44] рекомендуют определять малые концентрации ЗОз в газах и иона 304 в жидкостях методом, основанным на получении сульфата бария при взаимодействии сульфат-иона с раствором хлорида бария и измерении светопоглощения (турби-диметрни) или светорассеяния (нефелометрии) суспензии сульфата бария. Величина светопоглощения (рассеяния света) линейно зависит от массы сульфата бария. Установлено также, что на светопо-глощение влияют характер и количество осадителя, температура в время старения, причем избыток осадителя определяет форму и дисперсность кристаллов. Присутствие в растворе, из которого производится осаждение, этанола, уменьшающего растворимость сульфата бария, в концентрации до 30% увеличивает светопогло-щение. Для получения надежных результатов необхо имо тщатель ное соблюдение заданных условий осаждения, которые должны быть строго одинаковыми для анализируемых проб и стандартов, по которым оцениваются результаты (строятся градуировочные кривые нефелометра или фотоэлектроколориметра). Чувствительность анализа зависит от условий его проведения и от способа измерения светопоглощения (светорассеяния), но во всех случаях эесьма высокая при визуальном измерении она составляет величину [c.293]

    Аналитическая последовательность основана на реакции хлорида с тиоци-анатом ртути(П) с высвобождением тиоцианат-ионов, которые затем реагируют с железом (П1) с образованием интенсивно окрашенного тиоцианатного комплекса железа(Ш), светопоглощение которого измеряют. Пробы с содержанием хлорида 5-75 м.д. (1м.д. == инжектировали (S) через дозатор объемом 30 мкл в раствор носителя, содержащий смешанные реагенты и прокачиваемый со скоростью 0,8мл/мин. По мере распространения зоны введен- [c.443]

    Мауп и Давидсон [1029] исследовали восстановление перрената хлоридом двухвалентного олова в солянокислых (4 iV) растворах. Показано, что в присутствии 2 экв. Sn lj перренат быстро п количественно восстанавливается до Re(V), вслед за тем следует медленное образование Re(IV) при прибавлении избытка восстановителя. Была проведена индентификация образующихся хлоридных комплексных соединений спектрофотометрическим методом в видимой области спектра. Максимальное светопоглощение комплекса репия(У) соответствует длине волны, равной 750 нм, комплекса рения(1У) — 600 нм (рис. 8). Замечено, что спектры светоноглощения Re(IV), полученного восстановлением перрената [c.55]

    Кривая светопоглощения 8-10 А1 растворов хлорида 6,7--диокси-2,4,-дифенилбензопирилия в смеси 1 1 воды и ацетона при pH 2,1 относительно воды имеет максимум при 450 ммк. Кривая поглощения хлороформного экстракта соединения молибдена с реагентом имеет максимум при 535 ммк [68]. При 535 ммк хлороформный экстракт самого реагента тоже поглощает свет. Поэтому следует измерять оптическую плотность при фотометрическом определении молибдена относительно экстракта реагента одинаковой концентрации [68]. Молярный коэффициент погашения экстракта соединения молибдена в хлороформе при 535 ммк в присутствии избытка реагента (1,0-10- М) в водной фазе составляет (5,04 0,03) 10 [68]. [c.51]

    Молибден экстрагируют диэтиловым эфиром при следующих условиях [597]. Прибавляют 1 мл 0,1 М раствора хлорида одновалентной меди в концентрированной соляной кислоте к раствору соединения шестивалентного молибдена в 8,0 М соляной кислоте. Объем не должен превышать 3,0 мл. Добавляют 3,0 мл 3,0 М водного растчора роданида аммония. Роданидные соединеиия пятивалентного молибдена экстрагируют двумя порциями (по 10 жл) диэтилового эфира. Объединенные экстракты разбавляют эфиром точно до 35 жл. Максимум светопоглощения находится при 470 ммк, коэффициент молярного погашения равен 19 500. Устойчивость оирашенных экстрактов ниже, чем водно-ацето овых растворов. Оптическую ллотность следует измерять в пределах нежольких минут после экстракции, так как она медленно уменьшается. [c.218]

    Для определения хрома используют синюю окраску надхромовой кислоты она экстрагируется три-бутилфосфатом (ТБФ) [1092]. Окраска устойчива в течение 48 час. максимум светопоглощения наблюдается при 575 нм. Большие количества Се(1У) иСи(П) мешают определению. Для экстракции надхромовой кислоты применяют также этилацетат [753], растворы три-к-октиламина в бензоле и хлорида трикаприлмети-ламмония (Аликват-336) в хлороформе [1021]. [c.42]

    Такой же высокой чувствительностью обладает и реакция Сг(1П) с хромазуролом 8 [444, 872]. Максимум светопоглощения наблюдается в растворах с pH 3,6 == 570 н- 590 нм) [872]. Закон Бера соблюдается для концентраций 0,04—0,4 мкг Сх мл. Определению не мешают Ag, РЬ, Сс1, п, Мп, Со, N1, щелочноземельные и щелочные металлы, нитраты, хлориды, сульфаты, иодиды, арсепаты, бромиды. Используют и другой вариант метода — Сг(П1) определяют по обесцвечивающему действию на комплекс, образуемый Си(П) с хромазуролом 8 в присутствии хлорида тет-радецилдиметилбензиламмония (предел обнаружения по Сенде-лу 0,0008 мкг Сг(1П)/сл12) [492]. [c.50]

    Если анализируемая смесь содержит только Вг-2 и Brad , то брутто-концентрацию брома определяют по светопоглощению прп 430 нм, где молярный коэффициент погашения обеих частиц одинаков [182]. Этим методом определяют s rl г л Вга в растворах с большим содержанием хлорид-ионов. [c.100]

    Родамин С (тетраатилдиамино-о-карбоксифенилксантенил-хлорид) взаимодействует с иодидным комплексом кадмия с образованием ассоциата [219]. Спектры поглощения взвеси образующегося соединения — [С(1]4](Р)2 — и реагента приведены на рис. -12. Наибольшая разница оптических плотностей между комплексом и родамином С наблюдается яри 610 нм. При повышении температуры светопоглощение растворов уменьшается, что связано с изменением растворимости соединения. В присутствии винной, лимонной и щавелевой кислот, гидрокс ламина, тиомочевины и тиосульфата чувствительность реакции снижается. Со, N1 и 2п мешают определению в количествах более 10 мг ионы Си +, Hg и 8Ьз+ завышают результаты, их отделяют зкстракцией дихлорэтаном из щелочных или слабокислых растворов в виде ди- [c.93]

    Твердые вещества можно также анализировать в виде тонкого слоя, нанесенного на пластинку из щелочного галогенида в виде пасты или кашицы, изготовляемой растиранием образца с небольшим количеством тяжелого парафинового масла. В этом случае пригодно тяжелое минеральное масло, применяемое в медицине, так как оно имеет лишь несколько изолированных полос поглощения, мешающих проведению анализа. Пасту или кашицу помещают между пластинками из соли, необходимый зазор между жотюрыми обеспечивается за счет металлической прокладки по периметру пластины, и все стягивают металлическими зажимами. Хлорид серебра может быть также использован в качестве материала для окон его применение целесообразно в случаях, когда определяемое вещество вступает в реакцию с другими солями. Толщина поглощающего слоя обычно составляет десятые или сотые доли миллиметра (в то время как при исследовании светопоглощения в ультрафиолетовой и видимой областях, где употребляются разбавленные растворы, она колеблется от 1 до 10 см). [c.80]

    Ион ртути (П) легко присоединяет четыре иона цианида (см. табл. 6) и также, вероятно, довольно легко образует тетрайодо-комплекс. Однако растворы хлорида и бромида ртути (II) еще содержат в значительной степени тригалогенидные комплексы даже в присутствии большого избытка ионов данного галогенида. Это видно из результатов, приведенных в табл. 5, и отчасти из определений растворимости Гарретом [14], а также из измерений светопоглощения Фромхерцем и Кун-Ху Ли [15], если только в отличие от этих исследователей при анализе полученных спектров применить закон действия масс. [c.64]

    Отсюда видно, что формулы (1) и (2) не совсем отвечают экспериментальным результатам при концентрациях аммонийной соли больше 2 н., но они, однако, применимы как к растворам хлорида аммония, так и к растворам нитрата аммония до этой концентрации. В сущности такой результат неудивителен. Дело в том, что как исследования светопоглощения, проведенные Хаустоном [16], так и измерения активности хлор-иона Хасса и Еллинека [17] показывают, что в 1 н. растворах хлоридов кобальта (II) и никеля не образуются хлоро-комплексы. Только при более высоких концентрациях хлорида или при более высоких температурах будет происходить образование комплексов, которое сопровождается изменением окраски разбавленного водного раствора кобальта (II) от красного до синего и соответствующих растворов никеля — от зеленого до желтого. Наконец, можно упомянуть, что образование гидроксо-комплексов не может мешать образованию амминов, так как тенденция акво-ионов кобальта (II) и никеля к гидролизу слишком мала (указание на литературу см. табл. 9, стр. 77). [c.192]

    Стандартные растворы тетрахлоропалладата(П) натрия и хлорида натрия готовят смешиванием избыточного количества этих соединений с ледяной уксусной кислотой с последующим в каждом случае фильтрованием осадка хлорида натрия [2]. Растворы затем точно стандартизируют по палладию и хлорид-иону. Палладий определяют гравиметрически, осаждая иодид палладия (П) действием иодида натрия [3]. Хлорид-ион определяют титрованием по Фольгарду [4], предварительно обработав раствор цинком для осаждения палладия, чтобы цвет палладия (П) не мешал установлению точки эквивалентности. Светопоглощение серии растворов в ледяной уксусной кислоте, содержащих 1,51 10" моль/л палладия (II) и хлорид-ион в интервале концентраций от 5,89-10 до 1,28-10 моль/л, измеряют при десяти длинах волн в диапазоне от 260 до 375 нм, так чтобы разность между этими длинами волн была во всех случаях примерно одинаковой. Держатель кювет термостатируется водой при 25,00 0,01 °С. [c.231]

    Прежде всего необходимо определить число поглощающих частиц в растворе. С этой целью определяют ранг матрицы светопоглощения растворов при разных длинах волн, используя для этого расчетный метод, обсуждавшийся в разд. 2.4. Так, в результате обработки данных, полученных для растворов, в которых отношение общих концентраций хлорид-иона и палладия [С1]т [Pd]x равно 20 1 или более, с применением ЭВМ по программе TRIANG (см. приложение II) получен ранг матрицы светопоглощения, равный 2, при заданной разумной величине ошибки 0,003. Этот результат машинного расчета подтвержден [c.232]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Н. С. Полуэктов 3 предложил косвенный каталитический метод определения рения, который основан на свойстве рениевой кислоты и ее солей каталитически ускорять восстановление теллурата натрия хлоридом олова (II) до элементарного теллура. При прочих равных условиях количество восстановленного теллура пропорционально концентрации рения, которую можно определить, измерив светопоглощение коллоидного раствора теллура, после введения в него защитного коллоида. Этим методом можно ч)нределять от 0,001 до 0,1 мпг рения с точностью 10—20%, Молибден мешает определению. Азотная кислота подавляет реакцию. Другие кислоты также влияют на интенсивность окраски. Доп. перев.  [c.380]

    Разработаны также условия определения ниобия в виде роданида без экстрагирования, в водно-ацетоновой среде . По этому способу осадок пятиокисей ниобия и тантала сплавляют с 2,5 г бисульфата калия. Плав растворяют в 200 дал 1,2 М винной кислоты и разбавляют до 500 дал. В мерную колбу емкостью 50 дал вводят 10 дал концентрированной соляной кислоты, 1 дал 2 М раствора хлорида олова (II), 5 дал воды и 10 дал ацетона, перемешивают и оулаждают 15 мин при 20° С. Затем вводят 10 дал 3 М раствора роданида калия и 10 дал анализируемого раствора. Снова охлаждают 5 мин, после чего разбавляют до метки и измеряют светопоглощение раствора при 385 ммк точно через 15 мим после введения в раствор роданида калия. В случае повышения концентрации соляной кислоты, роданида и ацетона в растворе может происходить выделение солей. [c.690]

    К раствору комплексного хлорида платины, помещенному в мерную колбу емкостью 50 мл, добавляют 1 мл буферного раствора с pH 2—3 (50 мл ацетата натрия и Ъ2>мл 4МНС1) и 1 мл спиртового раствора п-нитрозодиметиланилина (5 мг/мл). Реактив растворяют в свежеприготовленном абсолютном этиловом спирте, хранят, оберегая от влаги воздуха. Раствор нагревают на водяной бане (85 2°С) в течение часа, быстро охлаждают в токе холодной воды и доводят до метки 95%-ным этиловым спиртом. Светопоглощение измеряют при длине волны 525 ммк, используя в качестве раствора сравнения аналогично приготовленный раствор, к которому вместо хлорида платины прибавляют равный объем дистиллированной воды. [c.161]

    Содержание дитиофосфата рассчитывают по калибровочной кривой, для построения которой приготовляют стандартные растворы КН2РО4, содержащие от 0,0025 до 0,05 мг фосфора приливают в каждый раствор по 6,5 мл 5 н. серной кислоты и разбавляют до 50 мл. Затем обрабатывают эти растворы мо-либдатом аммония и хлоридом олова (II), как анализируемый раствор, и измеряют их светопоглощение. [c.192]

    Калибровочная кривая. 1—10 мл стандартного раствора сульфата бериллия (1 мл содержит 0,01 мг Ве) разбавляют водой до 75 мл в мерной колбе емкостью 100 мл, прибавляют раствор хлорида меди (П) (в количестве, соответствующем 2 мг Си), затем 2 мл раствора комплексона и Ъ мл буферного раствора с алюминоном. Доводят раствор до метки, тщательно перемешивают и вносят 30 жл раствора в кювету фотоколориметра, защищенную от прямого света. Величину светопоглощення измеряют точно через 20 мин. после прибавления раствора алюминона. [c.127]


Смотреть страницы где упоминается термин Хлорид светопоглощение: [c.223]    [c.383]    [c.87]    [c.150]    [c.160]    [c.173]    [c.22]    [c.383]    [c.234]    [c.164]    [c.235]    [c.228]    [c.313]    [c.83]    [c.180]    [c.177]    [c.192]    [c.177]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.900 ]




ПОИСК





Смотрите так же термины и статьи:

Светопоглощение



© 2025 chem21.info Реклама на сайте