Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

влияние механических в газах при высоких температурах

    Гидроксид алюминия, содержащий фтор, после отмывки и отжима на фильтр-прессе поступает на формование на шнековом прессе, а полученные экструдаты - на сушку и прокаливание. При выборе оптимальной температуры прокаливания помимо показателя активности приготовляемого катализатора большое значение имеют удельная поверхность и прочность гранул. Высокая стабильность удельной поверхности и кислотности оксида алюминия, а также удовлетворительная механическая прочность достигаются при температурах прокаливания 450-550 °С. Большое влияние на перечисленные показатели оказывает содержание воды в газе, поступающем на прокаливание прокаливание необходимо осуществлять в токе сухого воздуха с точкой росы от -30 до -40 С. После прокаливания диаметр экструдатов составляет 1,8-2,2 мм, удельная поверхность по адсорбции аргона 200-250 м /г, потери при прокаливании при 1100 °С не более 3,0-3,5%, средний коэффициент прочности экструдатов 1,0 кгс/мм. Принятый в СССР способ получения фторированного 7-оксида алюминия обеспечивает чистоту по содержанию примесей натрия 0,02% и железа 0,02%. [c.59]


    Термоокислительные механизмы деструкции часто сопутствуют механохимическим реакциям в расплаве полимера, который обычно имеет высокую температуру. Эксперимент показал, что термоокислительные реакции идут с большей интенсивностью под действием сдвиговых напряжений, чем в их отсутствие при той же температуре [34, 232, 233, 266, 271, 420, 682, 832, 883]. Независимо от типа деструкции (термическая или окислительная) накопление в цепях механической энергии приводит к значительному снижению температуры, необходимой для протекания этих процессов. При этом надо исключить любое увеличение температуры под действием деформирования. Отмеченное явление, таким образом, согласуется с известным влиянием сдвига на изменение потенциальной энергии разрыва связей [34]. Это соображение подтверждается экспериментами Регеля с сотр. [629, 631, 893, 895, 896, 1141, 1143, 1170, 1197—1199], которые исследовали летучие продукты, образующиеся при разрушении полимеров под действием постоянного растягивающего напряжения. Для ряда полимеров эти продукты оказались идентичными по составу с теми, которые образуются при термодеструкции [1197, 1199]. Скорость выделения газов экспоненциально растет с увеличением приложенного напряжения. Согласно Регелю, это означает, что механодеструкцию можно рассматривать как термодеструкцию, активированную напряжением. В частности, в указанных работах говорится, что механическое напряжение активирует разрыв макромолекул за счет снижения энергии активации процесса и препятствует рекомбинации разорванных молекул, растягивая их в разные стороны. Поэтому механодеструкция идет при температуре, которая значительно ниже температуры термодеструкции [629, с. 163]. В [629] была определена энергия активации процесса механодеструкции многих полимеров. Детально различные теоретические представления рассмотрены в следующем разделе. [c.21]

    Предполагается, что, кроме названных выше основных эффектов, связанных с наличием окалины, на свойства материала подложки вблизи поверхности могут влиять и другие поверхностные факторы. В частности, модуль упругости и параметры решетки очень тонкого ( — 30 А) приповерхностного слоя могут изменяться в результате адсорбции атомов газовой фазы [114]. На подобные эффекты ссылаются при объяснении ухудшения механических свойств поверхностных слоев некоторых неметаллических твердых материалов под влиянием адсорбции во влажных средах [136]. Наглядной иллюстрацией служит рис. И, где представлены данные об уменьшении временного сопротивления серебряной проволоки при высоких температурах в атмосферах различных газов (изменения наиболее велики в случае более тонкой проволоки) [137]. [c.31]


    По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС. [c.26]

    Болдырев с Аввакумовым [261] и Бутягин [256] высказали мысль об общности механохимических явлений, к которым они относят также реакции, инициированные ультразвуком, ударными волнами, высоким давлением со сдвигом, коррозию под напряжением, детонацию ударом, криолиз и др. Бутягин [256] определяет механохимию как науку об ускорении и инициировании химических реакций в газах, жидкостях и твердых телах под воздействием упругой энергии. При этом следует иметь в виду, что упругая энергия оказывает влияние на ход взаимодействия не обязательно путем только механического разрыва и деформирования межмолекулярных связей в твердых телах. Можно ожидать, что возникающее при их разрушении излучение и, возможно, кратковременные плазменные температуры в местах контакта соударяющихся частиц, а также высокие локальные давления изменяют кинетику и выход гетерогенных процессов, воздействуя не только на твердую, но и на жидкую и газообразную фазы. [c.297]

    Условия работы огнеупорной кладки газогенераторов следующие влияние высокой температуры в зоне горения, химическое действие шлака, могущего разъедать футеровку или образовывать на ней настыли, механическое действие шлака и топлива (истирание), а также удары при шуровке. Содержание окислов железа в огнеупорном материале не должно быть значительным во избежание отложения в порах кирпича сажистого углерода и разрушения кирпича. Футеруются газогенераторы шамотом класса А. В большинстве современных газо- [c.111]

    По условиям механической прочности стальных конструкций,, температура газов должна быть не выше 400° С. При более высоких температурах необходимо обеспечить механическую прочность и неизменяемость конструкции под влиянием температурных деформаций. [c.79]

    Для проведения работы в условиях, исключающих влияние воздуха, а также попадания в реакционную массу пыли, рекомендуется применять герметизированную, лучше всего — кварцевую, аппаратуру. Аппараты или приборы обычно заполняют инертным газом, например аргоно.м. Инертный газ перед поступлением в систему следует предварительно очищать промыванием, высушивать, фильтровать от механических примесей. Следует помнить, что понятие инертный газ — относительное и, например, такой инертный газ, как азот, при определенных условиях, особенно при высокой температуре, может вступать в реакцию с некоторыми металлами, образуя нитриды. [c.655]

    Полученные отдельными авторами данные об интенсивности сернокислотной коррозии при предельно низких избытках воздуха также еш,е не дают исчерпываюш его ответа на поставленный вопрос. Например, в опытах Глаубитца (Л. 6-15] температура перегрева не превышала 475°С, ЧТОБ значительной степени ограничивало возможную концентрацию соединений ванадия и натрия в зоне пароперегревателя, а благодаря весьма низкой зольности мазута (0,02—0,03%) количество отложений золы на поверхностях нагрева, в частности на высокотемпературных, естественно, было незначительным. Кроме того, отсутствие присосов в топочную камеру, работающую под наддувом, и распыливание мазута паровыми форсунками существенно отличало условия протекания процесса горения в опытах Глаубитца от обычных условий сжигания мазута, распыливаемого механическими форсунками, в топках, работающих под разряжением. Вывод же Глаубитца об отсутствии влияния присосов на температуру точки росы дымовых газов, сделанный им на основании данных, полученных на огневом пароперегревателе с температурой перегретого пара 475° С, не может быть распространен на котлы с более высокими температурами перегрева пара и требует еще соответствующей экспериментальной проверки. [c.403]


    При газификации угольного пласта его кровля и почва подвергаются не только механическому разрушению, но также и воздействию высоких температур и химическому влиянию со стороны газа и дутья. В зависимости от свойств пород, степени нагрева и характера газовой среды вмещающие породы при выгазовывании угольного пласта ведут себя по-разному. [c.201]

    На основе такого подхода мы разработали новый термически стойкий и механически прочный катализатор конверсии природного газа марки КСН [20, 27, 52]. Высокие механические показатели данного катализатора были достигнуты в результате строго дозированного использования некоторых приемов. К ним относятся повышение температуры прокалки глиноземного носителя до температуры почти полного его спекания, введение ограниченного количества спекающих добавок и применение достаточно большого количества выгорающей добавки оптимальной крупности. Положительное влияние каждого из этих приемов в отдельности было известно. Неожиданным оказался тот значительный эффект, который мы получили при совместном и строго дозированном действии перечисленных факторов. Так был найден общий путь создания катализаторов, обладающих, в частности, исключительно высокой термостойкостью. В качестве активного компонента катализатора использовали никель. [c.118]

    Внешние условия в месте проведения анализа. Запыленность, значительные колебания температуры, высокая влажность, присутствие коррозионных газов, механические колебания — все это снижает эффективность многих инструментальных методов. В специальных лабораторных помещениях влияние всех этих факторов может быть сведено.к минимуму для этого приборы помещают в специальные комнаты, где они не подвергаются действию пыли и коррозионной атмосферы и в которых кондиционеры поддерживают постоянную температуру и влажность. Во временных и передвижных лабораториях такие условия создать невозможно, поэтому методы, используемые в таких лабораториях, должны быть малочувствительны к изменению внешних условий. [c.35]

    Сжиженные газы не воздействуют на черные металлы, поэтому арматура, как и прочее оборудование, может быть стальной и чугунной. При этом следует учитывать, что из-за недостаточно высоких механических свойств чугунная арматура может применяться при давлении, на которое она рассчитана, но не более чем при 1,6 МПа. При использовании чугунной арматуры особенно важно исключить условия, при которых ее фланцы работали бы на изгиб, т. е. требуется тщательный монтаж и установка компенсаторов в нужных местах. Правила Госгортехнадзора ограничивают применение чугунной арматуры во взрывоопасных условиях однако необходимо учитывать влияние низких температур на прочность материалов и стойкость уплотнений, на допуски деталей и изменение зазоров, на возникновение заеданий. [c.147]

    Изучение эмиссии под влиянием поля позволяет получить значение работы выхода электрона альтернативными путями. В соответствии с уравнением (30) изменение тока эмиссии с величиной приложенного поля дает прямой метод измерения Ф. Однако из результата исследования эмиссии под влиянием поля фактически невозможно получить точные значения абсолютных величин Ф. Для реализации сильного поля необходима очень острая геометрия (кончик эмиттера обычно имеет диаметр порядка 1000— 10 000 А), что вызывает некоторые сложности при определении точной величины приложенного поля на расстоянии нескольких ангстрем от эмиттирующей поверхности. Можно получить точные относительные значения Ф для разных частей одного и того же эмиттера. Поскольку опыты можно проводить в интервале температур 4—800° К, то могут быть исследованы эффекты, связанные с адсорбцией газов. Выбор материала эмиттера ограничивается высокими требованиями к его механической прочности. Металлы, обладающие высокими точками плавления и, следовательно, годные для изучения термоионной эмиссии, обычно характеризуются также и высокой прочностью. Таким образом, существует возможность сравнения различных методов, а абсолютную шкалу работы выхода в случае эмиссии под влиянием поля можно получить на основании величин работы выхода, полученных методом термоионной эмиссии. [c.163]

    Оборудование большинства современных производств (химических, энергетических, электротехнических и др.) эксплуатируется в жестких условиях при одновременном воздействии агрессивной среды, высоких температур и давлений, а также при механических воздействиях (истирание, износ и т. п.) и радиоактивных излучений. В таких условиях керамические материалы и в первую очередь их поверхности разрушаются в основном в результате двух типов воздействия среды. По общепринятой терминологпп их можно назвать коррозионным (разрушение под влиянием внешней среды) и эрозионным (разрушение, вызываемое механическим воздействием). Агрессивная среда при этом может также претерпевать изменения, становясь или газом, или раствором, или гетерогенной системой, состоящей из частичек твердого материала в жидкой среде, или, наконец, образовать химическое соединение с твердым веществом. [c.6]

    Равновесная степень конверсии метана с возрастанием давления снижается, но путем повышения температуры и соотношения пар газ можно уменьшить отрицательное влияние давления на реакции конверсии углеводородов. Однако возможность повышения температуры сверх 800 °С в процессе конверсии под давлением ограничена механическими свойствами жаропрочных стальных труб, применяемых для изготовления трубчатых печей. Поэтому при паровой конверсии метана под давлением целесообразно более высокое соотношение пар газ и допустимо большее остаточное содержание метана после первой ступени конверсии, чем на установках, работающих без давления. Во второй ступени, при конверсии метана воздухом, температура может быть повышена до 850—970 С, что позволяет увеличить степень конверсии до содержания не более 0,2—0,3 объемн. % СН4 в конвертированном газе. [c.50]

    Реальные газы отличаются от идеальных тем, что их молекулы имеют определенный объем и между ними наблюдается взаимодействие. С повышением плотности реального газа, при его сжатии, влияние обоих факторов (и реальности объема и взаимодействия между молекулами) становится бо.нее заметным. При температурах ниже критической температуры сжатие реального газа приводит к его конденсации — явлению, не свойственному идеальному газу. При температурах же выше критической температуры газа конденсация его не происходит, даже при достижении очень высоких плотностей. Многие реальные сжатые газы по некоторым свойствам приближаются к жидкостям, например они растворяют жидкие и твердые вещества. Еще в прошлом столетии рядом исследователей, например Реньо (Regnauet, 1854), Голициным (Со1иг1п, 1890), было обращено внимание на увеличение давления насыщенного пара жидкости и твердого тела в присутствии постороннего нерастворяющегося в них газа. То же самое наблюдалось и при наложении на твердое тело (жидкость), находящееся в равновесии со своим насыщенным паром, механического давления, например с помощью полупроницаемого поршня. В этих случаях давление насыщенного пара твердого или жидкого вещества оказывалось зависящим не только от температуры и природы вещества, но и от величины дополнительно наложенного на него внешнего давления. [c.5]

    Однако аппаратуру установок для синтеза аммиака предпочтительнее выполнять из легированных сталей по следующим соображениям. Как уже упомнналось, использование легированных сталей обычно позволяет уменьшить толщину стенок аппаратов высокого давления и, следовательно, снизить вес поковок, что оказывает существенное влияние на стоимость аппаратуры. Поэтому часто выгоднее изготовить аппарат высокого давления из легированной стали, чем из углеродистой. Легирс -занные стали применяются также для изготовления насадок колонн, при этом имеется в виду не увеличение их прочности, а повышение сопротивляе.мости действию водорода при высоких температуре и давлении. Трубки теплообменников, болты и другие элементы аппаратов под действием водорода становятся хрупкими и непрочными и разрушаются в результате механических и термических напряжений. Вследствие этого создаются неплотности и нормальное движение газа в колонне нарушается, причем часть газа может проходить обходным путем, минуя катализатор, из-за чего степень конверсии понижается. Часто в резл льтате таких повреждений, а не i s-sa пониже- [c.589]

    Часть работ сборника посвящена химико-гигиенической характеристике и токсиколого-гигиенической оценке продуктов термоокислительной деструкции пластических масс (С. Л. Данишевский и Е. Н. Комарова Е. Н. Комарова и Е. Г. Робачевская Б. Ю. Калинин Э. М. Степаненко Е. Н. Комарова И. Л. Крынская). Как известно, переработка пластических масс в изделия, а иногда и их использование сопровождаются или нагревом материала до сравнительно высокой температуры или механическими воздействиями. Как первое, так и второе вызывает термоокислительную деструкцию. Образующиеся при этом паро-газо-воздушные смеси представляют собой комплекс вредных химических веществ, могущих оказать отрицательное влияние на здоровье работающих. [c.4]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]

    При описании реакции окисления каучука было указано, что некоторые вещества способны ускорять, другие замедлять эту реакцию. В этой связи следует рассматривать действие ряда органических соединений на процесс пластикации. Типичные антиоксиданты, например фенил- -нафтиламин замедляют пластикацию, в особенности если последняя ведется при высоких температурах, при которых окислительная деструкция превалирует над механической. Тиокрезол ускоряет пластикацию -нитро-диметиланилин ускоряет ее при низких температурах и замедляет при высоких. В особенности эффективно действуют такие ве щества, как меркаптобензотиазол (каптакс), -нафтилмеркаптан, ксилилмеркаптан и др. Их действие связано с ускоряющим влиянием на процесс окислительного распада каучука. Каталитический характер действия указанных веществ подтверждается тем, что их влияние сказывается уже при незначительных дозировках (0,2—1,0%) от веса каучука. Цинковые соли жирных кислот, апример лаурат цинка, при более высоком содержании их (3—5%) также производят положительный эффект. Так как они проявляют свое действие и в том случае, когда пластикация ведется в атмосфере инертного газа, то можно считать, что их роль иная по сравнению с катализаторами окисления. Ряд производных гидразина, например фенилгидразин, ускоряют процесс механической пластикации и даже способны вызывать заметное увеличение пластичности в результате простой диффузии их в каучук. При этом обнаруживается зависимость действия гидразинов от характера заместителей в их молекуле. Если одно-замещенные гидразины в большинстве случаев вызывают смягчение каучука, то дифенилгидразин и тетрафенилгидразин имеют обратное действие — увеличивают эластичность и жесткость этого продукта. В отмеченных случаях мы имеем дело с химическим и отчасти с физико-химическим взаимодействием каучука с гидразинами. Однако существо процесса пока остается невыясненным. [c.291]

    Направление газового потока в контактном аппарате имеет существенное влияние как на степень конверсии аммиака, так и на величину потерь катализатора. Для уменьшения диффузии образующейся окиси азота в аммиачно-воздушную смесь газовый поток раньше направлялся снизу вверх. При этом движение газового потока совпадало с направлением конвекционных токов газа, благодаря чему уменьшалась обратная диффузия окиси азота. При высокой температуре и большой скорости реакции газовый поток, как показано авторами совместно с А. П. Засориным и др., должен быть направлен сверху вниз. В этом случае, и особенно при повышенном давлении в системе, катализаторные сеткк располагают на опорах. Благодаря этому сетки не испытывают вибрации и не расслаиваются. При такой расположении сеток степень контактирования при высокой температуре оказывается даже больше, чем при движении газа снизу вверх. Одновременно уменьшаются механические потерн платины и потери тепла. [c.88]

    В связи с интенсииным развитием атомной энергети-ни и космической техники вопрос о поведеюш я работоспособности кабельных изделий в условиях радиоактивного излучения стал достаточно актуальным, поскольку изменение механической прочности, гибкости, электри-ч-еоких параметров проводов и кабелей при воздействии ионизирующих излучений оказывает влияние на их работоспособность. Радиоактивное воздействие может происходить в сочетании с рядом других факторов высокой температуры, разрежения, воздействия кислорода воздуха, активных газов, что в ряде случаев может вызывать более интенсивные изменения свойств. [c.86]

    Углеводороды также оказывают влияние на активность контактных масс. Неоднократно наблюдалось почернение платиновых катализаторов от выделившейся на них сажи. Это происходило при использовании для обжига руды, подвергавшейся флотации с добавкой органических соединений. Последние, не полностью сгорая на верхних этажах печей, могут попадать в обжиговый газ. В контактном аппарате эти органические соединения могут разлагаться с выделением углерода, поскольку температура недостаточно высока (450—550°) для полного их сгорания. Выделение углерода сопровождается резким снижением каталитической активности. Вызывается ли это снижение простым механическим покрытием поверхности платины или образованием неактивного платиноуглеродистого соединения, точно не установлено. [c.426]

    Предложено много схем блоков управления ДТП (БУДТП), различающихся не только принципом действия, но и наличием дополнительных элементов и схем для стабилизации работы блока и устранения влияния некоторых внешних факторов. Однако для получения высокой чувствительности ДТП наибольшее значение имеют электрическая и механическая стабильности работы самого детектора, точность поддержания температуры детектора, давления и расхода газа-носителя через детектор.. Колебания температуры в комнате могут отражаться на постоянстве сопротивления резисторов БУДТП и, следовательно, на стабильности его работы. Необходимо также по возможности уменьшать переменную составляющую постоянного тока моста и термические эффекты электродвижущей силы. [c.154]

    Приведенные примеры помимо влияния среды показывают, что карбонизации можно подвергать неокисленное ПАН-волокно и получить углеродное волокно с относительно высокими механическими показателями. Однако с практической точки зрения этот метод карбонизации не представляет интереса по ряду причин. Приемлемые результаты можно получить только при очень медленном повышении температуры или большой продолжительности процесса (1,5—16 суток). По механическим показателям (прочность, модуль Юпга) углеродное волокно из неокисленного полимера уступает углеродному волокну из ПАН-волокна, подвергнутому предварительному окислению. Объясняется это тем, что в процессе окисления, особенно под натяжением, сохраняется более высокая ориентация макромолекул и образуются предструктуры, которые легче преобразуются в турбостратную форму углерода с более высокой степенью ориентации элементов структуры в углеродном волокне. При большой продолжительности процесса увеличивается расход инертного газа, а это нежелательно из экономических соображений. Поэтому на практике, надо полагать, применяется метод получения углеродных волокон, включающий как обязательную стадию окисление. [c.188]

    Опыты, проводимые совместно с заводом, по влиянию тонких пластических теплопроводных покрытий, нанесенных а чугунный барабан и на образцы, показали, что наличие одного только перепада механических свойств по глубине является недостаточным для обеспечения стабильного и высокого коэффициента трения. Необходима также ге-терогенизация поверхностного слоя. Однако эти опыты показали положительное влияние тонких пластических теплопроводных покрытий на процесс трещинообразования. Снижение местных поверхностных температур в момент приработки, устранение поверхностных микродефектов и графитовых прожилок, а также предохранение от проникновения кислорода и других газов внутрь металла способствовали уменьшению склонности чугунных тормозных барабанов к трещинообразо-ванию. [c.266]

    Газы, растворенные в твердом металле, оказывают существенное влияние на его физико-химические и механические свойства. Экспериментальные данные о растворимости водорода в различных металлах приведены в литературе [1—3]. Изобары растворимости водорода в железе, никеле, меди, кобальте и кремнии нри давлении водорода в одну атмосферу показывают, что абсорбция водорода возрастает с повышением температуры, причем особенно резкое увеличение растворимости водорода наблюдается в точке плавления металла. Для некоторых других металлов, например, титана, циркония, ванадия, тантала и ниобия, растворимость водорода, наоборот, уменьшается с повышением температуры. Каких-либо определенных данных о растворимости водорода в германии не имеется. Между тем в процессе очистки германия его двуокись восстанавливается водородом при температуре плавления германия, и металл в атмосфере водорода остывает в слиток. Абсорбция водорода германием л Ожет происходить одновременно с его восстановлением из двуокиси. При дальнейшей очистке германия путем многократной перекристаллизации в высоком вакууме значительная часть водорода, по-видимому, удаляется. В процессе производства германия десорбция водорода происходит в условиях, обеспечивающих максимальное выделение водорода поэтому в слитке германия либо совсем не остается водорода, либо остаются весьма незначительные его количества. В связи с этим все общепринятые методы определения примеси водорода в металлах, основанные на вакуумнагреве или вакуумплавле-нии, по-видимому, могут оказаться пригодными только для исследования образцов германия в процессе производства, но [c.36]


Смотреть страницы где упоминается термин влияние механических в газах при высоких температурах: [c.178]    [c.216]    [c.222]    [c.77]    [c.187]   
Коррозия металлов Книга 1,2 (1952) -- [ c.710 , c.720 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние высоких температур

Газы при высоких температурах

Механические и температура

Температура газов

Температуры высокие

влияние механических



© 2024 chem21.info Реклама на сайте